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Abstract—In this paper, we study an Nicholson-type delay
system with delays. New criteria for the boundedness and
exponential stability of positive solutions of Nicholson-type
system with time-varying delays are established by applying
the fundamental solution matrix, inequality techniques and Lya-
punov method. Two examples with their computer simulations
are presented to illustrate the effectiveness of the theoretical
findings. Our results are new and supplement some previously
known ones.

Index Terms—Nicholson-type delay system, positive solution,
exponential stability, delay, Lyapunov method.

I. INTRODUCTION

THE classical Nicholsons blowflies model

ẋ(t) = −ax(t) + bx(t− τ)e−cx(t−τ) (1)

was introduced by Nicholson [1] to model laboratory fly
population. Here x(t) denotes the size of the population
at time t, b denotes the maximum per capita daily egg
production, 1

c denotes the size at which the population
reproduces at its maximum rate, a denotes the per capita
daily adult dath rate, and τ denotes the generation rate. The
dynamical behavior has been investigated by Gurney et al. [2]
and Nisbet and Gurney [3]. Recently, considerable effort has
been devoted to studying the various Nicholsons blowflies
models and their modifications. For example, supposing that
a harvesting function is the delayed estimate of the true
population, Berezansky et al. [4] introduced the following
Nicholsons blowflies model with a linear harvesting term:





ẋ(t) = −ax(t) + bx(t− τ1)e−cx(t−τ1)

− hx(t− τ2),
a, b, c, h, τ1, τ2 ∈ (0,+∞),

(2)

and gave an open problem: How about the dynamics of (2).
Considering that the parameters in the model are pseudo
almost periodic functions, Duan and Huang discussed the the
existence and convergence dynamics of positive pseudo al-
most periodic solutions of the following Nicholsons blowflies
model with varying coefficients and a linear harvesting term:

{
ẋ(t) = −a(t)x(t) + b(t)x(t− τ1(t))e−c(t)x(t−τ1(t))

− h(t)x(t− τ2(t)),
(3)

where a(t), b(t), c(t), h(t) ∈ (0,+∞), τ1(t), τ2(t) ∈ [0,
+∞) are continuous functions. Noticing that in real natural
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word, the change of the environment and impulsive effect
play an important role in numerous biological and ecological
dynamical systems [5], Alzabut [5] focused on the positive
almost periodic solution of the following delay Nicholson,s
blowflies model with impulsive effect which is a generalized
form of model (1)





ẋ(t) = −α(t)x(t) +
n∑

i=1

βi(t)x(t− τ)

× e−λi(t)x(t−τ) + h(t), t 6= θk,
∆x(θk) = γkx(θk) + δk, k ∈ N,

(4)

where α(t), βi(t), λi(t), h(t) ∈ [R+,R+], τ > 0 and
γk, δk ∈ R, k ∈ N, h(t) is a harvesting function, ∆x(t)
represents the difference x(t+) − x(t−), where x(t+) and
x(t−) define the limits from right and left, respectively, θk

denotes the instants at which size of the population suffers an
increment of δk units. By applying the contraction mapping
principle and Gronwall-Bellman,s inequality, Alzabut [5]
obtained some sufficient conditions which guarantee the
existence and exponential stability of positive almost periodic
solution for the model (4). For more details on Nicholson,s
blowflies models, we refer the reader to [6-28].

In 2011, to describe the models of Marine Protected Areas
and B-cell Chronic Lymphocytic Leukemia dynamics [29],
Berezansky [30] have investigated the global dynamics of
the following Nicholson-type delay system





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2x2(t− τ)e−x2(t−τ),

(5)

with initial conditions:

xi(s) = ϕi(s), s ∈ [−τ, 0], ϕi(0) > 0, (6)

where ϕi ∈ C([−τ, 0], [0,+∞)), ai, bi, ci and τ are nonneg-
ative constants, i = 1, 2.

Here shall point out that the existence of positive solutions
of Nicholson-type delay systems plays an important role in
characterizing their dynamical behavior. Then the research
on the positive solutions of Nicholson-type delay systems
has important theoretical value and tremendous potential for
application. Thus it is worth while to investigate the existence
and stability of positive solutions for Nicholson-type delay
system. To the best of our knowledge, there is no paper
published on the existence and exponentially stability of
positive solutions for Nicholson-type delay systems.

Motivated by the discussions above, we will investigate the
existence and exponential stability of positive solutions of
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the following Nicholson-type delay system




ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(7)

which is more general than (5).

The purpose of this paper is to present sufficient conditions
which ensure the existence and exponential stability of posi-
tive solutions of system (7). Applying the fundamental solu-
tion matrix, Lyapunov function and constructing fundamental
function sequences based on the solution of Nicholson-type
delay models, we establish some sufficient conditions which
guarantee the existence and global exponential stability of
positive solutions of (7). In addition, two examples are pre-
sented to illustrate the effectiveness of our main results. Our
results are essentially new and complement some previously
known ones.

The rest of this paper is organized as follows. In Section
2, we give some notations and preliminary results. In Section
3, we present our main results on the existence and global
exponential stability of positive solutions of the Nicholson-
type delay system. In Section 4, we support our main
theoretical finding by two examples with their computer
simulations. A brief conclusion is drawn in Section 5.

II. PRELIMINARY RESULTS

In this section, we shall present some notations and
introduce some lemmas which are used in the following
sections. Denote

c̄1 = sup
t∈R

|c1(t)|, c̄2 = sup
t∈R

|c2(t)|,

For any vector V = (v1, v2)T and matrix D = (dij)2×2, we
define the norm as

||v|| = (
v2
1 + v2

2

) 1
2 , ||D|| = (

d2
11 + d2

12 + d2
21 + d2

22

) 1
2 ,

respectively. Let ϕ(s) = (ϕ1(s), ϕ2(s))T , where ϕi(s) ∈
C([−τ, 0], R), i = 1, 2. Define

||ϕ|| = sup
−τ≤s≤0

(
ϕ1(s)|2 + ϕ2(s)|2

) 1
2 .

We assume that system (7) always satisfies the following
initial conditions:

ϕi0(s) = ϕi(s),−τ ≤ s ≤ 0, i = 1, 2. (8)

In order to obtain our main results in this paper, we make
the assumptions as follows.

(H1) a1 + a2 > 0, a1a2 > b1b2.

(H2)



−2a1 + b1 +

c̄1

e2
+ b2 +

c̄1

e2
< 0,

−2a2 + b2 +
c̄2

e2
+ b1 +

c̄2

e2
< 0.

Definition 2.2. The solution x∗(t) = (x∗1(t), x
∗
2(t))

T of
system (7) is said to globally exponentially stable if there
exist constants β > 0 and M > 1 such that

n∑

i=1

|xi(t)− x∗i (t)| ≤ Me−βt||ϕ− ϕ∗||2

for each solution x(t) = (x1(t), x2(t))T of system (7).
Next, we present three important lemmas which are used

for proving our main results in Section 3.

Lemma 2.1. Let

A =
[ −a1 b1

b2 −a2

]
.

If (H1) holds, then we have

|| expAt|| ≤ e−αt

for all t ≥ 0.

Proof Let λ be the characteristic exponent of the matrix A,
then we have

det
[

λ + a1 −b1

−b2 λ + a2

]
= 0

which leads to

λ2 + (a1 + a2)λ + a1a2 − b1b2 = 0.

Thus we obtain the characteristic exponents of the matrix A
are

λ1,2 =
−(a1 + a2)±

√
(a1 + a2)2 − 4(a1a2 − b1b2)

2
.

By (H1), we can conclude that λ1 and λ2 have negative real
parts. In view of [31] and the definition of matrix norm, we
get

|| expAt|| ≤ exp (max{Re(λ1), Re(λ2)}t) ≤ e−αt,

where
α = min {−Re(λ1),−Re(λ2)} .

Lemma 2.2. If (H2) holds, then there exists β > 0 such that




β − 2a1 + b1 +
c̄1

e2
+ b2 +

c̄1

e2
eβτ ≤ 0,

β − 2a2 + b2 +
c̄2

e2
+ b1 +

c̄2

e2
eβτ ≤ 0.

Proof Let

%1(β) = β − 2a1 + b1 +
c̄1

e2
+ b2 +

c̄1

e2
eβτ ,

%2(β) = β − 2a2 + b2 +
c̄2

e2
+ b1 +

c̄2

e2
eβτ .

Obviously, %1(β) and %2(β) are continuously differential
functions with respect to β. We can easily check that

d%1(β)
dβ

= 1 + β
c̄1

e2
eβτ > 0,

lim
β→+∞

%1(β) = +∞, %1(0) = 0,

d%2(β)
dβ

= 1 + β
c̄2

e2
eβτ > 0,

lim
β→+∞

%2(β) = +∞, %2(0) = 0.

By using the intermediate value theorem, there exist con-
stants β∗l > 0(l = 1, 2) such that

%l(β∗l ) = 0, l = 1, 2.

Let β0 = min{β∗1 , β∗2}, then it follows that β0 > 0 and

%l(β0) ≤ 0, l = 1, 2.

This completes the proof of Lemma 2.2.
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III. MAIN RESULTS

In this section, we present our main results on the existence
and exponentially stability of positive solution for (7).

Theorem 3.1. Assume that (H1) holds. Then for any solution
(x1(t), x2(t))T of system (7) there exists a constant

Θ = ||ϕ||2 +
2
eα

such that
|x1(t)| ≤ Θ, |x2(t)| ≤ Θ

for all t > 0.

Proof Let

z(t) =
[

x1(t)
x2(t)

]
, A =

[ −a1 b1

b2 −a2

]
,

F (x1(t), x2(t)) =
[

c1(t)x1(t− τ)e−x1(t−τ)

c2(t)x2(t− τ)e−x2(t−τ)

]
,

then system (7) can be written as the following equivalent
form

ż(t) ≤ Az(t) + F (x1(t), x2(t)). (9)

Solving the inequality (9), we have

z(t) ≤ eAtz(0) +
∫ t

0

eA(t−s)[F (x1(s), x2(s))]ds.

It follows from Lemma 2.1 that

||z(t)|| ≤ e−αt||z(0)||+
∫ t

0

eα(t−s)

×||F (x1(s), x2(s))||ds

≤ ||ϕ||2 +
1
α

(
1− e−αt

) 2
e

≤ ||ϕ||2 +
2
eα

. (10)

Let
Θ = ||ϕ||2 +

2
eα

. (11)

Then it follows that

|x1(t)| ≤ Θ, |x2(t)| ≤ Θ

for all t > 0. This completes the proof of Theorem 3.1.

Theorem 3.2. Assume that (H1) and (H2) are satisfied.
Then any solution x∗(t) = (x∗1(t), x

∗
2(t))

T of system (7) is
globally exponentially stable.

Proof Let

y1(t) = x1(t)− x∗1(t), y2(t) = x2(t)− x∗2(t). (12)

It follows from system (7) that




ẏ1(t) = −a1y1(t) + b1y2(t) + c1(t)
×

[
x1(t− τ)e−x1(t−τ)

−x∗1(t− τ)e−x∗1(t−τ)
]
,

ẏ2(t) = −a2y2(t) + b2y1(t) + c2(t)
×

[
x2(t− τ)e−x2(t−τ)

−x∗2(t− τ)e−x∗2(t−τ)
]
.

(13)

By direct computation, we have





1
2

dy2
1(t)
dt

= −a1y
2
1(t) + b1y1(t)y2(t)

+ c1(t)y1(t)
[
x1(t− τ)e−x1(t−τ)

−x∗1(t− τ)e−x∗1(t−τ)
]
,

1
2

dy2
2(t)
dt

= −a2y
2
2(t) + b2y1(t)y2(t)

+ c2(t)y2(t)
[
x2(t− τ)e−x2(t−τ)

−x∗2(t− τ)e−x∗2(t−τ)
]
.

(14)

In view of the fact that supv≥0

∣∣ 1−v
ev

∣∣ = 1
e2 , we get





dy2
1(t)
dt

≤ −2a1y
2
1(t) + b1(y2

1(t) + y2
2(t))

+ c̄1
1
e2

(y2
1(t) + y2

1(t− τ))
dy2

2(t)
dt

≤ −2a2y
2
2(t) + b2(y2

1(t) + y2
2(t))

+ c̄2
1
e2

(y2
2(t) + y2

2(t− τ)).

(15)

Now we consider the following Lyapunov function

V (t) = eβt
[
y2
1(t) + y2

2(t)
]

+
c̄1

e2

∫ t

t−τ

eβ(s+τ)y2
1(s)ds

+
c̄1

e2

∫ t

t−τ

eβ(s+τ)y2
2(s)ds, (16)

where β is given by Lemma 2.2. Differentiating V (t) along
solutions to system (7), together with (15), we have

dV (t)
dt

≤ βeβt
[
y2
1(t) + y2

2(t)
]

+eβt
[−2a1y

2
1(t) + b1(y2

1(t) + y2
2(t))

+c̄1
1
e2

(y2
1(t) + y2

1(t− τ))
]

+eβt
[−2a2y

2
2(t) + b2(y2

1(t) + y2
2(t))

+c̄2
1
e2

(y2
2(t) + y2

2(t− τ))
]

+
c̄1

e2

[
eβ(t+τ)y2

1(t)− eβty2
1(t− τ)

]

+
c̄2

e2

[
eβ(t+τ)y2

2(t)− eβty2
2(t− τ)

]

= eβt
[
β − 2a1 + b1 +

c̄1

e2
+ b2

+
c̄1

e2
eβτ

]
y2
1(t)

+eβt
[
β − 2a2 + b2 +

c̄2

e2
+ b1

+
c̄2

e2
eβτ

]
y2
2(t). (17)

It follows from Lemma 2.2 that dV (t)
dt ≤ 0 which implies
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that V (t) ≤ V (0) for all t > 0. Thus

eβt
[
y2
1(t) + y2

2(t)
]

≤y2
1(0) + y2

2(0)

+
c̄1

e2

∫ 0

−τ

eβ(s+τ)y2
1(s)ds

+
c̄1

e2

∫ 0

−τ

eβ(s+τ)y2
2(s)ds

≤||ϕ− ϕ∗||2 +
c̄1

e2

1
β

eβτ ||ϕ− ϕ∗||2

+
c̄2

e2

1
β

eβτ ||ϕ− ϕ∗||2

=
[
1 +

c̄1

e2

1
β

eβτ +
c̄2

e2

1
β

eβτ

]
||ϕ− ϕ∗||2. (18)

Let
M = 1 +

c̄1

e2

1
β

eβτ +
c̄2

e2

1
β

eβτ > 1. (19)

Then Eq.(18) can be rewritten as

y2
1(t) + y2

2(t) ≤ Me−βt||ϕ− ϕ∗||2 (20)

for all t > 0. Thus

(x1(t)− x∗1(t))
2(t) + y(x2(t)− x∗1(t))

2(t)
≤ Me−βt||ϕ− ϕ∗||2 (21)

for all t > 0. Thus the solution x(t) = (x1(t), x2(t))T of
system (7) is globally exponentially stable.

Remark 3.1. In [4], Berezansky et al. established the
sufficient conditions for the existence, positiveness and per-
manence of solutions of system (6). In [23], Berezansky
et al. obtained the explicit conditions on the existence of
positive global solutions of Nicholson-type delay system. In
this paper, we consider the bounded and exponential stability
of system (7) with varying coefficients by the fundamental
solution matrix, Lyapunov function and constructing funda-
mental function sequences based on the solution of models.
(7) is more general than system (6) and the results in [4,23]
cannot be applicable to system (7) to obtain the boundedness
and exponential stability of positive solutions. This implies
that the results of this paper are essentially new.

IV. EXAMPLES

In this section, we give two examples to illustrate our main
results obtained in previous sections.

Example 4.1. Consider the following Nicholson-type system
with time-varying delays





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(22)

where a1 = 5, a2 = 4, b1 = −2, b2 = −2, c1(t) = e2(0.5 +
0.5 sin t), c2(t) = e2(0.4 + 0.6 cos t), τ = 0.5. It is easy to
check that all the conditions (H1) and (H2) are satisfied.
Thus system (22) has exactly one positive solution which is
globally exponentially stable. The results are illustrated in
Fig.1.
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Fig. 1. Transient response of state variables x1(t) and x2(t).
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Fig. 2. Transient response of state variables x1(t) and x2(t).

Example 4.2. Consider the following Nicholson-type system
with time-varying delays





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(23)

where a1 = 6, a2 = 5, b1 = −3, b2 = −3, c1(t) = e3(0.6 +
0.6 cos t), c2(t) = e3(0.6 + 0.4 sin t), τ = 0.3. It is easy to
check that all the conditions (H1) and (H2) are satisfied.
Thus system (23) has exactly one positive solution which is
globally exponentially stable. The results are illustrated in
Fig. 2.

Example 4.3. Consider the following Nicholson-type system
with time-varying delays





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(24)

where a1 = 7.2, a2 = 6.1, b1 = −3.8, b2 = −2.5, c1(t) =
e3(0.16+0.16 sin t), c2(t) = e4(0.16+0.12 sin t), τ = 0.12.
It is easy to check that all the conditions (H1) and (H2)
are satisfied. Thus system (24) has exactly one positive
solution which is globally exponentially stable. The results
are illustrated in Fig. 3.

Example 4.4. Consider the following Nicholson-type system
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Fig. 3. Transient response of state variables x1(t) and x2(t).
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Fig. 4. Transient response of state variables x1(t) and x2(t).

with time-varying delays




ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(25)

where a1 = 6.23, a2 = 5.78, b1 = −2.45, b2 = −3, c1(t) =
e5(0.77+0.77 sin t), c2(t) = e7(0.77+0.62 cos t), τ = 0.72.
It is easy to check that all the conditions (H1) and (H2)
are satisfied. Thus system (25) has exactly one positive
solution which is globally exponentially stable. The results
are illustrated in Fig. 4.

Example 4.5. Consider the following Nicholson-type system
with time-varying delays





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(26)

where a1 = 8, a2 = 3, b1 = −2, b2 = −4, c1(t) = e5(0.38 +
0.38 sin t), c2(t) = e5(0.38+0.44 cos t), τ = 0.52. It is easy
to check that all the conditions (H1) and (H2) are satisfied.
Thus system (26) has exactly one positive solution which is
globally exponentially stable. The results are illustrated in
Fig. 5.

Example 4.6. Consider the following Nicholson-type system
with time-varying delays





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(27)
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Fig. 5. Transient response of state variables x1(t) and x2(t).
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Fig. 6. Transient response of state variables x1(t) and x2(t).

where a1 = 8, a2 = 3, b1 = −4, b2 = −6, c1(t) = e5(0.76 +
0.76 cos t), c2(t) = e4(0.76+0.67 sin t), τ = 0.02. It is easy
to check that all the conditions (H1) and (H2) are satisfied.
Thus system (27) has exactly one positive solution which is
globally exponentially stable. The results are illustrated in
Fig. 6.

Example 4.7. Consider the following Nicholson-type system
with time-varying delays





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(28)

where a1 = 4, a2 = 3, b1 = −2.6, b2 = −4, c1(t) = e2(0.2+
0.2 cos t), c2(t) = e4(0.5 + 0.1 sin t), τ = 0.29. It is easy to
check that all the conditions (H1) and (H2) are satisfied.
Thus system (28) has exactly one positive solution which is
globally exponentially stable. The results are illustrated in
Fig. 7.

Example 4.8. Consider the following Nicholson-type system
with time-varying delays





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(29)

where a1 = 5.002, a2 = 4.902, b1 = −2.305, b2 =
−3.002, c1(t) = e2(0.6012 + 0.6012 cos t), c2(t) =
e2(0.6012+0.3 sin t), τ = 0.3. It is easy to check that all the
conditions (H1) and (H2) are satisfied. Thus system (29) has
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Fig. 9. Transient response of state variables x1(t) and x2(t).

exactly one positive solution which is globally exponentially
stable. The results are illustrated in Fig. 8.

Example 4.9. Consider the following Nicholson-type system
with time-varying delays





ẋ1(t) = −a1x1(t) + b1x2(t)
+ c1(t)x1(t− τ)e−x1(t−τ),

ẋ2(t) = −a2x2(t) + b2x1(t)
+ c2(t)x2(t− τ)e−x2(t−τ),

(30)

where a1 = 5.7, a2 = 3.9, b1 = −2.9, b2 = −2.98, c1(t) =
e4(0.2 + 0.2 sin t), c2(t) = e2(0.75 + 0.35 sin t), τ = 0.21.
It is easy to check that all the conditions (H1) and (H2)
are satisfied. Thus system (30) has exactly one positive
solution which is globally exponentially stable. The results
are illustrated in Fig. 9.

V. CONCLUSIONS

In this paper, we investigated a class of Nicholson-type sys-
tem with delays. Applying the fundamental solution matrix,
inequality techniques, Lyapunov function and constructing
fundamental function sequences, some sufficient conditions
which ensure the boundedness and exponential stability
of positive solutions of Nicholson-type delay system are
established. The obtained conditions are easily checked in
practice by simple algebraic methods. Our results are new
and supplement some previously known ones. Recently,
Nicholson-type delay system with stochastic perturbation
have also paid more attention by many scholars. However,
there are rare results on the stability of solutions of stochastic
Nicholson-type delay system, which might be our future
research topic.
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