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Abstract—This paper is concerned with the exponential 

stability problem for a class of grey (uncertain) stochastic 
systems with time delays. To the best of the author’ knowledge, 
up to now, there is little attention paid to the stability analysis 
problem of grey stochastic system except limited papers, due to 
the lack of fully understand or information source to the grey 
systems. This situation motives our present research. In this 
paper, by using a suitable Lyapunov-Krasovskii functional, in 
particular, employing decomposition technique of continuous 
matrix-covered sets of grey matrix, novel sufficient stability 
criteria are derived to guarantee the exponential stability in 
mean square and almost surely exponential stability for our 
considered systems. Finally, a numerical example is given to 
demonstrate the effectiveness of the proposed criteria. 
 

Index Terms—Grey Stochastic Systems, Time Delays, 
Exponential Stability, Lyapunov-Krasovskii Functional,  
Decomposition Technique 
 

I. INTRODUCTION 
s is well-known, many physical systems have variable 
structures subject to random abrupt changes, which may 

result from abrupt phenomena such as random failures of the 
components, sudden environmental changes and so on. 
Therefore, stochastic model has come to play an important 
role in many branches of science or industry, and the stability 
analysis for stochastic systems has been widely investigated 
in recent years [1-8]. On the other hand, time-delay is 
frequently encountered in many real-word control systems, 
and it often results in instability or poor performance. For 
instance, the existence of time-delays often brings about 
oscillation, divergence, even instability, which is the 
disadvantage of applications of neural networks. Hence, the 
study of stochastic systems with time delays has received 
much attention from many scholars, and a large amount of 
results have appeared in the literature [9-20]. For example, in 
[13], author proposed two sufficient conditions for the 
stability of dynamic systems with mulitple time-varying 
delays and nonlinear uncertainties, by utilizing the Lyapunov 
stability theory and the linear matrix inequality approach. 

However, in practical applications, it is often very difficult 
to obtain some parameters of stochastic systems accurately, 
because of the lack of fully understand and information 
source to the systems. So, we often have to estimate the 
parameters of systems. As pointed out by [21] that, assume 
that the parameters of stochastic systems are estimated by  
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using grey numbers, the systems can be described uncertainly 
and become grey  (uncertain) stochastic systems, which leads 
to the research on the stability of grey stochastic systems, 
accordingly. But, till now, there have been very few papers 
tackling the stability problem of the stochastic systems 
except limited papers, such as [21-24], which is still open and 
remains challenging. In [21], the p-moment exponential 
robust stability for the grey stochastic systems with 
distributed delays and interval parameters was studied, and 
the obtained results were very significant and innovative.  

Motivated by the above observations, in this paper, we deal 
with the exponential stability problem for a class of grey 
stochastic systems with time delays. First, we construct a 
suitable Lyapunov-Krasovskii functional. Then, by using the 
decomposition technique of the continuous matrix-covered 
sets of grey matrix, and some well-known differential 
formulas, the sufficient stability criteria are obtained, which 
will ensure the systems in the mean square and almost surely 
exponential stability. Finally, an example is provided to show 
the effectiveness of the obtained result.  
Notations: The following notations will be used throughout 
this paper. nR denotes the n-dimensional Euclidean space, 

nmR  is the set of all m×n real matrices. The superscript ""T  
 denotes matrix transposition,   stands for the Euclidean 

norm for vector or the spectral norm of matrices. For real 
symmetric matrices X and Y  , the notation YX   
(respectively, YX   ), means that  YX   is positive 
semi-definite (respectively, positive definite). Moreover, let 

  PFF tt ,,, 0  be the complete probability space with a 

filtration   0ttF satisfying the usual conditions (i.e., the 

filtration contains all P -null sets and is right continuous), 
Let 0 and  nRC ];0,[   be the family of continuous 

functions  from ]0,[  to nR , Let )];0,([2
0

n
F RL   be 

the family of all 0F -measurable bounded  nRC ];0,[  - 

valued random variables  0:)(      
 
 

II. PRELIMINARIES AND PROBLEM FORMULATION  
In this paper, we consider a class of grey stochastic 

systems with time delays as follows: 
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            (2.1) 

Where )(A and )(B are grey (uncertain) n×n matrices,  

and let )()( a
ijA  , )()( b

ijB  .  

Here, 
a
ij , b

ij  are said to be grey elements of )(A and )(B . 

Moreover, define 

},...2,1,,:)()ˆ({],[ njiaaaaAUL ijijijijaa 

},...2,1,,:)()ˆ({],[ njibbbbBUL ijijijijbb 
 

Which are said to be the continuous matrix-covered sets of 
)(A and )(B .  

Here, 

)ˆ(A and )ˆ(B are whitened (deterministic) matrices 

of )(A and )(B , ],[ ijij aa  and ],[ ijij bb  are said to be 

the number-covered sets of a
ij , b

ij . 

 
In addition, the following assumptions are made on grey 
stochastic time-delay systems: 
(H1) nnnn RRRRH 

 : , and satisfies the local 
Lipschitz condition. 
(H2) Supposing there exist constants 0 , 0 , for 

arbitrary  RRRHtyx nn:),,( , the following 
inequality holds: 

    22,,,,[ yxtyxgtyxgTrace T  
 

Definition 2.1.  System(2.1)is said to be exponentially stable 
in mean square, if for all )];0,([2

0

n
F RL   and whitened 

matrices ],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  , there exist 

constants 0r and 0C , such that  

0,)(sup);( 2

0

2




 tECetxE rt 
 . 

Definition 2.2.  Systems(2.1)is said to be almost surely 
exponential stability, if for all )];0,([2

0

n
F RL    and 

whitened matrices ],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  , there 

exists constant 0ˆ r , such that 

..,
2
ˆ

);(ln1suplim sartx
tt




  

 
First, let us introduce the following lemmas, in particular, 
lemma 2.1, which will be important for the proof of our main 
results. 
Lemma 2.1. [21] If nmijA  )()( is a grey matrix, 

],[ ijij aa is a number-covered sets of grey element ij , then 

for arbitrary whitened matrix ],[)ˆ( aa ULA  , we have 

i) ALUA aa 
2

)ˆ(      

ii) 
2

0 aa LUA       

iii) 
22

)ˆ( aaaa LULUA 



  

Where nmija aL  )( , nmija aU  )( , nmij
ijij

r
aa

A 


 )ˆ

2
( , 

Here, ijr̂  is a whitened number of ij , ]1,1[ˆ ijr , ]1,1[ is 

a number-covered sets of ij , and ij  is said to be a unit grey 

number. 

Noting that for arbitrary whitened number ],[ˆ
ijijij aa , 

there must exist corresponding whitened number ]1,1[ˆ ijr , 

such that ij
ijijijij

ij r
aaaa

ˆ
22

ˆ 



 . Moreover, by 

applying the inequality of nonnegative matrix norm, it 
follows that the Lemma 2.1 holds. 
Lemma 2.2. [25] For any vectors nRyx , , N is real 
matrix of appropriate dimensions, and constant ε > 0, the 
following inequality holds: 

NyNyxxNyx TTTT 12    
 

III. MAIN RESULTS AND PROOFS  
In this section, we will investigate the stability problem of 

grey stochastic time-delay systems, main results are given in 
the following theorems, which ensure our considered systems 
in the mean-square exponential stability and almost surely 
exponential stability. 
Theorem 3.1. system (2.1) is said to be exponentially 
robustly stable in mean square, if there exist symmetric 
matrices 0,0  RQ , and positive constants 1 , 2 , such 
that 

0
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where, 

)(
2

)(

22

max

2
1

1
2

21 Q
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Q

QLULUQRM

aa

T
a

T
aaa

 












)(
2 max

2
1

2 QLURN bb  


 

 
Then, for all )];0,([2

0

n
F RL   , the following inequality 
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holds: 

rt

r
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Q
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txE
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

2

0

min
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)()()(

);(
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



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

                 (3.1) 

here, r is the unique positive solution of the following 
equation: 

0)()()( maxmaxmax   reRrQr            (3.2) 
 
Proof Fix )];0,([2

0

n
F RL    and whitened matrices 

],[)ˆ( aa ULA  , ],[)ˆ( bb ULB  arbitrarily, and write 

),( tx = )(tx . 
First, we construct the following Lyapunov-Krasovskii 
functional for system (2.1) 




dRxxtQxtxttxV
t

t

TT   )()()()()),((   (3.3) 

By soIt /ˆ  differential formula, the stochastic derivative of 
)),(( ttxV along the trajectory of system (2.1) can be 

obtained as follows: 

  )(),(),()(2
)),((
)),((

tdwttxtxQgtx
dtttxLV

ttxdV

T 

                            (3.4) 

Here, the weak infinitesimal operator L  is given as 
)),(( ttxLV  

)()()()(   tRxtxtRxtx TT  

)()ˆ()(2)()ˆ()(2  txQBtxtxQAtx TT    

   ]),(),(),(),([ ttxtxgQttxtxgTrace T    (3.5) 

For the positive constants 01  , 02  , it follows from 
Lemma 2.1 and Lemma 2.2 that 

)()ˆ()(2 txQAtxT 

)()(2

)()
22

)((

tAxQtx

txQLULUQtx

T

T
a

T
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



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)()(
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    (3.6) 

and 
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                           (3.7) 
Furthermore, it follows from the (H2) of assumption that 

   ]),(),(),(),([ ttxtxgQttxtxgTrace T  
)]()()()()[(max   txtxtxtxQ TT          (3.8) 

 
Substituting of (3.6) - (3.8) into (3.5), and noting the 
definitions of , we can get  

)),(( ttxLV                   
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                                 (3.9) 
Therefore, by (3.4) and (3.9), we can get 

)),(( ttxdV  

  )(),(),()(2

))()()(( 22
max

tdwttxtxQgtx

dttxtx
T 






               (3.10) 

On the other hand, from (3.3), we can have 






dxxR

txtxQ
ttxV

t

t

T

T





)()()(

)()()(
)),((

max

max                                      (3.11) 

Using (3.10) and (3.11), we can obtain the following results: 
)]),(([ ttxVed rt

 
)]),(()),(([ ttxdVdtttxVre rt   
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t
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                    (3.12) 
Integrating both sides of (3.12) from 0 to t>0, and taking the 
mathematical expectation, we have 

)]),(([ ttxVeE rt
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In addition, we can also have the following two estimates: 
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Then, combining (3.13)–(3.15) together, and note that 

0)(max  , we can eventually obtain 
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Let )(rf be the left of equation (3.2), )(rf can be regarded 

as the function of r . Then, the derivative of )(rf with 

respect to r is  

)()()()( maxmax
/   rr reeRQrf   

Obviously, 0)(/ rf , which shows that )(rf is a rigidly 

increasing function. 

By (3.2), we get 0)()0( max  f ,  )(f ,  
Hence, equation (3.2) must have a uniquely positive solution 
r , and we can also obtain the following result: 
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Which implies system (2.1) is exponentially stable in the 
mean square. This completes the proof of this theorem. 
 
Remark 3.1. If the grey matrices )(A and )(B of the 
system (2.1) are replaced by the known determinate 
matrices A and B , systems (2.1) becomes the following 
deterministic system. 
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(3.17) 
Let AUL aa  , BUL bb  , Similar to the proof of 
the Theorem 3.1, We have the following result. 
 
Corollary 3.1. if there exist symmetric matrices 

0,0  RQ , and positive constants 1 , 2 , such that 
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Then, system (3.17) is exponentially stable in mean square, 
and r is the unique positive solution of the following 
equation 

0)()()( maxmaxmax   reRrQr                       
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Theorem 3.2. Under the conditions of Theorem 1, for 
all )];0,([2

0

n
F RL   , the following inequality holds: 

    ..,
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where, r is the unique positive solution of equation (3.2). In 
other words, system (2.1) is almost surely exponentially 
robustly stable.  
 
Proof  Under the conditions of Theorem 1, system (2.1) is 
said to be exponentially robustly stable in mean square, so we 
have 
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Using the similar method as in [24], by Doob's martingale 
inequality, Cauchy inequality, for arbitrary integer 1k and 

),0( r , we have 
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By Borel-Cantelli lemma, for almost all  and all but 
finitely many k , we can obtain  
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Then, there exists )(0 k , for all  , including a P-null 

set, whenever 0kk  , such that (3.20) holds.  

In other words, if 0kt  ，then for almost all  , we 

can get tretx )(2)(  .  

Noticing that 
2)(tx is finite on ],0[ 0k , and for almost 

all  , there is a finite )(CC  , such that 
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Thus, it can be concluded that 
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By (3.21) and 0 , we can obtain 
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Which implies system (2.1) is the almost surely exponential 
stability. The proof is complete. 

IV.  EXAMPLES 
In this section, we provide a simple numerical example to 

demonstrate the correctness and effectiveness of the main 
results. 

Consider the following grey stochastic time-delay systems 
 
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where 
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Here, 

aL , aU ； bL , bU  are the lower bound and upper bound 

matrices of )(A and )(B . 
In addition, 
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Clearly, 
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With the help of the programmed procedure (see[24]), we 
can calculate and optimize 1 , 2  satisfing the formula 
(3.2)，and it is easy to obtain that 5627.1r . Therefore, 
by Theorem 3.1, we can conclude that the system (4.1) is 
exponentially stable in mean square. 
 

V. CONCLUSION  
This paper has focused on the stability analysis problem 

for a class of grey stochastic systems with time delays. By 
choosing an appropriate Lyapunov-Krasovskii functional, 
especially, using decomposition technique of the continuous 
matrix-covered sets of grey matrix, novel sufficient stability 
criteria have been obtained, which ensure the grey systems in 
the mean-square and almost surely exponential stability. 
Finally, a numerical example has been provided to show the 
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effectiveness of the proposed methods in this paper. 
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