
Preconditioned IDRStab Algorithms for Solving
Nonsymmetric Linear Systems

Kensuke Aihara, Kuniyoshi Abe, and Emiko Ishiwata

Abstract—The IDRStab method, which combines the Induced
Dimension Reduction (IDR) (s) method with higher-order
stabilizing polynomials, is an effective method for solving large
nonsymmetric linear systems. IDRStab can be implemented
using different algorithms which are mathematically equivalent.
In this paper, we illustrate preconditioned algorithms for three
variants of IDRStab and describe their advantages. Numerical
experiments show the differences in the convergence of the
variants of IDRStab with preconditioning.

Index Terms—linear systems, induced dimension reduction,
IDRStab method, preconditioning.

I. INTRODUCTION

WE consider Krylov subspace methods for solving a
large nonsymmetric linear system

Ax = b, (1)

where A ∈ Rn×n and b ∈ Rn. The Bi-Conjugate Gradient
(Bi-CG) method [4], [7] and the hybrid Bi-CG methods, such
as the Bi-CG STABilized (Bi-CGSTAB) method [17] and
the BiCGstab(`) method [11], are well-known methods for
solving linear systems.

Preconditioning strategies are useful for enhancing the
convergence of Krylov subspace methods (see, e.g., [6],
[16]). In general, when using a preconditioner K such that
K ≈ A, the system (1) is transformed into a well-conditioned
system. Multiplying the system (1) by K−1 from the right
and left sides gives, respectively, the right preconditioned
system

Ãx̃ = b, Ã = AK−1, x̃ = Kx (2)

and the left preconditioned system

Ãx = b̃, Ã = K−1A, b̃ = K−1b. (3)

Incomplete LU (ILU) factorization [8], [10] is often used to
construct the preconditioner K.

The IDR(s) method [14], which is based on the Induced
Dimension Reduction (IDR) theorem, has been proposed
in 2008. It has been reported that IDR(s) is often more
effective than the hybrid Bi-CG methods. IDR(s) with s > 1
can be considered to be Bi-CGSTAB with an s-dimensional
initial shadow residual [12], [15]. The GBi-CGSTAB(s, `)
method [15] and the IDR(s)stab(`) method [13], which
combine IDR(s) with higher-order stabilizing polynomials,
such as are used in BiCGstab(`), have independently been

Manuscript received December 30, 2013; revised July 6, 2014.
K. Aihara is with Department of Mathematical Information Science,

Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-
8601, Japan. (e-mail: kaihara@rs.tus.ac.jp)

K. Abe is with Faculty of Economics and Information, Gifu Shotoku
University, 1-38 Nakauzura, Gifu 500-8288, Japan.

E. Ishiwata is with Department of Mathematical Information Science,
Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-
8601, Japan.

developed in 2010. GBi-CGSTAB(s, `) and IDR(s)stab(`)
are mathematically equivalent, but the methods differ in
their implementation; for instance, the computation of the
recurrence coefficients in GBi-CGSTAB(s, `) is different
from that in IDR(s)stab(`). The convention to call all of
these IDRStab has been introduced in [9]. A variant of
IDR(s)stab(`), which we will refer to as the AAI variant,
has recently been proposed for improving the accuracy of
the approximate solutions [1]. The AAI variant is also
mathematically equivalent to IDR(s)stab(`), but uses an
alternative recurrence formula for updating the residuals, and
the AAI variant requires fewer vector updates than does
IDR(s)stab(`).

The right preconditioned algorithms of GBi-CGSTAB(s,
`) and the AAI variant have been derived in [15] and [1],
respectively. It has been reported in [5] that the accuracy of
the approximate solutions obtained by GBi-CGSTAB(s, `)
and IDR(s)stab(`) is improved by preconditioning. However,
the convergence of IDR(s)stab(`), GBi-CGSTAB(s, `), and
the AAI variant with right and left preconditioning has
not previously been compared. In this paper, we therefore
derive the right and left preconditioned algorithms for the
variants of IDRStab, and discuss their advantages. Numerical
experiments on model problems with nonsymmetric matrices
show the differences in the convergence of IDR(s)stab(`),
GBi-CGSTAB(s, `), and the AAI variant with right and left
preconditioning.

This paper is organized as follows. In the next section,
the preconditioned algorithms for the variants of IDRStab
are derived and the computational costs are compared. In
section III, through numerical experiments, we compare
the convergence of IDR(s)stab(`), GBi-CGSTAB(s, `), and
the AAI variant with the ILU preconditioner. Concluding
remarks are presented in section IV.

II. IDRSTAB WITH PRECONDITIONING

In this section, we illustrate the right and left precondi-
tioned algorithms for IDRStab. Let x0 and r0 ≡ b − Ax0

be an initial guess and the corresponding initial residual,
respectively. The residual rk generated by IDRStab satisfies

rk ∈ S(Pk, A, R̃0) ≡ {Pk(A)v|v ⊥ Kk(A
>, R̃0)}.

Here, the integer k is a multiple of `, and the poly-
nomial Pk(λ) of degree k is defined by a product of
stabilizing polynomials of degree `, i.e., Pk(λ) = (1 −∑`

j=1 γj,k−`λ
j)Pk−`(λ). Kk(A

>, R̃0) is a so-called kth-
block Krylov subspace generated by the transpose A> of
A and a fixed matrix R̃0 ∈ Rn×s:

Kk(A
>, R̃0) ≡


k−1∑
j=0

(A>)jR̃0~ηj | ~ηj ∈ Rs

 .

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



The residual rk is updated to rk+` by performing the
following two steps1.
• The IDR step. This step consists of ` repetitions.

Suppose that a residual r in the subspace {Pk(A)v|v ⊥
Kk+j−1(A

>, R̃0)} is generated at the (j− 1)st (j ≤ `)
repetition, where r = rk for j = 1. At the jth
repetition, r is updated to a residual r′ which belongs to
{Pk(A)v|v ⊥ Kk+j(A

>, R̃0)}. If j < `, r′ is renamed
to r at the next repetition.

• The polynomial step. After the ` repetitions of the IDR
step, multiplying r′ ∈ {Pk(A)v|v ⊥ Kk+`(A

>, R̃0)}
by a stabilizing polynomial of degree ` gives rk+` =
(I −

∑`
j=1 γj,kA

j)r′ ∈ S(Pk+`, A, R̃0), where the
scalars γj,k for j = 1, 2, . . . , ` are determined by
minimizing ‖rk+`‖2.

The steps to update rk to rk+` are referred to as one
cycle of IDRStab. IDR(s)stab(`), GBi-CGSTAB(s, `), and
the AAI variant generate the same residual at each cycle
in exact arithmetic, but they may converge differently in
finite precision arithmetic because the methods differ in
their implementation (e.g., the computation of recurrence
coefficients, such as ~β, below). We refer to [1], [13], [15]
for the implementation details.

The notation in the algorithms follows MATLAB conven-
tions: the matrix W = [w1,w2, . . . ,wq] and the vector wq

for q ≤ s are denoted by W(:,1:q) and W(:,q), respectively,
and [W0;W1; · · · ;Wj ] ≡ [W>0 ,W

>
1 , . . . ,W

>
j ]>. Ui, Vi, ri,

and ui for i = 0, 1, . . . , j are related to U, V, r, and u
according as U = [U0;U1; · · · ;Uj ], V = [V0;V1; · · · ;Vj ],
r = [r0; r1; · · · ; rj ], and u = [u0;u1; · · · ;uj ], respectively.

A. Original IDR(s)stab(`) with preconditioning

We now derive the preconditioned algorithms for
IDR(s)stab(`).

We first apply the IDR(s)stab(`) algorithm [13, Algorithm
5.3] to the right preconditioned system (2). By replacing
x̃, r̃, and an auxiliary matrix Ũ ∈ Rn×s by Kx, r, and
U , respectively, the approximation and the corresponding
residual are updated by

x′ = x+K−1U~α, r′ = r −AK−1U~α (4)

at the jth repetition of the IDR step, where ~α =
σ−1(R̃>0 (AK

−1)j−1r) and σ = R̃>0 (AK
−1)jU . Introducing

Û ≡ K−1U transforms the first expression in (4) to

x′ = x+ Û ~α. (5)

Therefore, U is not needed for updating the approximation
and the residual. With r̂ ≡ K−1r and r̂′ ≡ K−1r′, we also
compute the vectors

(K−1A)ir̂′ = (K−1A)ir̂ − (K−1A)i+1Û ~α,

i = 0, 1, . . . , j − 2,
(6)

(AK−1)ir′ = (AK−1)ir − (AK−1)i+1U~α,

i = 1, 2, . . . , j − 1
(7)

at the jth repetition. Then, multiplying (AK−1)j−1r′ by
K−1 and A gives (K−1A)j−1r̂′ and (AK−1)jr′. Note

1In GBi-CGSTAB(s, `), the IDR step and the polynomial step are referred
to as the GBi-CG(s) part and the MR part, respectively [15].

Algorithm 1. Original IDR(s)stab(`) with right preconditioning.

1. Select an initial guess x and an (n× s) matrix R̃0.

2. Compute r0 = b−Ax, r = [r0]

3. Generate an initial Û = [Û0] = [K−1U0], U = [AÛ0]

4. While ‖r0‖2 > tol

% The IDR step

5. For j = 1, 2, . . . , `

6. σ = R̃>0 Uj−1, ~α = σ−1(R̃>0 rj−1)

7. x = x+ Û0~α, r = r− [U0;U1; · · · ;Uj−1]~α

8. if j = 1 then

9. r̂ = [K−1r0]

10. else

11. r̂ = r̂− [Û1; Û2; · · · ; Ûj−1]~α, r̂ = [r̂;K−1rj−1]

12. end if
13. r = [r;Ar̂j−1]

14. For q = 1, 2, . . . , s

15. if q = 1 then
16. û = r̂, u = [r1; r2; · · · ; rj ]
17. else
18. û = [û1; û2; · · · ; ûj ], u = [u1;u2; · · · ;uj ]
19. end if

20. ~β = σ−1(R̃>0 uj−1), û = û− Û~β, u = u−U~β,

21. û = [û;K−1uj−1]

22. Orthonormalize ûj to the columns of V̂j(:,1:q−1)

23. u = [u;Aûj ], V̂(:,q) = û, V(:,q) = u

24. End for
25. if j < ` then

26. Û = V̂, U = V

27. end if
28. End for
% The polynomial step

29. ~γ = [γ1; γ2; · · · ; γ`] = arg min~γ‖r0 − [r1, r2, . . . , r`]~γ‖2
30. x = x+ [r̂0, r̂1, . . . , r̂`−1]~γ, r0 = r0 − [r1, r2, . . . , r`]~γ

31. Û = [V̂0 −
∑`
j=1 γjV̂j ], U = [V0 −

∑`
j=1 γjVj ]

32. End while

that (K−1A)ir̂′ and (AK−1)ir′ are used for updating the
approximation and the corresponding residual, respectively,
at the polynomial step. The auxiliary vectors ûi+1 and ui+1

for i = 0, 1, . . . , j − 1 are set to ûi+1 = (K−1A)ir̂′ and
ui+1 = (AK−1)i+1r′, respectively. To update (K−1A)iÛ
and (AK−1)iU in (6) and (7), the following procedures are
repeated for q = 1, 2, . . . , s:

~β = σ−1(R̃>0 uj), (8)
ûi = ûi+1 − (K−1A)iÛ ~β,

ui = ui+1 − (AK−1)i+1U~β,

i = 0, 1, . . . , j − 1,

(9)

ûj = K−1uj−1, uj = Aûj , (10)
(K−1A)iV̂ eq = ûi,

(AK−1)i+1V eq = ui,

i = 0, 1, . . . , j.

(11)

If j < `, (K−1A)iV̂ and (AK−1)i+1V for i = 0, 1, . . . , j
are renamed to (K−1A)iÛ and (AK−1)i+1U , respectively.

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



Algorithm 2. Original IDR(s)stab(`) with left preconditioning.

1. Select an initial guess x and an (n× s) matrix R̃0.

2. Compute r0 = K−1(b−Ax), r = [r0]

3. Generate an initial U = [U0;U1] = [U0;K
−1AU0]

4. While ‖r0‖2 > tol

% The IDR step

5. For j = 1, 2, . . . , `

6. σ = R̃>0 Uj , ~α = σ−1(R̃>0 rj−1)

7. x = x+U0~α, r = r− [U1;U2; · · · ;Uj ]~α

8. r = [r;K−1Arj−1]

9. For q = 1, 2, . . . , s

10. if q = 1 then
11. u = r

12. else
13. u = [u1;u2; · · · ;uj+1]

14. end if

15. ~β = σ−1(R̃>0 uj), u = u−U~β

16. Orthonormalize uj to the columns of Vj(:,1:q−1)

17. u = [u;K−1Auj ], V(:,q) = u

18. End for
19. if j < ` then
20. U = V

21. end if
22. End for
% The polynomial step

23. ~γ = [γ1; γ2; · · · ; γ`] = arg min~γ‖r0 − [r1, r2, . . . , r`]~γ‖2
24. x = x+ [r0, r1, . . . , r`−1]~γ, r0 = r0 − [r1, r2, . . . , r`]~γ

25. U = [V0 −
∑`
j=1 γjVj ;V1 −

∑`
j=1 γjVj+1]

26. End while

At the polynomial step, the approximation and the corre-
sponding residual are updated by

xk+` = x′ +
∑̀
j=1

γj,kK
−1(AK−1)j−1r′, (12)

rk+` = r′ −
∑̀
j=1

γj,k(AK
−1)jr′.

Using r̂ = K−1r, (12) is reformulated as

xk+` = x′ +
∑̀
j=1

γj,k(K
−1A)j−1r̂′. (13)

Finally, the matrices Û and AK−1U , which are used at the
next cycle, are computed by

Û = V̂ −
∑̀
j=1

γj,k(K
−1A)j V̂ ,

AK−1U = AK−1V −
∑̀
j=1

γj,k(AK
−1)j+1V.

Algorithm 1 displays IDR(s)stab(`) with right precondi-
tioning. Note that the residual r and the auxiliary matrix
Û are stored in r0 and Û0, respectively, and rj , r̂j , Ûj ,
and Uj represent (AK−1)jr0, K−1rj , (K−1A)jÛ0, and
AÛj , respectively.

IDR(s)stab(`) with left preconditioning is displayed in
Algorithm 2, which can be derived by applying the
IDR(s)stab(`) algorithm to the left preconditioned system (3).
In other words, we obtain the left preconditioned algorithm
by setting an initial residual r0 = K−1(b − Ax0) and
replacing Ã, r̃, and Ũ by K−1A, r, and U , respectively.
In Algorithm 2, rj and Uj represent (K−1A)jr0 and
(K−1A)jU0, respectively.

B. GBi-CGSTAB(s, `) with preconditioning

We now describe the preconditioned algorithms of GBi-
CGSTAB(s, `).

Algorithm 3 displays GBi-CGSTAB(s, `) with the right
preconditioning proposed in [15], which can be derived by
applying the GBi-CGSTAB(s, `) algorithm [15, Algorithm
4] to the right preconditioned system (2). Here x̃, r̃, and
Ũ are replaced by Kx, r, and U , respectively. As are
used in the right preconditioned IDR(s)stab(`), Û ≡ K−1U
and r̂ ≡ K−1r are introduced to design the recurrence
formulas for updating the approximations x (see (5) and
(13)). In Algorithm 3, rj , r̂j , Uj , and Ûj represent
(AK−1)jr0, K−1rj , (AK−1)jU0, and K−1Uj , respec-
tively.

GBi-CGSTAB(s, `) with left preconditioning is displayed
in Algorithm 4, which can be derived by applying the GBi-
CGSTAB(s, `) algorithm to the left preconditioned system
(3). Here, r0 is set to K−1(b−Ax0), and Ã, r̃, and Ũ are
replaced by K−1A, r, and U , respectively. As in Algorithm
2, rj and Uj in Algorithm 4 represent (K−1A)jr0 and
(K−1A)jU0, respectively.

C. AAI variant of IDR(s)stab(`) with preconditioning

We next derive the preconditioned algorithms of the AAI
variant. Note that the AAI variant uses an alternative recur-
rence formula for updating the residuals in order to improve
the accuracy of the approximate solutions [1].

We apply the algorithm of the AAI variant [1, Algorithm
1] to the right preconditioned system (2). By replacing x̃, r̃,
and Ũ by Kx, r, and U , respectively, the approximation and
the corresponding residual are expressed by

x′ = x+K−1p, r′ = r −AK−1p, p = U~α (14)

at the jth repetition of the IDR step. By introducing Û ≡
K−1U , (14) can be reformulated as

x′ = x+ p̂, r′ = r −Ap̂, p̂ = Û ~α,

where Ap̂ is obtained by explicitly multiplying p̂ by A.
Therefore U is not needed for updating the approximation
and the residual. Unlike the situation with the right pre-
conditioned IDR(s)stab(`), the matrix AK−1U is also not
needed. By using the recurrence formulas (6) and (7) with
r̂ ≡ K−1r and r̂′ ≡ K−1r′, the vectors (K−1A)ir̂′ for
i = 0, 1, . . . , j−2 and (AK−1)ir′ for i = 1, 2, . . . , j−2 are
computed at the jth repetition. Multiplying (K−1A)j−2r̂′

by A and K−1 gives (AK−1)j−1r′ and (K−1A)j−1r̂′.
For j = `, we also compute (AK−1)`r′ by multiply-
ing (K−1A)`−1r̂′ by A. These vectors are required for
updating the approximation and the corresponding resid-
ual at the polynomial step. In particular, (AK−1)jr′ for
j = 1, 2, . . . , ` are used only to determine the scalars

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



Algorithm 3. GBi-CGSTAB(s, `) with right preconditioning [15].

1. Select an initial guess x and an (n× s) matrix R̃0.

2. Compute r0 = b−Ax, r = [r0]

3. Generate an initial U = [U0], Û = [K−1U0], U = [U;AÛ0]

4. σ = R̃>0 U1, m = R̃>0 r0, ~α = σ−1m

5. x = x+ Û0~α, r = r−U1~α

6. r̂ = [K−1r0], r = [r;Ar̂0], ω = −1
7. While ‖r0‖2 > tol

8. σ = −ωσ
% The GBi-CG(s) part

9. For j = 1, 2, . . . , `

10. if j = 1 at the first cycle, then set j = 2

11. m = R̃>0 rj−1

12. For q = 1, 2, . . . , s

13. if q = 1 then

14. ~β = σ−1m, U(:,1) = r−U~β, Û(:,1) = r̂− Û~β

15. else

16. ~β = [m, σ(:,1:q−2), σ(:,q:s)]
−1σ(:,q−1)

17. For i = 0, 1, . . . , j − 1

18. Ui(:,q) = Ui+1(:,q−1) − [ri,Ui+1(:,1:q−2),Ui(:,q:s)]~β

19. End for,
20. For i = 0, 1, . . . , j − 2

21. Ûi(:,q) = Ûi+1(:,q−1) − [r̂i, Ûi+1(:,1:q−2), Ûi(:,q:s)]~β

22. End for
23. end if

24. Ûj−1(:,q) = K−1Uj−1(:,q), Uj(:,q) = AÛj−1(:,q)

25. σ(:,q) = R̃>0 Uj(:,q)

26. End for

27. ~α = σ−1m

28. x = x+ Û0~α, r = r− [U1;U2; · · · ;Uj ]~α

29. r̂ = r̂− [Û1; Û2; · · · ; Ûj−1]~α

30. r̂ = [r̂;K−1rj−1], r = [r;Ar̂j−1]

31. End for
% The MR part

32. For j = 1, 2, . . . , `

33. For i = 1, 2, . . . , j − 1

34. τij = r>i rj/ρi, rj = rj − τijri
35. End for

36. ρj = r>j rj , γ
′
j = r>j r0/ρj

37. End for

38. γ` = γ′`, ω = γ`

39. For j = `− 1, `− 2, . . . , 1

40. γj = γ′j −
∑`
i=j+1 τjiγi

41. End for
42. For j = 1, 2, . . . , `

43. x = x+ γj r̂j−1, r0 = r0 − γ′jrj , U0 = U0 − γjUj

44. End for
45. End while

γj,k. We use procedures (8)–(11) to obtain (K−1A)iV̂ for
i = 0, 1, . . . , j and (AK−1)iV for i = 2, 3, . . . , j; however,
we note that the matrices (AK−1)iV are required only for
1 < j < `. Following [1], [2], σ, ~α, and ~β are expressed
by σ = T>(K−1A)j−1Û , ~α = σ−1(T>(K−1A)j−2r̂),
and ~β = σ−1(T>ûj), respectively, where T ≡ A>R̃0 is
computed once and stored during the initialization.

Algorithm 4. GBi-CGSTAB(s, `) with left preconditioning.

1. Select an initial guess x and an (n× s) matrix R̃0.

2. Compute r0 = K−1(b−Ax), r = [r0]

3. Generate an initial U = [U0;U1] = [U0;K
−1AU0]

4. σ = R̃>0 U1, m = R̃>0 r0, ~α = σ−1m

5. x = x+U0~α, r = r−U1~α

6. r = [r;K−1Ar0], ω = −1
7. While ‖r0‖2 > tol

8. σ = −ωσ
% The GBi-CG(s) part

9. For j = 1, 2, . . . , `

10. if j = 1 at the first cycle, then set j = 2

11. m = R̃>0 rj−1

12. For q = 1, 2, . . . , s

13. if q = 1 then

14. ~β = σ−1m, U(:,1) = r−U~β

15. else

16. ~β = [m, σ(:,1:q−2), σ(:,q:s)]
−1σ(:,q−1)

17. For i = 0, 1, . . . , j − 1

18. Ui(:,q) = Ui+1(:,q−1) − [ri,Ui+1(:,1:q−2),Ui(:,q:s)]~β

19. End for
20. end if

21. Uj(:,q) = K−1AUj−1(:,q), σ(:,q) = R̃>0 Uj(:,q)

22. End for

23. ~α = σ−1m

24. x = x+U0~α, r = r− [U1;U2; · · · ;Uj ]~α

25. r = [r;K−1Arj−1]

26. End for
% The MR part

27. For j = 1, 2, . . . , `

28. For i = 1, 2, . . . , j − 1

29. τij = r>i rj/ρi, rj = rj − τijri
30. End for

31. ρj = r>j rj , γ
′
j = r>j r0/ρj

32. End for

33. γ` = γ′`, ω = γ`

34. For j = `− 1, `− 2, . . . , 1

35. γj = γ′j −
∑`
i=j+1 τjiγi

36. End for
37. For j = 1, 2, . . . , `− 1

38. γ′′j = γj+1 +
∑`−1
i=j+1 τjiγi+1

39. End for

40. x = x+ γ1r0, r0 = r0 − γ′`r`, U0 = U0 − γ`U`

41. For j = 1, 2, . . . , `− 1

42. x = x+ γ′′j rj , r0 = r0 − γ′jrj , U0 = U0 − γjUj

43. End for
44. End while

At the polynomial step, the approximation and the corre-
sponding residual are expressed by

xk+` = x′ +K−1p′, rk+` = r′ −AK−1p′,

p′ =
∑̀
j=1

γj,k(AK
−1)j−1r′.

(15)

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



Algorithm 5. AAI variant of IDR(s)stab(`) with right preconditioning [1].

1. Select an initial guess x and an (n× s) matrix R̃0.

2. Compute r0 = b−Ax, r = [r0], T = A>R̃0

3. Generate an initial Û = [Û0] = [K−1U0]

4. While ‖r0‖2 > tol

% The IDR step

5. For j = 1, 2, . . . , `

6. σ = T>Ûj−1

7. if j = 1 then

8. ~α = σ−1(R̃>0 r0)

9. else

10. ~α = σ−1(T>r̂j−2)

11. end if

12. p̂ = Û0~α, x = x+ p̂, r0 = r0 −Ap̂

13. For i = 1, 2, . . . , j − 2

14. ri = ri −Ui−1~α

15. End for
16. if j = 1 then

17. r̂ = [K−1r0]

18. else

19. r̂ = r̂− [Û1; Û2; · · · ; Ûj−1]~α

20. r = [r;Ar̂j−2], r̂ = [r̂;K−1rj−1]

21. end if
22. For q = 1, 2, . . . , s

23. if q = 1 then
24. û = r̂, u = [r2; r3; · · · ; rj−2]

25. else
26. û = [û1; û2; · · · ; ûj ], u = [u1;u2; · · · ;uj−2]

27. end if

28. ~β = σ−1(T>ûj−1), û = û− Û~β

29. if 2 < j < ` then

30. u = u−U~β

31. end if

32. û = [û;K−1Aûj−1]

33. if j = 2 then
34. u = [Aû1]

35. else if 2 < j < ` then
36. u = [u;Aûj−1]

37. end if

38. Orthonormalize ûj to the columns of V̂j(:,1:q−1)

39. V̂(:,q) = û

40. if 1 < j < ` then
41. V(:,q) = u

42. end if
43. End for
44. if j < ` then

45. Û = V̂

46. and if j > 1 then
47. U = V

48. end if
49. End for
50. r = [r;Ar̂`−1]

% The polynomial step

51. ~γ = [γ1; γ2; · · · ; γ`] = arg min~γ‖r0 − [r1, r2, . . . , r`]~γ‖2
52. p̂ = [r̂0, r̂1, . . . , r̂`−1]~γ, x = x+ p̂, r0 = r0 −Ap̂

53. Û = [V̂0 −
∑`
j=1 γjV̂j ]

54. End while

Algorithm 6. AAI variant of IDR(s)stab(`) with left preconditioning.

1. Select an initial guess x and an (n× s) matrix R̃0.

2. Compute r0 = K−1(b−Ax), r = [r0], T = A>K−>R̃0

3. Generate an initial U = [U0]

4. While ‖r0‖2 > tol

% The IDR step

5. For j = 1, 2, . . . , `

6. σ = T>Uj−1

7. if j = 1 then

8. ~α = σ−1(R̃>0 r0)

9. else

10. ~α = σ−1(T>rj−2)

11. end if

12. p = U0~α, x = x+ p, r0 = r0 −K−1Ap

13. For i = 1, 2, . . . , j − 2

14. ri = ri −Ui+1~α

15. End for
16. if j > 1 then

17. r = [r;K−1Arj−2]

18. end if
19. For q = 1, 2, . . . , s

20. if q = 1 then
21. u = r

22. else
23. u = [u1;u2; · · · ;uj ]
24. end if

25. ~β = σ−1(T>uj−1), u = u−U~β, u = [u;K−1Auj−1]

26. Orthonormalize uj to the columns of Vj(:,1:q−1)

27. V(:,q) = u

28. End for
29. if j < ` then
30. U = V

31. end if
32. End for

33. r = [r;K−1Ar`−1]

% The polynomial step

34. ~γ = [γ1; γ2; · · · ; γ`] = arg min~γ‖r0 − [r1, r2, . . . , r`]~γ‖2
35. p = [r0, r1, . . . , r`−1]~γ, x = x+ p, r0 = r0 −K−1Ap

36. U = [V0 −
∑`
j=1 γjVj ]

37. End while

Using r̂′ = K−1r′, (15) is reformulated as

xk+` = x′ + p̂′, rk+` = r′ −Ap̂′,

p̂′ =
∑̀
j=1

γj,k(K
−1A)j−1r̂′,

where Ap̂′ is obtained by explicitly multiplying p̂′ by A.
Finally, the matrix Û used at the next cycle is computed by

Û = V̂ −
∑̀
j=1

γj,k(K
−1A)j V̂ .

Algorithm 5 displays the AAI variant with the right pre-
conditioning proposed in [1]. Note that rj , r̂j , Ûj , and Uj

represent (AK−1)jr0, K
−1rj , (K

−1A)jÛ0, and AÛj+1,
respectively.

The AAI variant with left preconditioning is displayed
in Algorithm 6, which can be derived by applying the

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



TABLE I
COMPUTATIONAL COSTS FOR MVS, K−1v’S, AXPYS, AND DOTS OF IDR(s)STAB(`), GBI-CGSTAB(s, `), AND THE AAI VARIANT WITH RIGHT

AND LEFT PRECONDITIONING PER CYCLE FOR ` > 1.

Side Solver MVs K−1v’s AXPYs DOTs

Right
IDR(s)stab(`) `(s+ 1) `(s+ 1) `s(`+ 1)(s+ 1) + 2`(s+ 1) `s(2s+ 1) + 1

2
`(`+ 3)

GBi-CGSTAB(s, `) `(s+ 1) `(s+ 1) `s(`+ 1)(s+ 1)− `(s2 − s− 1
2
`− 3

2
) `s(s+ 1) + 1

2
`(`+ 3)

AAI variant `(s+ 2) + 1 `(s+ 1) `s(`+ 1)(s+ 1)− s(`− 1)(3s+ 1) + 3
2
`+ 1

2
`s(2s+ 1) + 1

2
`(`+ 3)

Left
IDR(s)stab(`) `(s+ 1) `(s+ 1) 1

2
`s(`+ 1)(s+ 1) + `(s2 + 3s+ 2) `s(2s+ 1) + 1

2
`(`+ 3)

GBi-CGSTAB(s, `) `(s+ 1) `(s+ 1) 1
2
`s(`+ 1)(s+ 1) + `(2s+ 1

2
`+ 3

2
) `s(s+ 1) + 1

2
`(`+ 3)

AAI variant `(s+ 2) + 1 `(s+ 2) + 1 1
2
`s(`+ 1)(s+ 1) + 3

2
`+ s+ 1

2
`s(2s+ 1) + 1

2
`(`+ 3)

algorithm of the AAI variant to the left preconditioned
system (3). Here, r0 is set to K−1(b − Ax0), and Ã, r̃,
and Ũ are replaced by K−1A, r, and U , respectively.
σ, ~α, and ~β are expressed by σ = T>(K−1A)j−1U, ~α =
σ−1(T>(K−1A)j−2r), and ~β = σ−1(T>uj), respectively,
where T ≡ A>K−>R̃0. In Algorithm 6, rj and Uj represent
(K−1A)jr0 and (K−1A)jU0, respectively.

D. Computational costs

The right preconditioned IDRStab requires additional vec-
tor updates to obtain the auxiliary matrices and vectors, such
as Û = K−1U and r̂ = K−1r, but the left preconditioned
IDRStab requires no additional vector updates.

Table I summarizes the computational costs of
IDR(s)stab(`), GBi-CGSTAB(s, `), and the AAI variant
with right and left preconditioning per cycle for ` > 1. A
matrix–vector multiplication by A and a multiplication by
K−1 are indicated by MV and K−1v, respectively. AXPY
stands for a vector update of the form ax+ y with a scalar
a and n-dimensional vectors x and y. A computation of the
form ax or x+ y is counted as 1

2 AXPY. DOT denotes an
inner product between two n-dimensional vectors. Table II
shows the computational costs for (s, `)=(4, 4).

Following [1], [13], the columns of (K−1A)jÛ of
IDR(s)stab(`) and the AAI variant with right preconditioning
are orthonormalized for numerical stability (see lines 14
and 20 in Algorithms 1 and 5, respectively). Similarly, for
IDR(s)stab(`) and the AAI variant with left preconditioning,
the columns of (K−1A)jU are orthonormalized (see lines
12 and 16 in Algorithms 2 and 6, respectively). Table
III summarizes the computational costs when using Gram–
Schmidt orthonormalization.

From Tables I–III, we can observe the following.
• Comparison between the variants of IDRStab. The

numbers of MVs and K−1v’s of the preconditioned
GBi-CGSTAB(s, `) are the same as those of the pre-
conditioned IDR(s)stab(`), but the numbers of AX-
PYs and DOTs of the preconditioned GBi-CGSTAB(s,
`) are much less than those of the preconditioned
IDR(s)stab(`). The AAI variant with preconditioning
requires ` + 1 additional MVs per cycle, and in the
case of left preconditioning, also requires ` + 1 addi-
tional K−1v’s. However, the number of AXPYs of the
preconditioned AAI variant is much less than that of
the preconditioned IDR(s)stab(`).

• Comparison between right and left preconditioning.
The computational costs of IDR(s)stab(`) and GBi-
CGSTAB(s, `) with left preconditioning are much less

TABLE II
COMPUTATIONAL COSTS FOR MVS, K−1v’S, AXPYS, AND DOTS OF

IDR(s)STAB(`), GBI-CGSTAB(s, `), AND THE AAI VARIANT WITH
RIGHT AND LEFT PRECONDITIONING PER CYCLE FOR (s, `) = (4, 4).

Side Solver MVs K−1v’s AXPYs DOTs

Right
IDR(4)stab(4) 20 20 440 158
GBi-CGSTAB(4, 4) 20 20 366 94
AAI variant 25 20 250.5 158

Left
IDR(4)stab(4) 20 20 320 158
GBi-CGSTAB(4, 4) 20 20 246 94
AAI variant 25 25 210.5 158

TABLE III
COMPUTATIONAL COSTS FOR AXPYS AND DOTS OF GRAM–SCHMIDT

ORTHONORMALIZATION IN IDR(s)STAB(`) AND THE AAI VARIANT
WITH RIGHT AND LEFT PRECONDITIONING PER CYCLE FOR ` > 1.

Side Solver AXPYs DOTs

Right IDR(s)stab(`) 1
2
`s2(`+ 2) 1

2
`s(s+ 1)

AAI variant 1
2
s2(`2 + 1) 1

2
`s(s+ 1)

Left IDR(s)stab(`) 1
4
`s2(`+ 3) 1

2
`s(s+ 1)

AAI variant 1
4
`s2(`+ 3) 1

2
`s(s+ 1)

than those with right preconditioning. It is therefore
expected that the left preconditioned algorithm is more
efficient than the right preconditioned algorithm in terms
of computation time. On the other hand, the AAI
variant with left preconditioning requires fewer AXPYs
than it does with right preconditioning, but it requires
additional K−1v’s.

III. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments on
model problems with sparse nonsymmetric matrices to show
the difference in convergence between IDR(s)stab(`), GBi-
CGSTAB(s, `), and the AAI variant with right and left
preconditioning. We use the test matrices pde2961, air-
foil 2d, sherman5, orsreg 1, memplus, and wang4 from the
University of Florida Sparse Matrix Collection [3]. Table
IV shows for each matrix the dimension n, the number
of nonzero entries (abbreviated as nnz), the average nnz
per row (abbreviated as Ave. nnz), the condition number
(indicated by cond(A)), and the discipline of the application
that produced that matrix.

Numerical calculations were carried out in double-
precision floating-point arithmetic on a PC (Intel Core i7 2.67
GHz CPU) with a GNU C++ 4.5.2 compiler. The right-hand
side vector b is obtained by substituting x∗ ≡ (1, 1, . . . , 1)>

into the equation b = Ax∗. The iterations were started

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



TABLE IV
CHARACTERISTIC OF TEST MATRICES.

Matrices n nnz Ave. nnz cond(A) Application discipline

pde2961 2961 14585 4.93 6.4E+02 Partial differential equations
airfoil 2d 14214 259688 18.3 1.8E+06 Computational fluid dynamics
sherman5 3312 20793 6.28 1.9E+05 Computational fluid dynamics
orsreg 1 2205 14133 6.41 6.7E+04 Computational fluid dynamics
memplus 17758 99147 5.58 1.3E+05 Circuit simulation
wang4 26068 177196 6.80 4.0E+05 Semiconductor device

0 1 2 3 4 5 6
−15

−12

−9

−6

−3

0

3

Number of cycles

L
o
g

1
0
 o

f 
re

la
ti

v
e 

re
si

d
u

a
l 

2
−

n
o

rm
 

 

 

IDR(4)stab(4),

GBi−CGSTAB(4, 4),

AAI variant

Fig. 1. Convergence histories plotted with the number of cycles of
IDR(4)stab(4), GBi-CGSTAB(4, 4), and the AAI variant with right pre-
conditioning for airfoil 2d.

0 50 100 150
−15

−12

−9

−6

−3

0

3

Number of MVs

L
o

g
1

0
 o

f 
re

la
ti

v
e 

re
si

d
u

a
l 

2
−

n
o

rm
 

 

 

AAI variant

IDR(4)stab(4)

GBi−CGSTAB(4, 4)

Fig. 2. Convergence histories plotted with the number of MVs of
IDR(4)stab(4), GBi-CGSTAB(4, 4), and the AAI variant with right pre-
conditioning for airfoil 2d.

with 0, and were stopped when the relative residual 2-
norms (i.e., ‖rk‖2/‖r0‖2) become 10−12. The columns of
R̃0 were given by the orthonormalization of s real random
vectors in the interval (0, 1). The columns of the initial
matrices for IDRStab with right, with left, and without
preconditioning were given by the orthonormalization of
the columns of Û = [r̂0,K

−1Ar̂0, . . . , (K
−1A)s−1r̂0],

U = [r0,K
−1Ar0, . . . , (K

−1A)s−1r0], and U =
[r0, Ar0, . . . , A

s−1r0], respectively. The parameters (s, `)
were set to (4, 4), (8, 2), and (2, 8). ILU(0) [10, Algorithm
10.4] was used as the preconditioner.

Figures 1–4 display the convergence histories of the right
preconditioned IDRStab with (s, `)=(4, 4) for airfoil 2d.
The numbers of cycles and MVs, and the computation
time are plotted on the horizontal axis in Figures 1, 2,
and 3, respectively; the log10 of the relative residual 2-

0 0.2 0.4 0.6 0.8 1
−15

−12

−9

−6

−3

0

3

CPU time [s]
L

o
g

1
0
 o

f 
re

la
ti

v
e 

re
si

d
u

a
l 

2
−

n
o

rm
 

 

 

AAI variant

IDR(4)stab(4)

GBi−CGSTAB(4, 4)

Fig. 3. Convergence histories plotted with the computation time of
IDR(4)stab(4), GBi-CGSTAB(4, 4), and the AAI variant with right pre-
conditioning for airfoil 2d.

0 50 100 150
−15

−12

−9

−6

−3

0

3

Number of MVs

L
o

g
1

0
 o

f 
tr

u
e 

re
la

ti
v

e 
re

si
d

u
a

l 
2

−
n

o
rm

 

 

 

IDR(4)stab(4)

AAI variant

GBi−CGSTAB(4, 4)

Fig. 4. Convergence histories of the true relative residual norms of
IDR(4)stab(4), GBi-CGSTAB(4, 4), and the AAI variant with right pre-
conditioning for airfoil 2d.

norm is plotted on the vertical axis in the figures. Figure
4 displays the number of MVs on the horizontal axis versus
the log10 of the explicitly computed relative residual 2-norm
(‖b−Axk‖2/‖b‖2) on the vertical axis, respectively. Tables
V–VII show the numbers of cycles and MVs (the number
of multiplications by K−1), the computation times, and the
explicitly computed relative residual 2-norms at termination
of IDRStab without and with (right and left) preconditioning,
which are abbreviated as “Cycles”, “MVs (K−1v’s)”, “Time
[s]”, and “True res.”, respectively. We did not include the
times for constructing the ILU(0) preconditioner.

From Figures 1–4 and Tables V–VII, we can observe the
following.
• Comparison between the variants of IDRStab. The

convergence for all variants of IDRStab is enhanced
by preconditioning. The numbers of cycles required

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



TABLE V
NUMBERS OF CYCLES AND MVS (NUMBER OF MULTIPLICATIONS BY K−1), COMPUTATION TIMES, AND TRUE RELATIVE RESIDUAL NORMS OF
IDR(s)STAB(`), GBI-CGSTAB(s, `), AND THE AAI VARIANT WITHOUT AND WITH (RIGHT AND LEFT) PRECONDITIONING FOR (s, `)=(4, 4).

Matrices Preconditioning Solver Cycles MVs (K−1v’s) Time [s] True res.

pde2961

-
IDR(4)stab(4) 17 345 0.36 1.26E−10
GBi-CGSTAB(4, 4) 17 341 0.19 3.96E−11
AAI variant 16 404 0.29 8.25E−13

Right ILU(0)
IDR(4)stab(4) 4 85 (84) 0.12 9.92E−13
GBi-CGSTAB(4, 4) 4 81 (80) 0.06 1.54E−12
AAI variant 4 104 (84) 0.10 1.58E−13

Left ILU(0)
IDR(4)stab(4) 4 85 (85) 0.11 2.41E−11
GBi-CGSTAB(4, 4) 4 81 (81) 0.04 1.46E−11
AAI variant 5 129 (129) 0.11 3.84E−14

airfoil 2d

-
IDR(4)stab(4) 220 4405 30.5 1.44E+00
GBi-CGSTAB(4, 4) 205 4101 15.1 2.42E−08
AAI variant 239 5979 31.6 7.72E−10

Right ILU(0)
IDR(4)stab(4) 5 105 (104) 0.92 4.73E−08
GBi-CGSTAB(4, 4) 5 101 (100) 0.77 1.64E−08
AAI variant 5 129 (104) 0.84 9.56E−11

Left ILU(0)
IDR(4)stab(4) 4 85 (85) 0.78 8.94E−08
GBi-CGSTAB(4, 4) 4 81 (81) 0.55 9.74E−06
AAI variant 4 104 (104) 0.66 8.19E−10

sherman5

-
IDR(4)stab(4) 114 2285 2.74 2.73E−10
GBi-CGSTAB(4, 4) 116 2321 1.31 5.83E−13
AAI variant 123 3079 2.66 1.83E−13

Right ILU(0)
IDR(4)stab(4) 3 65 (64) 0.09 3.30E−13
GBi-CGSTAB(4, 4) 3 61 (60) 0.06 3.44E−14
AAI variant 3 79 (64) 0.07 5.94E−16

Left ILU(0)
IDR(4)stab(4) 3 65 (65) 0.08 3.02E−12
GBi-CGSTAB(4, 4) 3 61 (61) 0.05 1.46E−13
AAI variant 3 79 (79) 0.08 7.04E−16

orsreg 1

-
IDR(4)stab(4) 25 505 0.38 1.38E−07
GBi-CGSTAB(4, 4) 20 401 0.16 3.07E−11
AAI variant 25 629 0.35 2.14E−12

Right ILU(0)
IDR(4)stab(4) 5 105 (104) 0.12 3.56E−11
GBi-CGSTAB(4, 4) 5 101 (100) 0.07 2.28E−11
AAI variant 5 129 (104) 0.09 1.30E−12

Left ILU(0)
IDR(4)stab(4) 5 105 (105) 0.09 4.51E−11
GBi-CGSTAB(4, 4) 5 101 (101) 0.05 2.39E−11
AAI variant 5 129 (129) 0.10 1.02E−12

memplus

-
IDR(4)stab(4) 97 1945 13.4 1.26E−08
GBi-CGSTAB(4, 4) 94 1881 7.48 1.44E−11
AAI variant 124 3104 15.3 8.06E−13

Right ILU(0)
IDR(4)stab(4) 23 465 (464) 3.99 2.43E−10
GBi-CGSTAB(4, 4) 24 481 (480) 2.47 8.07E−12
AAI variant 25 629 (504) 3.64 9.35E−13

Left ILU(0)
IDR(4)stab(4) 26 525 (525) 4.31 5.21E−12
GBi-CGSTAB(4, 4) 24 481 (481) 2.03 1.18E−12
AAI variant 28 704 (704) 4.40 1.13E−13

wang4

-
IDR(4)stab(4) 34 685 5.74 2.97E−09
GBi-CGSTAB(4, 4) 33 661 3.82 1.69E−11
AAI variant 34 854 5.12 7.49E−13

Right ILU(0)
IDR(4)stab(4) 5 105 (104) 1.53 5.39E−12
GBi-CGSTAB(4, 4) 5 101 (100) 0.90 1.72E−12
AAI variant 5 129 (104) 1.06 4.09E−15

Left ILU(0)
IDR(4)stab(4) 5 105 (105) 1.02 9.81E−12
GBi-CGSTAB(4, 4) 5 101 (101) 0.62 8.34E−12
AAI variant 5 129 (129) 0.94 5.14E−15

for successful convergence of IDR(s)stab(`), GBi-
CGSTAB(s, `), and the AAI variant with precondi-
tioning are almost the same. The computation times
for GBi-CGSTAB(s, `) with preconditioning are shorter
than those for IDR(s)stab(`) and the AAI variant with
preconditioning. The computation times for the right

preconditioned AAI variant are slightly shorter than
those for the right preconditioned IDR(s)stab(`); the
computational costs for the additional MVs in the AAI
variant with right preconditioning are compensated for
by a reduction in the number of AXPYs. The approx-
imate solutions obtained by IDR(s)stab(`) and GBi-

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



TABLE VI
NUMBERS OF CYCLES AND MVS (NUMBER OF MULTIPLICATIONS BY K−1), COMPUTATION TIMES, AND TRUE RELATIVE RESIDUAL NORMS OF
IDR(s)STAB(`), GBI-CGSTAB(s, `), AND THE AAI VARIANT WITHOUT AND WITH (RIGHT AND LEFT) PRECONDITIONING FOR (s, `)=(8, 2).

Matrices Preconditioning Solver Cycles MVs (K−1v’s) Time [s] True res.

pde2961

-
IDR(8)stab(2) 17 315 0.42 5.81E−11
GBi-CGSTAB(8, 2) 16 289 0.19 6.76E−12
AAI variant 16 344 0.34 7.41E−13

Right ILU(0)
IDR(8)stab(2) 5 99 (98) 0.15 2.79E−12
GBi-CGSTAB(8, 2) 5 91 (90) 0.08 8.17E−14
AAI variant 5 113 (98) 0.11 4.10E−15

Left ILU(0)
IDR(8)stab(2) 5 99 (99) 0.14 1.36E−11
GBi-CGSTAB(8, 2) 5 91 (91) 0.07 6.05E−12
AAI variant 5 113 (113) 0.11 4.91E−15

airfoil 2d

-
IDR(8)stab(2) 235 4239 39.3 4.92E−04
GBi-CGSTAB(8, 2) 223 4015 19.9 1.55E−08
AAI variant 271 5699 39.9 2.14E−08

Right ILU(0)
IDR(8)stab(2) 6 117 (116) 1.49 1.21E−08
GBi-CGSTAB(8, 2) 6 109 (108) 0.88 1.05E−08
AAI variant 6 134 (116) 1.26 8.36E−11

Left ILU(0)
IDR(8)stab(2) 5 99 (99) 1.09 2.48E−09
GBi-CGSTAB(8, 2) 5 91 (91) 0.57 8.69E−09
AAI variant 5 113 (113) 1.03 8.12E−11

sherman5

-
IDR(8)stab(2) 136 2457 4.02 2.97E−10
GBi-CGSTAB(8, 2) 126 2269 1.78 8.69E−13
AAI variant 134 2822 3.29 1.87E−13

Right ILU(0)
IDR(8)stab(2) 3 63 (62) 0.12 6.35E−15
GBi-CGSTAB(8, 2) 3 55 (54) 0.06 3.08E−15
AAI variant 3 71 (62) 0.08 5.41E−16

Left ILU(0)
IDR(8)stab(2) 3 63 (63) 0.09 3.42E−15
GBi-CGSTAB(8, 2) 3 55 (55) 0.05 1.94E−15
AAI variant 3 71 (71) 0.08 5.23E−16

orsreg 1

-
IDR(8)stab(2) 23 423 0.47 4.20E−11
GBi-CGSTAB(8, 2) 23 415 0.21 1.93E−12
AAI variant 25 533 0.34 1.83E−12

Right ILU(0)
IDR(8)stab(2) 6 117 (116) 0.14 2.49E−12
GBi-CGSTAB(8, 2) 6 109 (108) 0.08 2.84E−12
AAI variant 6 134 (116) 0.12 8.15E−13

Left ILU(0)
IDR(8)stab(2) 5 99 (99) 0.11 1.87E−11
GBi-CGSTAB(8, 2) 5 91 (91) 0.05 1.23E−11
AAI variant 5 113 (113) 0.10 1.22E−11

memplus

-
IDR(8)stab(2) 91 1647 16.6 5.99E−10
GBi-CGSTAB(8, 2) 88 1585 7.29 1.79E−12
AAI variant 106 2234 14.1 9.02E−13

Right ILU(0)
IDR(8)stab(2) 25 459 (458) 6.18 1.55E−10
GBi-CGSTAB(8, 2) 25 451 (450) 3.07 4.37E−13
AAI variant 27 575 (494) 5.19 7.63E−13

Left ILU(0)
IDR(8)stab(2) 25 459 (459) 5.14 4.99E−09
GBi-CGSTAB(8, 2) 27 487 (487) 2.90 1.07E−12
AAI variant 30 638 (638) 5.45 5.49E−13

wang4

-
IDR(8)stab(2) 36 657 10.3 1.38E−08
GBi-CGSTAB(8, 2) 36 649 4.46 7.91E−13
AAI variant 36 764 8.64 1.28E−13

Right ILU(0)
IDR(8)stab(2) 5 99 (98) 1.70 5.02E−13
GBi-CGSTAB(8, 2) 5 91 (90) 0.92 2.92E−13
AAI variant 5 113 (98) 1.48 7.39E−15

Left ILU(0)
IDR(8)stab(2) 6 117 (117) 1.90 3.92E−11
GBi-CGSTAB(8, 2) 6 109 (109) 0.94 7.70E−13
AAI variant 6 134 (134) 1.68 4.52E−15

CGSTAB(s, `) with preconditioning often, especially
for larger `, do not attain the required accuracy, but
those obtained by the preconditioned AAI variant are
more accurate or have the same accuracy.

• Comparison between right and left preconditioning.
The computation times for IDR(s)stab(`) and GBi-

CGSTAB(s, `) with left preconditioning are shorter than
those with right preconditioning. The computation times
for the left preconditioned AAI variant are comparable
to those for the right preconditioned one. We note that
the total computational costs of the left preconditioned
AAI variant may be almost the same as those of the

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



TABLE VII
NUMBERS OF CYCLES AND MVS (NUMBER OF MULTIPLICATIONS BY K−1), COMPUTATION TIMES, AND TRUE RELATIVE RESIDUAL NORMS OF
IDR(s)STAB(`), GBI-CGSTAB(s, `), AND THE AAI VARIANT WITHOUT AND WITH (RIGHT AND LEFT) PRECONDITIONING FOR (s, `)=(2, 8).

Matrices Preconditioning Solver Cycles MVs (K−1v’s) Time [s] True res.

pde2961

-
IDR(2)stab(8) 17 411 0.42 2.82E−08
GBi-CGSTAB(2, 8) 16 385 0.19 1.25E−08
AAI variant 16 530 0.35 1.18E−13

Right ILU(0)
IDR(2)stab(8) 4 99 (98) 0.14 9.28E−10
GBi-CGSTAB(2, 8) 4 97 (96) 0.09 5.47E−11
AAI variant 4 134 (98) 0.14 1.59E−14

Left ILU(0)
IDR(2)stab(8) 4 99 (99) 0.11 9.76E−08
GBi-CGSTAB(2, 8) 4 97 (97) 0.07 1.86E−09
AAI variant 4 134 (134) 0.11 3.92E−13

airfoil 2d

-
IDR(2)stab(8) 194 4659 30.4 5.22E−01
GBi-CGSTAB(2, 8) 197 4729 21.3 8.43E−07
AAI variant 216 7130 35.3 2.43E−09

Right ILU(0)
IDR(2)stab(8) 5 123 (122) 1.09 1.85E−02
GBi-CGSTAB(2, 8) 5 121 (120) 0.98 8.50E−06
AAI variant 5 167 (122) 1.07 1.56E−10

Left ILU(0)
IDR(2)stab(8) 4 99 (99) 0.88 6.11E−03
GBi-CGSTAB(2, 8) 4 97 (97) 0.56 1.28E−03
AAI variant 4 134 (134) 0.98 1.43E−10

sherman5

-
IDR(2)stab(8) 100 2403 2.77 6.02E−09
GBi-CGSTAB(2, 8) 108 2593 1.89 9.37E−12
AAI variant 121 3995 3.19 8.20E−13

Right ILU(0)
IDR(2)stab(8) 3 75 (74) 0.14 7.69E−12
GBi-CGSTAB(2, 8) 3 73 (72) 0.07 1.31E−10
AAI variant 3 101 (74) 0.11 6.77E−16

Left ILU(0)
IDR(2)stab(8) 3 75 (75) 0.09 1.43E−10
GBi-CGSTAB(2, 8) 3 73 (73) 0.05 1.27E−10
AAI variant 3 101 (101) 0.10 1.49E−15

orsreg 1

-
IDR(2)stab(8) 25 603 0.49 1.55E−04
GBi-CGSTAB(2, 8) 21 505 0.23 1.18E−06
AAI variant 25 827 0.43 2.63E−12

Right ILU(0)
IDR(2)stab(8) 4 99 (98) 0.11 4.39E−08
GBi-CGSTAB(2, 8) 4 97 (96) 0.08 8.81E−09
AAI variant 4 134 (98) 0.10 3.22E−12

Left ILU(0)
IDR(2)stab(8) 4 99 (99) 0.08 6.36E−08
GBi-CGSTAB(2, 8) 4 97 (97) 0.05 4.84E−09
AAI variant 4 134 (134) 0.08 3.09E−12

memplus

-
IDR(2)stab(8) 126 3027 19.6 2.05E−04
GBi-CGSTAB(2, 8) 105 2521 10.1 2.64E−07
AAI variant 115 3797 17.1 2.37E−13

Right ILU(0)
IDR(2)stab(8) 23 555 (554) 5.83 6.89E−06
GBi-CGSTAB(2, 8) 23 553 (552) 3.74 4.21E−10
AAI variant 23 761 (554) 4.37 2.62E−13

Left ILU(0)
IDR(2)stab(8) 23 555 (555) 4.33 1.87E−07
GBi-CGSTAB(2, 8) 25 601 (601) 3.21 1.16E−09
AAI variant 25 827 (827) 4.82 5.98E−13

wang4

-
IDR(2)stab(8) 42 1011 7.89 5.51E−03
GBi-CGSTAB(2, 8) 34 817 4.72 1.12E−09
AAI variant 36 1190 6.40 5.76E−13

Right ILU(0)
IDR(2)stab(8) 4 99 (98) 1.48 1.04E−09
GBi-CGSTAB(2, 8) 4 97 (96) 0.94 1.00E−09
AAI variant 4 134 (98) 1.35 4.89E−14

Left ILU(0)
IDR(2)stab(8) 4 99 (99) 1.09 1.96E−07
GBi-CGSTAB(2, 8) 4 97 (97) 0.74 6.86E−10
AAI variant 4 134 (134) 1.11 3.46E−12

right preconditioned one, because the computational
costs for K−1v are not expensive when using the
ILU(0) preconditioner for sparse matrices. The right
and left preconditioned algorithms generate different
residuals rk = b − Axk and rk = K−1(b − Axk),
respectively, which are used in the stopping criterion.

However, for each variant of IDRStab, the attainable
accuracy of the approximate solutions obtained by the
right preconditioned algorithm is comparable to that
obtained by the left preconditioned algorithm.

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



IV. CONCLUDING REMARKS

In this paper, we have illustrated the right and left pre-
conditioned algorithms of IDR(s)stab(`), GBi-CGSTAB(s,
`), and the AAI variant. Numerical experiments show the
differences in their convergence when using the ILU(0)
preconditioner. The numbers of cycles required for successful
convergence of the variants of IDRStab with preconditioning
are almost the same, but GBi-CGSTAB(s, `) and the AAI
variant with preconditioning are superior to the others in
terms of the computation time and the accuracy of the
approximate solutions, respectively. For IDR(s)stab(`) and
GBi-CGSTAB(s, `), the left preconditioned algorithm is
often more efficient than the right one in terms of the com-
putation time. The AAI variant with right preconditioning,
when applied to a sparse linear system, is as efficient as that
with left preconditioning.

ACKNOWLEDGMENT

The authors would like to thank Dr. Gerard L. G. Sleijpen
(Utrecht University) and Dr. Kees Vuik (Delft University
of Technology) for their helpful advice for this work. The
authors would like to also thank the reviewers for their
careful reading and constructive comments.

REFERENCES

[1] K. Aihara, K. Abe and E. Ishiwata, “A variant of IDRstab with reliable
update strategies for solving sparse linear systems,” J. Comput. Appl.
Math., 259 (2014), pp. 244-258.

[2] K. Aihara, K. Abe and E. Ishiwata, “An alternative implementation
of the IDRstab method saving vector updates,” JSIAM Lett., 3 (2011),
pp. 69-72.

[3] T. Davis, The University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/

[4] R. Fletcher, “Conjugate gradient methods for indefinite systems,”
Lecture Notes in Math., 506 (1976), pp. 73-89.

[5] S. Fujino, T. Sekimoto and K. Murakami, “A rich variety of role
of preconditioning for hybrid-typed IDR(s) and BiCGStab(L) meth-
ods,” IPSJ SIG Technical Report, 2012-HPC-133, pp. 1-6, 2012. (in
Japanese)

[6] O. Kardani, A. V. Lyamin and K. Krabbenhøft, “A Comparative Study
of Preconditioning Techniques for Large Sparse Systems Arising in
Finite Element Limit Analysis,” IAENG Int. J. Appl. Math., 43 (2013),
pp. 195-203.

[7] C. Lanczos, “Solution of systems of linear equations by minimized
iterations,” J. Research Nat. Bur. Standards, 49 (1952), pp. 33-53.

[8] J.A. Meijerink and H.A. van der Vorst, “An iterative solution method
for linear systems of which the coefficient matrix is a symmetric M -
matrix,” Math. Comp., 31 (1977), pp. 148-162.

[9] O. Rendel, A. Rizvanolli and J.-P.M. Zemke, “IDR: A new generation
of Krylov subspace methods?,” Linear Algebra Appl., 439 (2013), pp.
1040-1061.

[10] Y. Saad, “Iterative Methods for Sparse Linear Systems,” 2nd edition,
SIAM, Philadelphia, 2003.

[11] G.L.G. Sleijpen and D.R. Fokkema, “BiCGstab(`) for linear equations
involving unsymmetric matrices with complex spectrum,” Electron.
Trans. Numer. Anal., 1 (1993), pp. 11-32.

[12] G.L.G. Sleijpen, P. Sonneveld and M.B. van Gijzen, “Bi-CGSTAB
as an induced dimension reduction method,” Appl. Numer. Math., 60
(2010), pp. 1100-1114.

[13] G.L.G. Sleijpen and M.B. van Gijzen, “Exploiting BiCGstab(`) strate-
gies to induce dimension reduction,” SIAM J. Sci. Comput., 32 (2010),
pp. 2687-2709.

[14] P. Sonneveld and M.B. van Gijzen, “IDR(s): a family of simple
and fast algorithms for solving large nonsymmetric systems of linear
equations,” SIAM J. Sci. Comput., 31 (2008), pp. 1035-1062.

[15] M. Tanio and M. Sugihara, “GBi-CGSTAB(s, L): IDR(s) with higher-
order stabilization polynomials,” J. Comput. Appl. Math., 235 (2010),
pp. 765-784.

[16] M. ur Rehman, C. Vuik and G. Segal, “Preconditioners for the Steady
Incompressible Navier-Stokes Problem,” IAENG Int. J. Appl. Math.,
38 (2008), pp. 223-232.

[17] H.A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems,”
SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644.

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_01

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 




