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Abstract—In previous studies we have shown some conjec-
tures for behavior of blow-up solutions to a nonlinear parabolic
equations. They are very important features to investigate
behavior of solutions near their blow-up time. The purpose of
our paper is to prove one of them that we call “weak eventual
monotonicity”.

Index Terms—parabolic equations, blow-up solutions, Type
2, eventual monotonicity.

I. INTRODUCTION

LET Ω be a bounded domain in Rn with the boundary ∂Ω
of C2-class and consider the following initial-boundary

value problems.
ut = uδ(∆u + λu) x ∈ Ω, t > 0,

u(x, 0) = u0(x) x ∈ Ω,

u(x, t) = 0 x ∈ ∂Ω, t ≥ 0,

(1)

where δ > 0, λ is greater than the first eigenvalue, λ1(Ω) of
−∆ in Ω, that is, λ > λ1(Ω) > 0 and the initial functions
u0 ∈ C∞(Ω)

∩
C(Ω) satisfies

u0 > 0 in Ω and u0(x) = 0 for x ∈ ∂Ω. (2)

In this paper we discuss classical solutions which are ap-
proximated by functions uε solving the following problems:

(uε)t = uδ
ε(∆uε + λuε) x ∈ Ω, t > 0,

uε(x, 0) = u0(x) + ε x ∈ Ω,

uε(x, t) = ε x ∈ ∂Ω, t ≥ 0.

(3)

It has been proved that each of them blows up at a finite
time, that is, for any solutions approximated by uε, there
exists T > 0 such that

lim sup
t↗T

‖u(·, t)‖∞ = ∞,

where ‖u(·, t)‖∞ = sup
x∈Ω

u(x, t). (For instance, see [2].)

Here the constant T is called “the blow-up time” of u.
Moreover it has been known that they are classified into two
types by their blow-up rates as follows.
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Definition 1: Let u and T be a solution of (1) and the
blow-up time of u, respectively. Then u is called “Type 1”
if it satisfies

lim sup
t↗T

(T − t)
1
δ ‖u(·, t)‖∞ < +∞ (4)

and u is called “Type 2” if it satisfies

lim sup
t↗T

(T − t)
1
δ ‖u(·, t)‖∞ = +∞. (5)

Precisely, It has been proved that if δ ≥ 2 then there exists
solutions of (1) which are “Type 2” and if 0 < δ < 2 then u
is “Type 1”. (See [3], [4], [5], [7], [8], [9], [10], [11] and so
force.) Our purpose of this paper is to investigate asymptotic
behavior of “Type 2” solutions.

In [1] we investigated asymptotic behavior of solution to
(1) without any special assumptions in the case of δ = 2

and it is proved that if δ = 2 then 2(T − t)
∫

Ω

u−1ut dx

becomes positive and has an upper bound after a finite
time. In particular, the positivity implies that there exists
t0 ∈ (0, T ) such that∫

Ω

u(∆u + λu) dx =
∫

Ω

u−1ut dx > 0

for t ∈ [t0, T ). In other words, this means that if δ = 2

then
∫

Ω

log u(x, t) dx is increasing in (t0, T ). We call this

property “weak eventual monotonicity”.
In addition, [1] provided some conjectures for behavior of

solutions which contain “weak eventual monotonicity” for
the case of δ > 2. Our main purpose of this paper is to
prove the following theorem and to solve it in part.

Theorem 2: Let u0 be a initial function satisfying
(u0)2−δ1 ∈ L1(Ω) for some δ1 > 2. Then there exists
δ0 ∈ (2, δ1] such that we can choose tδ ∈ (0, T ) for any
δ ∈ (2, δ0) so that∫

Ω

u(x, t)
(
∆u(x, t) + λu(x, t)

)
dx

=
∫

Ω

u(x, t)1−δut(x, t) dx > 0

for any t ∈ (tδ, T ).

In the case of δ > 2 Theorem 2 implies that∫
Ω

u(x, t)2−δ dx is decreasing in (tδ, T ), and so the proof

of this theorem is more difficult than one for the case of
δ = 2 in [1] which used the fact that log u(x, t) blows up in
a subset with positive measure as t is closed to the blow-up

time T and then
∫

Ω

log u(x, t) dx also blows up. Indeed, if
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δ > 2 then it is known that u(x, t)2−δ decays in a subset

with positive measure but behavior of
∫

Ω

u(x, t)2−δ dx is

unknown.
In this paper we will first show some features for blow-

up solutions which are required to investigate of behavior

of
∫

Ω

u(x, t)2−δ dx. Precisely, in section II we provide

well-known properties in previous studies and fundamental
lemmas for solutions of (1). In section III we exactly estimate
behavior of solutions near boundary. In section IV we show
an important property for regions in which solutions blow
up with the same rate as the maximum point. The similar
properties was proved in previous studies (for instance, see
[11]). We provide an exact proof by estimates in this paper
which is required in the proof of our main theorem. In section

V we investigate behavior of
∫

Ω

u(x, t)2−δ dx and give the

proof of Theorem 2.

II. FUNDAMENTAL LEMMAS

In this section we provide well-known properties in pre-
vious studies and fundamental lemmas for solutions of (1).

Lemma 3: Let u be a solution u of (1). Then u satisfies

ut(x, t) ≥ − 1
δt

u(x, t) for x ∈ Ω and t ∈ (0, T ).

This lemma has been stated in the previous studies, for
instance [1] but we give the proof for the reader’s conve-
nience.

Proof. Let v(x, t) = u(x, t)−1ut(x, t). Then it is verified
that

vt(x, t) = u(x, t)δ∆v(x, t)

+ 2u(x, t)δ−1 〈∇u(x, t),∇v(x, t)〉
+ δv(x, t)2,

where 〈·, ·〉 is the inner product in Rn. Hence, by the
maximum principle, we have

v(x, t) ≥ − 1
δt

for x ∈ Ω and t ∈ (0, T ) which completes this proof. �

Lemma 4: Let u be a solution of (1). Then ϕ(x, t) :=
t

1
δ u(x, t) is increasing with respect to t for any x ∈ Ω.

Proof. By Lemma 3, we have

∂

∂t

(
t

1
δ u(x, t)

)
= t

1
δ
∂u

∂t
(x, t) +

1
δ
t

1
δ −1u(x, t)

= t
1
δ

(
∂u

∂t
(x, t) +

1
δt

u(x, t)
)

≥ 0

for any x ∈ Ω and t ∈ (0, T ). �

Lemma 5: Let δ > 2. Suppose that (u0)2−δ ∈ L1(Ω).
Then there exists Kδ > 0 such that∫

Ω

u(x, t)2−δ dx ≤ Kδ for any t ∈ (0, T ).

Remark: Kδ depends on n, Ω, λ and u0 in addition to δ.

Proof. Let t0 ∈ (0, T ) be fixed arbitrarily. Since there exists
a constant Ct0 > 0 such that∣∣∣∣∫

Ω

u(x, t)1−δut(x, t) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

u(x, t)
(
∆u(x, t) + λu(x, t)

)
dx

∣∣∣∣ ≤ Ct0

for t ∈ (0, t0], we have

d

dt

∫
Ω

u(x, t)2−δ dx

= (2 − δ)
∫

Ω

u(x, t)1−δut(x, t) dx

≤ (δ − 2)Ct0

for t ∈ (0, t0]. This impiles that∫
Ω

u(x, t)2−δ dx

≤ (δ − 2)Ct0t0 +
∫

Ω

u0(x)2−δ dx < ∞

for t ∈ (0, t0].
Next, consider the case of t ∈ (t0, T ). By Lemma 4,∫

Ω

(
t

1
δ u(x, t)

)2−δ

dx ≤
∫

Ω

(
t

1
δ
0 u(x, t0)

)2−δ

dx

for t ∈ (t0, T ). And then∫
Ω

u(x, t)2−δ dx

≤
(

t

t0

) δ−2
δ

∫
Ω

u(x, t0)2−δ dx

≤
(

T

t0

) δ−2
δ (

(δ − 2)Ct0t0 +
∫

Ω

u0(x)2−δ dx
)

for t ∈ (t0, T ). Therefore,

Kδ :=

inf
t0∈(0,T )

(
T

t0

) δ−2
δ (

(δ − 2)Ct0t0 +
∫

Ω

u0(x)2−δ dx
)

satisfies the assertion in this lemma. �

Lemma 6: Let u be a solution of (1) and

mδ := min
((

max
x∈Ω

u0(x)
)−δ

, 1
)

.

Then it holds

u(x, t) ≤ (mδ − λδt)−
1
δ

if x ∈ Ω and 0 ≤ t <
mδ

λδ
.

Proof. It is verified that

m(t) := (mδ − λδt)−
1
δ

satisfies
dm

dt
= λm(t)δ+1 if 0 < t <

mδ

λδ

and
u(x, 0) ≤ m(0) if x ∈ Ω.
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Hence, by the maximum principle, we have u(x, t) ≤ m(t)
if x ∈ Ω and 0 ≤ t <

mδ

λδ
. �

Lemma 7: If 0 < t < s < T then∫
Ω

u(x, t)1−δut(x, t) dx <

∫
Ω

u(x, s)1−δut(x, s) dx.

The main idea for the proof of this lemma is essentially
included in [1]. We also give it and a self contained proof
for the reader’s convenience.

Proof. Let {u0,n}n∈N ∈ C∞(Ω) satisfy

‖u0,n − u0‖L∞(Ω) <
1
n

and αnΘ ≤ u0,n ≤ βnΘ

for any n ∈ N with constants 0 < αn < βn, where Θ denotes
the principal eigenfunction of −∆ in Ω with max

x∈Ω
Θ(x) =

1. Then it has been shown in [10] that if δ > 1 then for
any n ∈ N there exists the unique solution un ∈ C(Ω ×
[0, T (un))

∩
C∞(Ω × (0, T (un))) of the problems

(un)t = uδ
n(∆un + λun) x ∈ Ω, t ∈ (0, T (un)),

un(x, 0) = u0,n(x) x ∈ Ω,

un(x, t) = 0 x ∈ ∂Ω, t ≥ 0,

where T (un) is the blow-up time of un satisfying T (un) →
T as n → ∞.

Furthermore, it has also been known that {un} have
some properties that un → u in the topology of Cloc(Ω ×
[0, T ))

∩
C∞

loc(Ω× (0, T )) as n → ∞ and there is a constant
c(n, τ) > 0 for any n ∈ N and any τ > 0 such that

|dist (x,Ω)α−1+j(2−δ)∂α
x ∂j

t un(x, t)| ≤ c(n, τ)

for j = 0, 1, α = 0, 1, 2 and (x, t) ∈ Ω×(0, τ). In particular,
since |∇(un)t| ≤ dist (x, ∂Ω)δ−2c(n, τ) for (x, t) ∈ Ω ×
(0, τ), it is obtained for any n ∈ N that

0 ≤
∫

Ω

u−δ
n

(
(un)t

)2

dx

=
∫

Ω

(∆un + λun)(un)t dx

=
∫

Ω

(
−∇un · ∇(un)t + λun(un)t

)
dx

=
1
2

(∫
Ω

(−|∇un|2 + λu2
n) dx

)
t

=
1
2

(∫
Ω

u1−δ
n (un)t dx

)
t

.

This implies that
∫

Ω

u1−δ
n (un)t dx is increasing with respect

to t and then∫
Ω

un(x, t)1−δ(un)t(x, t) dx

<

∫
Ω

un(x, s)1−δ(un)t(x, s) dx

if 0 < t < s < T .
In addition, since it is true for any t ∈ (0, T ) that

un(·, t) → u(·, t) uniformly in Ω and ∆un(·, t) ⇀ ∆u(·, t)

in C∗(Ω) as n → ∞, we have

lim
n→∞

∫
Ω

un(x, t)1−δ(un)t(x, t) dx

= lim
n→∞

∫
Ω

un(x, t)
(
∆un(x, t) + λun(x, t)

)
dx

=
∫

Ω

u(x, t)
(
∆u(x, t) + λu(x, t)

)
dx

=
∫

Ω

u(x, t)1−δut(x, t) dx.

Similarly

lim
n→∞

∫
Ω

un(x, s)1−δ(un)t(x, s) dx

=
∫

Ω

u(x, s)1−δut(x, s) dx.

Hence, it holds∫
Ω

u(x, t)1−δut(x, t) dx <

∫
Ω

u(x, s)1−δut(x, s) dx. �

III. ESTIMATES NEAR BOUNDARY

Estimates near boundaries have been investigated in previ-
ous studies for solutions of (1). But we would like to know
more exact estimates because it is very important in our
purpose whether solutions can be estimated near boundaries
independently of time parameter and δ.

In this section we prove the following theorem for behav-
ior of solutions near boundaries.

Theorem 8: Let ζ ∈ (0, 2−1) be arbitrarily fixed. Then
there exists ρζ > 0 such that if τ ∈ (0, T ), t ∈ [0, τ ] and
dist (x, ∂Ω) ≤ ρζ then

u(x, t) ≤ 2ζ max
x∈Ω,t∈[0,τ ]

u(x, t),

where Ω is a bounded domain in Rn with the boundary ∂Ω
of C2-class, u is a solution of (1) and T > 0 is the blow-up
time of u.

Proof. Let Q > 0 and Lζ > 0 be constants satisfying

Q > 2λ (6)

and
u0(x) < ζ max

x∈Ω
u0(x) + Lζdist (x, ∂Ω) (7)

for any x ∈ Ω.
Next, since ∂Ω is C2-class, we can consider R > 0 that for

any z ∈ ∂Ω there exists xz 6∈ Ω such that a ball BR(xz) :=
{y ; |y − xz| < R} is touching ∂Ω at z ∈ ∂Ω from outside
of Ω.

Then we can choose constants q > 0 and r > 0 so that

(2R)2(Q − λ) < q
(
q − (n − 2)

)
(8)

and

1 +
r

R
<

(
Q

2λ

)1/q

< min

2,
max
x∈Ω

u0(x)

LζR
+ 1

 . (9)

Remark that q and r depend only on n, Ω, λ, u0 and ζ.
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Now, for any τ ∈ (0, T ) and z ∈ ∂Ω, choose xz 6∈ Ω so
that a ball BR(xz) := {y ; |y − xz| < R} is touching ∂Ω at
z ∈ ∂Ω from outside of Ω and define

gζ,τ,z,r(x) := Aτ,r

(
R−q − |x − xz|−q

)
+ ηζ,τ , (10)

where
ηζ,τ := ζ max

x∈Ω,t∈[0,τ ]
u(x, t) (11)

and

Aτ,r :=
1

R−q − (R + r)−q
· max

x∈Ω,t∈[0,τ ]
u(x, t). (12)

Since

ηζ,τ = ζ max
x∈Ω,t∈[0,τ ]

u(x, t)

<
R−q

R−q − (R + r)−q
· ζ max

x∈Ω,t∈[0,τ ]
u(x, t)

= ζAτ,rR
−q,

if R ≤ |x − xz| ≤ R + r, then (8) and (9) mean

∆gζ,τ,z,r + λgζ,τ,z,r

= −Aτ,rq(q + 2 − n)|x − xz|−q−2

+ λAτ,r(R−q − |x − xz|−q) + ληζ,τ

< −Aτ,rR
−q−2q(q + 2 − n)(1 + rR−1)−q−2

+ λAτ,rR
−q

(
1 − (1 + rR−1)−q

)
+ ληζ,τ

< −Aτ,rR
−q · 22(Q − λ)(1 + rR−1)−q−2

+ λAτ,rR
−q

(
1 − (1 + rR−1)−q

)
+ ληζ,τ

< −Aτ,rR
−q

(
Q(1 + rR−1)−q − λ

)
+ ληζ,τ

< −λAτ,rR
−q + ληζ,τ

< −λ(1 − ζ)Aτ,rR
−q < 0.

Hence, it holds

∂gζ,τ,z,r

∂t
− u(x, t)δ(∆gζ,τ,z,r + λgζ,τ,z,r) ≥ 0 (13)

in
(
Ω ∩ BR+r(xz)

)
× (0, τ).

Next, we consider u on the parabolic boundaries. It holds
that

u(x, t) = 0 < gζ,τ,z,r(x) (14)

for x ∈ ∂Ω ∩ BR+r(xz) and t ∈ [0, τ ]. Furthermore, it is
verified by (7), (9), (10), (11) and (12) that if 0 ≤ t ≤ τ and
|x − xz| = R + r then

u(x, t) ≤ max
x∈Ω,t∈[0,τ ]

u(x, t) < gζ,τ,z,r(x) (15)

and

u0(x) < ζ max
x∈Ω

u0(x) + Lζdist (x, ∂Ω)

≤ ηζ,τ + Lζr

≤ ηζ,τ + max
x∈Ω

u0(x) ≤ gζ,τ,z,r(x).

In addition, since −s−q is strictly concave in s > 0,

u0(x) ≤ ηζ,τ + Lζdist (x, ∂Ω)
≤ ηζ,τ + Lζ(|x − xz| − R) < gζ,τ,z,r(x) (16)

for any x ∈ Ω∩BR+r(xz). Since (14), (15) and (16) imply
that

u(x, t) ≤ gζ,τ,z,r(x) (17)

on the parabolic boundaries, it is proved by the maximum
principle that

u(x, t) ≤ gζ,τ,z,r(x) (18)

for any x ∈ Ω ∩ BR+r(xz) and t ∈ [0, τ ].
Finally, consider

ρζ := −R + R
[
1 − ζ

(
1 − (1 + rR−1)−q

)]−1/q

. (19)

Then ρζ is independent of z ∈ ∂Ω and it can be easily
verified that

0 < ρζ < ζr < r (20)

for any ζ ∈ (0, 2−1) and r > 0. Hence, by (18), (19) and
(20), if x ∈ Ω ∩ BR+ρζ

(xz) and t ∈ [0, τ ] then

u(x, t) ≤ gζ,τ,z,r(x)

= Aτ,r

(
R−q − |x − xz|−q

)
+ ηζ,τ

≤ Aτ,r

(
R−q − (R + ρζ)−q

)
+ ηζ,τ

= Aτ,r · ζ
(
R−q − (R + r)−q

)
+ ηζ,τ .

Now, (11) and (12) implies

ηζ,τ = ζ max
x∈Ω,t∈[0,τ ]

u(x, t)

= ζ
(
R−q − (R + r)−q

)
Aτ,r

and then we have

u(x, t) ≤ Aτ,r · ζ
(
R−q − (R + r)−q

)
+ ηζ,τ

= 2ηζ,τ

= 2ζ max
x∈Ω,t∈[0,τ ]

u(x, t)

for any x ∈ Ω ∩ BR+ρζ
(xz). This completes this proof

because ρζ is independent of z ∈ ∂Ω. �

Remark: As a consequence of the dependence on R, r and
q, ρζ given in (19) is independent of δ and τ and depends
only on n, Ω, λ, u0 and ζ.

Furthermore, it immediately follows Theorem 8 that

U(x, τ) :=
u(x, τ)

max
x∈Ω,t∈[0,τ ]

u(x, t)
satisfies

U(x, τ) ≤ 2ζ if dist (x, ∂Ω) ≤ ρζ .

Therefore, Theorem 8 gives estimates for U near boundaries
which are independent of τ and δ.

IV. REGIONAL BLOW-UP

In this section we discuss regions in which solutions blow
up with the same rate as the maximum point.

At first we show a theorem for behavior of maximum
points as follows.

Theorem 9: Let ρζ > 0 be given in (19) for arbitrarily
fixed ζ ∈ (0, 2−1). Then it holds∪

τ∈[0,T )

MPu
τ ⊂ Ωρζ

:= {x ∈ Ω ; dist (x, ∂Ω) > ρζ},
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where

MPu
τ :=

{
y ∈ Ω ; u(y, τ) = max

x∈Ω,t∈[0,τ ]
u(x, t)

}
. (21)

Remark: Since ρζ given in (19) is independent of δ, Ωρζ

is also independent of δ.

Proof. In order to prove by contradiction, assume that there
exists τ ∈ (0, T ) such that MPu

τ ∩ (Ωρζ
)c 6= φ. Then we

would choose y ∈ MPu
τ ∩ (Ωρζ

)c, that is,

u(y, τ) = max
x∈Ω,t∈[0,τ ]

u(x, t) and dist (x, ∂Ω) ≤ ρζ .

On the other hands, since ρζ given in (19) is independent of
τ , we can apply Theorem 8 and then

u(y, τ) ≤ 2ζ max
x∈Ω,t∈[0,τ ]

u(x, t).

This is contradiction because of 2ζ < 1. �

Let n, Ω, λ and u0 be fixed. Since solutions satisfies
lim sup

t↗T
u(x, t) = ∞, there exists a sequence {tk}k∈N such

that

tk ↗ T as k → ∞ and MPu
tk

6= φ for any k ∈ N, (22)

where MPu
tk

is defined by (21).
In addition, Theorem 9 implies that we can take a open

domain S with smooth boundary satisfying

MPu ⊂ S, S ⊂ Ω and ∂S ∩ MPu = φ, (23)

where MPu :=
∪
k∈N

MPu
tk

.

Remark that we can choose S independently of δ because
Ωρζ

in Theorem 9 is independent of δ. Then we provide the
following theorem.

Theorem 10: Let n, Ω, λ and u0 be fixed. Consider a
solution of (1), u, and a sequence T := {tk}k∈N ⊂ (0, T )
with (22). Let yk ∈ MPu

tk
and S be a open domain with

smooth boundary satisfying (23).
Then there exists a positive constant ν0 = ν0(S, T ) > 0

such that for any δ > 0, all of T and S given by solutions
of (1) satisfy

lim inf
k→∞

∫
S

u(x, tk)
u(yk, tk)

dx ≥ ν0.

Remark: In Theorem 10, ν0 is independent of δ but may
depend on n, Ω, λ and u0 in addition to T and S.

Lemma 11: Let U(x, tk) :=
u(x, tk)
u(yk, tk)

and consider a

solution vk of{
−∆vk(x) + vk(x) = C(S)U(x, tk) for x ∈ S

vk(x) = 0 for x ∈ ∂S,

where tk, yk and S are given in Theorem 10 and

C(S) := λ + 1 +
1

δt0 min
x∈S,k∈N

u(x, tk)δ
.

Then it holds

U(x, tk) ≤ vk(x) + max
x∈∂S

U(x, tk) (24)

for any x ∈ S.

Proof. Since Lemma 3 implies

ut = uδ(∆u + λu) ≥ − 1
δt

u in Ω × (0, T ),

we have

− ∆U(x, tk) + U(x, tk)

≤
(

λ + 1 +
1

δtu(x, tk)δ

)
U(x, tk)

≤ C(S)U(x, tk).

Furthermore,

− ∆
(
vk(x) + max

x∈∂S
U(x, tk)

)
+

(
vk(x) + max

x∈∂S
U(x, tk)

)
= C(S)U(x, tk) + max

x∈∂S
U(x, tk)

≥ C(S)U(x, tk)

for any x ∈ S. Hence, (24) is obtained by the comparison
principle. �

Proof of Theorem 10. In order to prove this theorem by
contradiction, we assume that for any ν > 0 there exists
δ > 0 such that a solution of (1) has T = {tk}k∈N and S
under assumptions of this theorem which satisfy

lim inf
k→∞

∫
S

U(x, tk) dx < ν,

where U(x, tk) :=
u(x, tk)
u(yk, tk)

. Then we would have a subse-

quence {tki}i∈N such that

lim
i→∞

‖U(·, tki)‖Lp(S) ≤ lim
i→∞

(∫
S

U(x, tki)
p dx

) 1
p

≤ lim
i→∞

(∫
S

U(x, tki) dx

) 1
p

< ν
1
p

for any p > 1 because of

U(x, tki) =
u(x, tki)

u(yki , tki)
=

u(x, tki)
max

x∈Ω,t∈[0,tki
]
u(x, t)

≤ 1.

Now, it is well-known that there exists a positive constant
C > 0 such that vk given in Lemma 11 satisfies

‖vk‖W 2,p(S) ≤ C · C(S)‖U(·, tk)‖Lp(S) (25)

for any p > 1. Hence, (25) leads to

lim
i→∞

‖vki
‖W 2,p(S) < C · C(S)ν

1
p

for p > 1. In particular, when p > max
(n

2
, 1

)
, it is shown

by the embedding theorem that

lim
i→∞

max
x∈S

|vki(x)| < C0ν
1
p for some constants C0 > 0
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which implies that there exists Kν ∈ N such that

max
x∈S

|vki(x)| < 2C0ν
1
p if ki ≥ Kν .

Furthermore, it is verified by Lemma 11 that if x ∈ S and
ki ≥ Kν then

U(x, tki) ≤ vki(x) + max
x∈∂S

U(x, tki)

< 2C0ν
1
p + max

x∈∂S
U(x, tki).

On the other hands, by ∂S ∩MPu = φ, there exists ε0 >
such that

max
x∈∂S

u(x, tk) < u(yk, tk) − ε0 for any k ∈ N.

Hence, if 2C0ν
1
p < ε0 then

U(yki , tki) < ε0 + max
x∈∂S

U(x, tki) < U(yki , tki)

for ki ≥ Kν which is contradiction. This proof is complete.
�

The following theorem follows Theorem 10 and is an
important property for regions in which solutions blow up
with the same rate as the maximum points.

Theorem 12: Let u be a solution of (1). For any µ ∈ (0, 1)
there exists a sequence {ti}i∈N with (22) such that

Sµ :=
∩
i∈N

{
x ∈ Ω ; u(x, ti) ≥ µ max

x∈Ω,t∈[0,ti]
u(x, t)

}
has positive Lebesgue measure.

Remark: The similar properties were proved in previous
studies (for instance, see [11]). We provide an exact proof
by estimates in this paper.

Proof. Let {tk}k∈N be a sequence with (22) and yk ∈ MPu
tk

.
Since∫

Ω

|U(x, tk)|2 dx =
∫

Ω

∣∣∣∣ u(x, tk)
u(yk, tk)

∣∣∣∣2 dx ≤ L(Ω) < ∞,

we can choose a subsequence {tki}i∈N ⊂ {tk}k∈N and
U∞ ∈ L2(Ω) so that

U(x, tki) → U∞(x) almost all of x ∈ Ω as i → ∞,

where L(·) is the Lebesgue measure. Applying the Egoroff’s
Theorem, it may hold that for any ε > 0 there exists E ⊂ Ω
with L(E) < ε such that

U(x, tki) → U∞(x) uniformly in Ω\E as i → ∞.

And then there exists Iε ∈ N such that

max
x∈Ω\E

|U(x, tki) − U(x, tkj )| < ε

for any j, i ≥ Iε. This implies if we choose ε > 0 so that
ε < 1−µ and

{
x ∈ Ω\E ; U(x, tki) ≥ µ+ε

}
6= φ for some

i ≥ Iε then
{
x ∈ Ω\E ; U(x, tki) ≥ µ

}
6= φ for any i ≥ Iε

and it holds∪
i≥Iε

{
x ∈ Ω\E ; U(x, tki) ≥ µ + ε

}
⊂

∩
i≥Iε

{
x ∈ Ω\E ; U(x, tki) ≥ µ

}
⊂

∩
i≥Iε

{
x ∈ Ω ; U(x, tki) ≥ µ

}
.

(26)

Let Sµ,k :=
{
x ∈ Ω ; U(x, tk) ≥ µ

}
and consider a open

domain S ⊂
∪

i≥Iε

Sµ+ε,ki with smooth boundary satisfying

∂S ∩

 ∪
i≥Iε

MPu
tki

 = φ and S ⊃ {yki
}i≥Iε

. Then, by

Theorem 10 and (26), there exists Jε (≥ Iε) such that if
j ≥ Jε then

ν0 − ε ≤
∫

S

U(x, tkj ) dx ≤ L(S)

≤ L

 ∪
i≥Iε

Sµ+ε,ki


≤ L

 ∪
i≥Iε

Sµ+ε,ki\E

 + ε

≤ L

 ∩
i≥Iε

Sµ,ki

 + ε,

where ν0 is given in Theorem 10. Therefore, this theorem
is proved by letting ε < min

(ν0

3
, 1 − µ

)
and {ti}i∈N :=

{tki}i≥Iε . �

Furthermore, we have the following corollary which is an
essential property in the next section.

Corollary 13: Let n, Ω, λ, u0 and µ ∈ (0, 1) be fixed.
Then for any δ > 0, all of sequences and Sµ given in
Theorem 12 by solutions of (1) satisfy

L(Sµ) > ν1 :=
ν0

3
> 0,

where ν0 is given in Theorem 10 and independent of δ.

Remark: ν1 is independent of δ but may depend on given
sequences in addition to n, Ω, λ, u0 and µ.

Proof. At the last part in the proof of Theorem 12, if
ε < min (ν1, 1 − µ) then

ν1 =
ν0

3
< ν0 − 2ε ≤ L

 ∩
i≥Iε

Sµ,ki

 = L(Sµ). �

V. THE PROOF OF MAIN THEOREM

In this section we will prove Theorem 2. The first step is
to show the following lemma.

Lemma 14: Let δ > 2 and (u0)2−δ ∈ L1(Ω). Consider
T = {ti}i∈N and Sµ given in Theorem 12 for a constant
µ ∈ (0, 1) and a solution u. Then there exists τδ and Nδ

such that

lim sup
i→∞

∫
Ω

u(x, ti)2−δ dx −
∫

Ω

u(x, τδ)2−δ dx

<

(
1 − 2

δ

)
Nδ − ν1,

where ν1 is given in Corollary 13.

Proof. Since Lemma 4 implies that if ti > t then(
t

1
δ
i u(x, ti)

)2−δ

≤
(
t

1
δ u(x, t)

)2−δ

,

IAENG International Journal of Applied Mathematics, 45:3, IJAM_45_3_02

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



we have∫
Ω

u(x, ti)2−δ dx −
∫

Ω

u(x, t)2−δ dx

=
∫

Sµ

u(x, ti)2−δ dx +
∫

Ω\Sµ

u(x, ti)2−δ dx

−
∫

Ω

u(x, t)2−δ dx

≤
∫

Sµ

u(x, ti)2−δ dx +
(

ti
t

) δ−2
δ

∫
Ω\Sµ

u(x, t)2−δ dx

−
∫

Ω

u(x, t)2−δ dx

if ti > t. Furthermore,∫
Sµ

u(x, ti)2−δ dx

≤ µ2−δL(Sµ)
(

max
x∈Ω,t∈[0,ti]

u(x, t)
)2−δ

→ 0

as i → ∞. Hence, it holds

lim sup
i→∞

∫
Ω

u(x, ti)2−δ dx −
∫

Ω

u(x, t)2−δ dx

≤
(

T

t

) δ−2
δ

∫
Ω\Sµ

u(x, t)2−δ dx −
∫

Ω

u(x, t)2−δ dx

=

[(
T

t

) δ−2
δ

− 1

] ∫
Ω

u(x, t)2−δ dx

−
(

T

t

) δ−2
δ

∫
Sµ

u(x, t)2−δ dx

<

[(
T

t

) δ−2
δ

− 1

]
Kδ − L(Sµ) ·

(
max
x∈Ω

u(x, t)
)2−δ

for any t ∈ (0, T ), where T is the blow-up time of u and
Kδ is given in Lemma 5.

Now, defined τδ by

τδ :=
2mδ

λδ +
√

(λδ)2 + 4L(Sµ) · λδmδ(TKδ)−1
,

where mδ is given in Lemma 6. And choose a constant Mδ

so that

L(Sµ) > ν1 =
(Mδ)−1λδTKδmδ(

mδ − (Mδ)−1
)2 ,

where ν1 is given in Corollary 13. Then it is verified that
Mδ satisfies

(mδ − λδτδ)−1 < Mδ

and then it follows Lemma 6 that

max
x∈Ω

u(x, τδ) ≤ (mδ − λδτδ)−
1
δ < (Mδ)

1
δ .

Furthermore, since

xα − 1 ≤ α(x − 1) if 0 < α < 1 and x > 0

and
ax ≥ 1 + (log a)x if a > 0 and x ∈ R,

we have

lim sup
i→∞

∫
Ω

u(x, ti)2−δ dx −
∫

Ω

u(x, τδ)2−δ dx

<

[(
T

τδ

) δ−2
δ

− 1

]
Kδ − L(Sµ) ·

(
max
x∈Ω

u(x, τδ)
)2−δ

≤ δ − 2
δ

(
T

τδ
− 1

)
Kδ

− L(Sµ)
[
1 + (2 − δ) log max

x∈Ω
u(x, τδ)

]
<

(
1 − 2

δ

)
Nδ − ν1,

where
Nδ :=

(
T

τδ
− 1

)
Kδ + L(Sµ) log Mδ (27)

and ν1 is given in Corollary 13. Hence, this proof is com-
plete. �

Remark: τδ and Nδ in Lemma 14 depend on n, Ω, λ,
u0, µ and δ. In addition, if u0 can be fixed for any δ then
lim sup

δ↗∞
Nδ = ∞ because of L(Sµ) > ν1 and

lim sup
δ↗∞

Mδ > lim sup
δ↗∞

(mδ − λδτδ)−1 = ∞.

Then we can prove the essential property for behavior of∫
Ω

u(x, t)2−δ dx as follows.

Lemma 15: Let u0 be a initial function satisfying
(u0)2−δ1 ∈ L1(Ω) for some δ1 > 2. Then there exists
δ0 ∈ (2, δ1] such that we can choose σδ and τδ for any
δ ∈ (2, δ0) so that σδ > τδ and∫

Ω

u(x, σδ)2−δ dx <

∫
Ω

u(x, τδ)2−δ.

Proof. It is easily verified that (u0)2−δ ∈ L1(Ω) for any
δ ∈ (2, δ1).

Let τδ and Nδ be given in Lemma 14.
In the case that δ1 satisfies sup

δ∈(2,δ1)

Nδ ≤ ν1, if 2 < δ < δ1

then Lemma 14 leads to

lim sup
i→∞

∫
Ω

u(x, ti)2−δ dx

<

∫
Ω

u(x, τδ)2−δ dx +
(

1 − 2
δ

)
Nδ − ν1 (28)

≤
∫

Ω

u(x, τδ)2−δ dx − 2
δ
Nδ.

Otherwise, in the case that δ1 satisfies sup
δ∈(2,δ1)

Nδ > ν1,

define δ2 > 2 by

δ2 := min

δ1, 2

1 − ν1

sup
δ∈(2,δ1)

Nδ


−1 .

Since (
1 − 2

δ2

)
sup

δ∈(2,δ1)

Nδ ≤ ν1,
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Lemma 14 also leads to

lim sup
i→∞

∫
Ω

u(x, ti)2−δ dx

<

∫
Ω

u(x, τδ)2−δ dx +
(

1 − 2
δ

)
Nδ − ν1 (29)

<

∫
Ω

u(x, τδ)2−δ dx −
(

2
δ
− 2

δ2

)
Nδ

for any δ ∈ (2, δ2).
Therefore, it is proved that if (u0)2−δ1 ∈ L1(Ω) for some

δ1 > 2 then

δ0 :=


δ1 if sup

δ∈(2,δ1)

Nδ ≤ ν1,

δ2 if sup
δ∈(2,δ1)

Nδ > ν1

satisfies δ0 > 2 and it follows (28) and (29) that for any
δ ∈ (2, δ0) there exists σδ ∈ {ti}i∈N such that σδ > τδ and∫

Ω

u(x, σδ)2−δ dx <

∫
Ω

u(x, τδ)2−δ

which completes this proof. �

Theorem 2 follows Lemma 15.

Proof of Theorem 2. Let δ0 be given in Lemma 15. Then
for any δ ∈ (2, δ0) there exists tδ ∈ (τδ, σδ) such that

d

dt

∫
Ω

u(x, t)2−δ dx

∣∣∣∣
t=tδ

< 0,

where τδ and σδ is given in Lemma 15. This implies that∫
Ω

u(x, t)1−δut(x, t) dx

∣∣∣∣
t=tδ

= − 1
δ − 2

d

dt

∫
Ω

u(x, t)2−δ dx

∣∣∣∣
t=tδ

> 0,

Therefore, it follows Lemma 7 that∫
Ω

u(x, t)1−δut(x, t) dx > 0 for any t ∈ (tδ, T ).

Therefore, the proof of Theorem 2 is complete. �

Remark: [1] provided a conjecture that “weak eventual
mononicity” holds for any δ > 2. On the other hands, δ0

given in theorem 2 is upper bounded even if δ1 → ∞. This
might be the outcome from the technique of our proof, and
so the case for large enough δ is open.
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