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Robust Exponential Stabilization of
a Class of Stochastic Time-Delay Systems

Jian Wang

Abstract—This paper is concerned with the exponential
stability problem for a class of grey (uncertain) stochastic
systems with time delays. To the best of the author’ knowledge,
up to now, there is little attention paid to the stability analysis
problem of grey stochastic system except limited papers, due to
the lack of fully understand or information source to the grey
systems. This situation motives our present research. In this
paper, by using a suitable Lyapunov-Krasovskii functional, in
particular, employing decomposition technique of continuous
matrix-covered sets of grey matrix, novel sufficient stability
criteria are derived to guarantee the exponential stability in
mean square and almost surely exponential stability for our
considered systems. Finally, a numerical example is given to
demonstrate the effectiveness of the proposed criteria.

Index Terms—Grey Stochastic Systems, Time Delays,
Exponential Stability, Lyapunov-Krasovskii Functional,
Decomposition Technique

I. INTRODUCTION

As is well-known, many physical systems have variable
structures subject to random abrupt changes, which may
result from abrupt phenomena such as random failures of the
components, sudden environmental changes and so on.
Therefore, stochastic model has come to play an important
role in many branches of science or industry, and the stability
analysis for stochastic systems has been widely investigated
in recent years [1-8]. On the other hand, time-delay is
frequently encountered in many real-word control systems,
and it often results in instability or poor performance. For
instance, the existence of time-delays often brings about
oscillation, divergence, even instability, which is the
disadvantage of applications of neural networks. Hence, the
study of stochastic systems with time delays has received
much attention from many scholars, and a large amount of
results have appeared in the literature [9-20]. For example, in
[13], author proposed two sufficient conditions for the
stability of dynamic systems with mulitple time-varying
delays and nonlinear uncertainties, by utilizing the Lyapunov
stability theory and the linear matrix inequality approach.
However, in practical applications, it is often very difficult
to obtain some parameters of stochastic systems accurately,
because of the lack of fully understand and information
source to the systems. So, we often have to estimate the
parameters of systems. As pointed out by [21] that, assume
that the parameters of stochastic systems are estimated by
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using grey numbers, the systems can be described uncertainly
and become grey (uncertain) stochastic systems, which leads
to the research on the stability of grey stochastic systems,
accordingly. But, till now, there have been very few papers
tackling the stability problem of the stochastic systems
except limited papers, such as [21-24], which is still open and
remains challenging. In [21], the p-moment exponential
robust stability for the grey stochastic systems with
distributed delays and interval parameters was studied, and
the obtained results were very significant and innovative.
Motivated by the above observations, in this paper, we deal
with the exponential stability problem for a class of grey
stochastic systems with time delays. First, we construct a
suitable Lyapunov-Krasovskii functional. Then, by using the
decomposition technique of the continuous matrix-covered
sets of grey matrix, and some well-known differential
formulas, the sufficient stability criteria are obtained, which
will ensure the systems in the mean square and almost surely
exponential stability. Finally, an example is provided to show
the effectiveness of the obtained result.
Notations: The following notations will be used throughout

this paper. R" denotes the n-dimensional Euclidean space,
R™" is the set of all mxn real matrices. The superscript"7™"
denotes matrix transposition, ”” stands for the Euclidean

norm for vector or the spectral norm of matrices. For real
symmetric matrices X and Y , the notation X >Y
(respectively, X >Y ), means that X —Y is positive
semi-definite (respectively, positive definite). Moreover, let

(@ F.{F}

20

filtration {F; }

t>0

P) be the complete probability space with a
satisfying the usual conditions (i.e., the

filtration contains all P -null sets and is right continuous),
Let 7 >0andC ([—T,O];R") be the family of continuous

functions ¢ from [—7,0] to R" , Let LZFO ([-7,0;R") be
the family of all /7, -measurable bounded C ([—T,O];R" ) -
valued random variables & = {f @):-t<0< 0}

II. PRELIMINARIES AND PROBLEM FORMULATION

In this paper, we consider a class of grey stochastic

systems with time delays as follows:
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dx(t) = [A®)x(t) + B(®)x(t —7)]dt
+ g(x(t),x(t =7),t)dw(t), t>0 o

—-7<t<L0

% =¢, & e Ly (-r.0LR"),
Where A(®) and B(®) are grey (uncertain) nxn matrices,
and let A(®) = (®;), B(®) = (® ).

Here,
®; ®ij are said to be grey elements of A(®) and B(®).
Moreover, define

[L,,U.]={A(®) =(a,):q, <a, <ay.i,j=12,..n)
[L,,U,1={B(®)=(b,):b, <b, , <b,i,j=12,.n}

Which are said to be the continuous matrix-covered sets of
A(®)and B(®).

Here,

A(®) and B(®) are whitened (deterministic) matrices

of A(®)and B(®), [a,,a ] and [b,,b

by, ] are said to be

1]’

the number-covered sets of ®U , ®b

In addition, the following assumptions are made on grey
stochastic time-delay systems:

(H1) H:R"xR"xR, — R"", and satisfies the local
Lipschitz condition.
(H2) Supposing there exist constants & >0, >0, for

arbitrary (x,y,t)€e H:R"xR" xR, ,
inequality holds:
T 2 2
Trace[g (X,y,f)g(X,yat)S O{|X| + ﬁ|y|
Definition 2.1. System(2.1)is said to be exponentially stable
in mean square, if for all§ € Lio ([-.,0];R") and whitened

matrices A®)e[L,,U,]., B®) e[L,U,] .
constants 7 > 0and C > 0, such that
Elx(5:¢)" < Ce™

the following

there exist

Definition 2.2. Systems(2.1)is said to be almost surely

exponential stability, if for all & EL;)([—T O;R") and
L,,U,], B®)e[L,,U,], there

exists constant 7 > 0, such that

whitened matrices A(@) e[
. 1 r
lim sup;ln|x(t; §)| < — a.s.
t—0

First, let us introduce the following lemmas, in particular,
lemma 2.1, which will be important for the proof of our main
results.

Lemma 2.1.

[21] If A®)=(®,),,, is a grey matrix,

]1s a number-covered sets of grey element & ., then

[a 7

1]’

for arbitrary whitened matrix A(@) e[

) A@)=Let e ;L" +A4

L,,U,], we have

i) 0<A4< Yok
L, —L
ii1) A(@)H U il Ua 4
2
Where L ( )mxn ) ( )mxn ’ Az])mxn ’

Here, 7;; is a whitened number ofy, , 7;; € [—1,1] , [-11]is

a number-covered sets of ;. , and ¥, is said to be a unit grey

number.

Noting that for arbitrary whitened number® € [al] ,

there must exist corresponding whitened number 75, € [-L1],

N a,+a, a,—a,
such that ® =—— 24 7 2
applying the inequality of nonnegative matrix norm, it
follows that the Lemma 2.1 holds.

. Moreover, by

N is real

matrix of appropriate dimensions, and constant € > 0, the
following inequality holds:

2x"Ny<ex"x+e'y'N"Ny

Lemma 2.2. [25] For any vectors X, y € R",

III. MAIN RESULTS AND PROOFS

In this section, we will investigate the stability problem of
grey stochastic time-delay systems, main results are given in
the following theorems, which ensure our considered systems
in the mean-square exponential stability and almost surely
exponential stability.

Theorem 3.1. system (2.1) is said to be exponentially
robustly stable in mean square, if there exist symmetric

matrices O >0, R > 0, and positive constants &, , £, , such
that
% 0 u,+L,
¥= U/ +1L, ? <0
N
2 —4—"0
where,
U,+L, U'+L
M =R+ = :
0 5 5 o
3 2
+ (8] + 82 )Q2 + 8]_] . ‘ + a/lmax (Q)
-1 Ub - ’
N=-R+¢, + Pl (O)

Then, for all .’;‘EL%([—T,O];R"), the following inequality
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holds:
Elx(t:6)
< P (Q) + Dy (R) 4 1y (RYT
Ain (O)
sup E|EO)| e

-7<60<0
here, 7 is the unique positive solution of the following
equation:

Py D)+ A (P)+rA, (R)Te™ =0

3.1)

(3.2)

Proof Fix & EL?,O ([r,0];R") and whitened matrices
A(@) e[lL,,U,], B(@) €[L,,U,] arbitrarily, and write
x(t,8)=x(1).

First, we construct the following Lyapunov-Krasovskii
functional for system (2.1)

V(x(t),t) = x" (H)Ox(¢) + j, '_TxT(e)Rx(e)de (3.3)

By Ito's differential formula, the stochastic derivative of
V(x(t),t) along the trajectory of system (2.1) can be
obtained as follows:

dV (x(t),1)
= LV (x(¢),1)dt
+2x7 (£)0g(x(t), x(t — ), )dw(r)

Here, the weak infinitesimal operator L is given as

LV (x(1),t)
=x"(O)Rx(t) —x"(t—7)Rx(t — 1)
+2xT () OA®)x() + 2x" () OB(®)x(t — 7)
+ Trace{gT(x(t),x(t —r),t) Qg(x(t),x(t —r),t)] (3.5)

For the positive constants&; > 0,&, >0, it follows from
Lemma 2.1 and Lemma 2.2 that

2x" (1) QA(®)x(t)
(e
+2x" (t)QAAx(t)

<X

(3.4

Yol gy

U+L

=0)x(1)
(3.6)
xT (t)x(1)

a a

+ex (DO’ x(t) + ¢,

and

2x" (t)QB(@)x(t ~7)

<x' (t)Q L, L x(t—-1)

UT
+x'(t-1)—1t—2

Qx(t)+2x (t)QABx(t —1)

<x’ (t)Q L, L x(t-1)

U+L

+x' (t—7) =" 0x(1)

+&,x" (NQ° X(t)

2

-1 Ub _Lb

+ ¢, x'(t—1)x(t-7)

(3.7)
Furthermore, it follows from the (H2) of assumption that

Tracdg” (x(t), x(t—1), t) 0 g(x(t), x(t—17), t)]

< e @ex” (Ox(0) + " (1 =T)x(t=7)] (3.9

Substituting of (3.6) - (3.8) into (3.5), and noting the
definitions of ¥, we can get

LV (x(1),1)
<R+ (QU +L, Uj;LZ 0)
+5Q +8]_] Y.L,

+& Q2 + ok, (0)] xr(t)x(t)
oL e v

+x'(t-1)—2—L s

Q ®)

+ Bl (O)]

()]
(t=17)

< A (BY(() + |t =)

+[-R+¢&,

x"(t—1)x(t—7)

=(x"(@t),x"(t- r))‘P(

(3.9)
Therefore, by (3.4) and (3.9), we can get
dv(x(1),1)
< A (PYx(@)] + 3t =) )t 10
+ 227 (00 (x(0), x(¢ =), 1)aw(0)
On the other hand, from (3.3), we can have
V(x(0),1)
< s (@)X (0)X(2) (3.11)

2 (B[ ¥ (0)x(0)d0

Using (3.10) and (3.11), we can obtain the following results:
dle" V(x(1),1)]

=e"[rV (x(t),t)dt + dV (x(t),1)]

< [( g QYO + 1A ()| x(0)'d )t
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+ e (Vx| + ]2 =)t

+2x" (10 (x(1), x(t = 7), 1 )dw(1)]
= " [(F A (O) + Ay (PY|X(0)| dlt

P (RX([ x(0)[ d0)dt

+ A (P2 =) dt
+2x" (£)0g (x(£), x(t — 1), )dw(?)] (3.12)

Integrating both sides of (3.12) from 0 to t>0, and taking the
mathematical expectation, we have

Ele" V (x(t),0)]

<[ Q)+ T (B)] sup B[O
+ (A, (0)+ A (P)) jo e Elx(s)| ds
P (RVE " [ |x(O)[ dOds

! 2
+ A, ‘PJe”Exs—r ds
() " Elx(s =) .

In addition, we can also have the following two estimates:

Ef e[ |x(0)| dods

<ve”([ e Ex(s) ds+ [ E|z0)f d0)

(3.14)
and
j; e” E|x(s — z')|2 ds
<o ([ e Elx(s)[ ds + [ Ez0)f d0) 15

Then, combining (3.13)—(3.15) together, and note that
A (F) <0, we can eventually obtain

E[e" V(x(2),1)]
< A (O) + T (R)] sup EIE(O)|]

+ (A, (0)+ A, (P)) jo e Elx(s)| ds

1A (Ryre” ([ e Elx(s)* +ds[ E|£@) d6)

+ 2 (W)™ ([ " Elx(o)f* ds + [ E|z(0)[ d0)
=[A,. (0)+ A (H)+7A_ (R)T*e”™

+ A (P) €] sUP EJEO)]

-7<0<0

+[r A Q)+ A, (P)+7A (R)Te”
+ A (P ]J‘(: e”'E|x(s)|2 ds

<[ A (O) + T (H)
41 (R €] sup E[E(O)]

-7<0<0

+[1 A0 (O) + A, (F)

+ 7 (R)T €™ ]J;: e” E|x(s)|2 ds G.16)

Let f(7) be the left of equation (3.2), f(#) can be regarded

as the function of 7. Then, the derivative of f(#) with

respect to 7 is

=20+ (R)r(e" +rer)
Obviously, /() > 0, which shows that f'(r)is a rigidly

increasing function.

By (3.2), we get f(0) =4, (¥) <0, f(+0)=+o0,

Hence, equation (3.2) must have a uniquely positive solution
7, and we can also obtain the following result:

E[e" V(x(t),0)]
<[4, (0)+7A (R)
+ P A (R)T? €] sup E|EO)|

-7<0<0

or equivalently
Elx(;6)
< Ao Q) +TA (R)+ 7R, (R)r*e”
Aoin (Q)
sup E|E(0) e

-7<0<0
Which implies system (2.1) is exponentially stable in the
mean square. This completes the proof of this theorem.

Remark 3.1. If the grey matrices A(®) and B(®) of the
system (2.1) are replaced by the known determinate

matrices 4 and B , systems (2.1) becomes the following
deterministic system.

dx(t) =[Ax(t) + Bx(t — 7)|dt + g(x(t),x(t = 7),1)dw(?)
{xo =¢, & eLZFO ([-7,0;R"), —7<t<0

(3.17)
LetL, =U,=A4,L, =U, = B, Similar to the proof of
the Theorem 3.1, We have the following result.

Corollary 3.1. if there exist matrices

Q> 0,R >0, and positive constants &, , £, , such that
¢:

R+O4+ A Ot(g,+6,)0 +4,, (O

[

symmetric

]
13 ﬁ‘%hw&gz
<0

Then, system (3.17) is exponentially stable in mean square,
and 7 is the unique positive solution of the following
equation

P D)+ A (@) +7A_ (R)Te™ =0

(Advance online publication: 24 April 2015)



TAENG International Journal of Applied Mathematics, 45:2, [JAM 45 2 10

Theorem 3.2. Under the conditions of Theorem 1, for
allé eLio ([~r,0];R"), the following inequality holds:

lim sup%ln|x(t;.§)| < —g, a.s. (3.18)
t—0o

where, 7 is the unique positive solution of equation (3.2). In
other words, system (2.1) is almost surely exponentially
robustly stable.

Proof Under the conditions of Theorem 1, system (2.1) is
said to be exponentially robustly stable in mean square, so we
have

Ex(t:¢) <K sup 0E|§(9)|2 e,

e LZFO([—T,O];R"), t>0
Using the similar method as in [24], by Doob's martingale
inequality, Cauchy inequality, for arbitrary integer k > 1 and
0 €(0,7), we have

P(a) : suplx(kr + s)|2 > e‘("‘”’”j
0<s<t
< E|x(kr + z')|2
o (Ot
Ke™ ) sup E|E(O)|

< —-7<0<0
- e—(r—&)kr

s 2
=Ke e’ sup E|E(0)
~r<0<0 (3.19)
By Borel-Cantelli lemma, for almost all@ € {2 and all but
finitely many k , we can obtain
2 (e
sup|x(kr +s)|” <e

0<s<t

Then, there exists k,(®) , forallw € Q, including a P-null

(3.20)

set, whenever k >k, such that (3.20) holds.
In other words, if ¢ > kOT , then for almost all@ € QQ, we
can get|x(l‘)|2 <e N,
Noticing that |x(l‘)|2 is finite on[0,k,7], and for almost
allw € Q, there is a finite C = C(w), such that

x(r) < Ce 12 0.

Thus, it can be concluded that

r—o0

lim sup%ln|x(t;§)| <- a.s.
t—©

3.21)
By (3.21) and 6 — 0, we can obtain

lim suplln|x(t; §)| < —g, a.s.
t—w l‘

Which implies system (2.1) is the almost surely exponential
stability. The proof is complete.

IV. EXAMPLES

In this section, we provide a simple numerical example to

demonstrate the correctness and effectiveness of the main
results.
Consider the following grey stochastic time-delay systems

dx(t) = [A(®)x(t) + B(®)x(t — 0.5)}dt
+0(x(t),x(¢ —0.5),)dW(2)

4.1
X, =&, ey ([F050];R?), —05<t<0
where
;o -335 022
“71 023 —3.34
-3.15 032
U, =
0.31 -—3.45
~1.15 0.20
L, =
{ 0.23 —1.16}
~1.12 022
U, =
0.31 -1.09
Here,

L,,U,: L,,U, are the lower bound and upper bound
matrices of A(®)and B(®).

In addition,
o(x(t),x(t = 0.5),1)
%x, (t)sin(x, (1 — 0.5)

%xz ()sin(x, (t - 0.5)

Clearly,
Trace[c” (x(t), x(t—0.5), t)a(x(t),x(t -0.5), t)]
<0.25x*(t)

With the help of the programmed procedure (see[24]), we
can calculate and optimize £, €, satisfing the formula

(3.2), and it is easy to obtain that » =1.5627 . Therefore,
by Theorem 3.1, we can conclude that the system (4.1) is
exponentially stable in mean square.

V. CONCLUSION

This paper has focused on the stability analysis problem
for a class of grey stochastic systems with time delays. By
choosing an appropriate Lyapunov-Krasovskii functional,
especially, using decomposition technique of the continuous
matrix-covered sets of grey matrix, novel sufficient stability
criteria have been obtained, which ensure the grey systems in
the mean-square and almost surely exponential stability.
Finally, a numerical example has been provided to show the

(Advance online publication: 24 April 2015)
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effectiveness of the proposed methods in this paper.
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