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Abstract—The paper deals with the investigation of multi-
phase equilibrium of CO2 − H2O system at constant volume,
temperature and moles (the so-called V T -flash), which is
motivated by topical problem of CO2 sequestration. Study-
ing CO2 − H2O mixture under natural geological conditions
(pressures typically below 50 MPa and temperatures typically
298 – 383 K) for different system composition, two-phase and
three-phase states were observed. Recently, we have developed
a fast and robust algorithm for constant-volume two-phase split
calculation, which is based on the direct minimization of the
total Helmholtz free energy of the mixture with respect to
the mole- and volume-balance constraints. The algorithm uses
modified Newton-Raphson minimization method. To initialize
the algorithm, an initial guess is constructed using the results
of constant-volume stability testing. In this work, we extend
the results for CO2 − H2O system and propose a fast and
robust algorithm for three-phase equilibrium computation at
constant volume, temperature and moles. The performance of
the proposed strategy is shown on several examples of two- and
three-phase equilibrium calculations of CO2 − H2O mixture
under various conditions. Finally, we discuss the fact that
the V T -approach seems more natural than the widely used
classical formulation at constant pressure, temperature and
moles (the so-called PT -flash), especially when using pressure-
explicit equations of state.

Index Terms—phase equilibrium, constant volume flash, CO2

sequestration, Helmholtz free energy minimization, Newton-
Raphson method, modified Cholesky factorization.

I. INTRODUCTION

STUDYING CO2−H2O system phase behaviour is mo-
tivated by CO2 sequestration, which is from an ecology

point of view a possibility of protection against the green-
house effect by capturing emissions of CO2 at the source and
storing them into deep geological repositories (technology
CCS - Carbon Capture and Storage) or salt-water reservoirs.
For such operations, it is essential to fully understand the
thermodynamics of the processes in the subsurface and to
have a model which describes the behaviour of CO2 correctly
under wide range of natural geological conditions.

Manuscript received December 24, 2013; revised July 21, 2014. The
work was supported by the projects LH12064 Computational Methods in
Thermodynamics of Hydrocarbon Mixtures of the Ministry of Education
of the Czech Republic, P105/11/1507 Development of Computer Models
of CO2 Sequestration in the Subsurface of the Czech Science Foundation,
by the research direction project MSM6840770010 Applied Mathematics
in Technical and Physical Sciences of the Ministry of Education of the
Czech Republic, and by the project SGS11/161/OHK4/3T/14 Advanced
Supercomputing Methods for Implementation of Mathematical Models of
the Student Grant Agency of the Czech Technical University in Prague.
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Injecting CO2 into a reservoir, it may dissolve in the water
or it can mix and the CO2 − H2O mixture can split into
two or more phases. Let us consider a closed system of
total volume V containing a CO2−H2O mixture with mole
numbers Nw, Nc at temperature T . First, we are interested
to find out whether the system is under given conditions in
single-phase or splits into two phases. This is the problem
of single-phase stability at constant volume, temperature and
moles (the so-called V T -stability). In case of phase-splitting
we want to establish volumes of both phases, mole numbers
of each component in both phases, and consequently the
equilibrium pressure of the system from the equation of
state. This is the problem of two-phase split calculation at
constant volume, temperature and moles (the so-called V T -
flash). In our previous work [5], [6], [7], these problems were
formulated and the algorithms were proposed and tested on
many examples.

The formulation of phase stability investigation and phase-
equilibria computation at constant volume, temperature and
moles is alternative to the traditional formulation at constant
pressure, temperature and chemical composition, which has
been used in many applications [1], [2], [3], [4], [8], [9].
Despite the well-known fact that there is the possibility of
using alternative variables, in most applications PT -stability
and PT -flash have been used to solve the phase stability and
phase-equilibria computation and the algorithms fully based
on V T variables started to be developed only recently [5],
[6], [7].

To demonstrate the shortcomings of the traditional vari-
ables, let us consider pure CO2 at temperature T = 280 K
and saturation pressure Psat(T ) corresponding to the tem-
perature T = 280 K. Using traditional PT variables, one
cannot decide whether the system occurs in vapor or liquid
state, or as a mixture of both, because all two-phase states
and both saturated gas and saturated liquid occur at the
same pressure, which is equal to the saturation pressure
Psat(T ), temperature and moles. Therefore, PT -stability
and PT -flash cannot distinguish between these states, but
V T -stability and V T -flash can, because these states have
different volumes. This example shows that the PT -stability
and PT -flash problems are not well posed since the volume
of the system is not uniquely determined by specifying
the pressure, temperature and moles. On the other hand, if
volume, temperature and moles are specified, the equilibrium
pressure is given uniquely by the equation of state. The
non-uniqueness of volume at specified pressure, temperature
and moles for the pure substances at saturation pressure has
been discussed in [5], [6], [7]. In this work, we present a
non-trivial example of a binary mixture of CO2 − H2O in
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three phases, which exhibits the same behaviour as the pure
substances at saturation pressure.

In [5], we have developed and successfully tested a nu-
merical algorithm for constant-volume two-phase split cal-
culation which is based on the constrained minimization
of the total Helmholtz free energy of the mixture. The
algorithm uses the Newton-Raphson method with line-search
and modified Cholesky decomposition of the Hessian matrix
to produce a sequence of states with decreasing values of the
total Helmholtz free energy. Using of the Newton-Raphson
method ensures fast convergence around the solution. Fur-
thermore, as the method guarantees decreasing in the total
Helmholtz free energy of the system in every iteration, it
always converges to a state corresponding to at least a local
minimum of the energy. To initialize the algorithm, we use
the results of the constant-volume stability algorithm which
has been developed in [7]. In this work, we extend these re-
sults to three phases for CO2−H2O system, which provides
us a better understanding of the thermodynamic behaviour of
CO2 mixtures under geologic carbon storage conditions, and
present an algorithm for three-phase equilibrium computation
at constant volume, temperature and moles. The performance
of the proposed strategy is shown on several examples of
two- and three-phase equilibrium calculations of CO2−H2O
mixture under various conditions.

The paper is structured in the following way. In sec-
tion 2, we formulate the V T -flash problem and derive the
equilibrium conditions for binary mixture of CO2 − H2O
using the Helmholtz free energy. In section 3, we describe
a new computational algorithm for three-phase equilibrium
calculation at constant volume, temperature, and moles. In
section 4, we summarize key steps of the algorithm and
propose a general strategy for the constant-volume phase-
split calculation of CO2 − H2O system. In section 5, we
present numerical results showing the performance of the
algorithm on CO2−H2O mixture under different conditions.
In section 6, we discuss the results, especially, we point
out advantages of using V T -variables instead of traditional
PT -variables, and draw some conclusions. In the Appendix,
we provide details of the Cubic-Plus-Association equation of
state [12], [13] that was used in the work.

II. PHASE EQUILIBRIUM CONDITIONS FOR CO2 −H2O
SYSTEM

Consider a closed system containing a binary mixture of
water (H2O) and carbon dioxide (CO2) with mole numbers
Nw and Nc occupying total volume V at temperature T . Let
us assume that the mixture occurs in an N -phase state, where
N = 2 or N = 3, and denote the volumes of each phase
Vα and the mole numbers of each component in each phase
Nα,w and Nα,c, where α = 1, . . . , N . We are interested in
deriving conditions of N -phase equilibrium in the mixture.

Let us denote by x0 and xα vectors with components
Nw, Nc, V and Nα,w, Nα,c, Vα, where α = 1, . . . , N , re-
spectively. Then, for the single-phase CO2 − H2O system,
the Helmholtz free energy is given by

AI = A(x0, T ) = −PV +
∑
i=w,c

Niµi, (1)

where P = P (x0, T ) is the pressure given by a pressure-
explicit equation of state, and µi = µi(x0, T ) is the chemical

TABLE I
LIST OF NOTATION

Symbol meaning

A Helmholtz free energy
bi covolume parameter of the Peng-Robinson EOS
c molar concentration

δX−Y binary interaction coefficient between components X and Y
i, j component indices; w for water, c for carbon dioxide
k iteration index
kB Boltzmann constant
µα,i chemical potential of the i-th component in phase α
Mw,i molar weight of the i-th component
Nα,i total mole number of the i-th component in phase α
N number of phases
ωi accentric factor of the i-th component
P pressure

Pi,crit critical pressure of the i-th component
R universal gas constant
T absolute temperature

Ti,crit critical temperature of the i-th component
V total volume of the system
Vα volume of phase α
zi overall mole fraction of the i-th component

potential of the i-th component in the mixture. For the N -
phase system, the total Helmholtz free energy reads as

AN =

N∑
α=1

A(xα, T ). (2)

An equilibrium state of the N -phase system is such a state
for which the increase in the total Helmholtz free energy with
respect to an energy reference state

∆A =
N∑
α=1

A(xα, T )−Aref , (3)

where the energy reference state Aref can be chosen for ex-
ample as a single-phase state or an (N−1)-phase equilibrium
state, is minimal among all states satisfying the following
constraints expressing the volume balance and mole balance

N∑
α=1

Vα = V, (4)

N∑
α=1

Nα,i = Ni, i = w, c. (5)

Using the Lagrange multiplier method, we derive the
system of necessary conditions of the phase equilibrium

P (x1, T ) = · · · = P (xN , T ), (6)

µi(x1, T ) = · · · = µi(xN , T ), i = w, c. (7)

Let us denote by P eq the equilibrium pressure, which is the
common value of pressures in each phase, and by µeqi the
chemical potential of the i-th component in the equilibrium,
which is the common value of chemical potentials of the i-th
component in each phase.
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III. NUMERICAL ALGORITHM FOR COMPUTATION OF
THREE-PHASE EQUILIBRIUM FOR CO2 −H2O SYSTEM

We derive a numerical algorithm for testing three-phase
equilibrium of CO2 − H2O system at constant volume,
temperature and moles based on minimization of the total
Helmholtz free energy of the three-phase system (3) which
is subject to the volume and mole balance constraints (4) and
(5). In all these equations, we set N = 3 and we still denote
by xα a vector with components Nα,w, Nα,c, Vα, where
α = 1, . . . , N . In general, the numerical procedure is based
on transferring an n-dimensional problem of minimization of
a twice-continuously differentiable objective function subject
to a set of t linear equality constraints into an unconstrained
minimization problem with the same objective function, but
a lower dimension n− t.

The constraint equations (4) and (5) for N = 3 can be
written in the matrix form as Ax = b, or1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


︸ ︷︷ ︸

A

x1

x2

x3


︸ ︷︷ ︸

x

=

N1

N2

V


︸ ︷︷ ︸

b

, (8)

where A ∈ R3×9 is the matrix formed by 3 blocks of the
identity matrices in R3, x ∈ R9 is the vector of unknowns,
which is given as

x = (N1,w, N1,c, V1, N2,w, N2,c, V2, N3,w, N3,c, V3)
>

and b ∈ R3 is the vector of right hand side. As the
matrix A has the full rank, the optimization problem with
9 unknowns and 3 linearly independent linear constraints
can be transformed into an unconstrained problem with 6
variables. The reduction in dimensionality can be described
in terms of two subspaces Y and Z , where Y is the 3-
dimensional subspace of R9 spanned by the rows of matrix
A and Z is the 6-dimensional subspace of R9 of vectors
orthogonal to the rows of matrix A. The representation of Y
is not unique and it can be chosen for example as Y = AT .
As Y and Z define complementary subspaces

R9 = Y ⊕ Z, (9)

every 9-dimensional vector x can be uniquely written as
a combination of vectors from Y and Z as

x = YxY + ZxZ , (10)

where Y and Z denote matrices from R9×3 and R9×6,
respectively, whose columns represent bases of subspaces Y
and Z , and the 3-dimensional vector xY is called the range-
space part of x, and the 6-dimensional vector xZ is called
the null-space part of x.

The solution x∗ of the constrained optimization problem,
given by

x∗ = Yx∗Y + Zx∗Z ,

is feasible, whence

Ax∗ = A(Yx∗Y + Zx∗Z) = b.

From the definition of subspace Z it follows that AZ = 0,
therefore

AYx∗Y = b.

From the definition of subspace Y it can be seen that
the matrix AY is non-singular, and thus the vector x∗Y is
uniquely determined by the previous equation. Similarly,
any feasible vector x must have the same range-space part,
which means xY = x∗Y , and on the contrary, any vector
with range-space component x∗Y satisfies the constraints of
the optimization problem. Hence, the constraints uniquely
determine the range-space part x∗Y of the solution, and only
the 6-dimensional part x∗Z remains unknown. This way the
expected reduction in dimensionality to 6 is performed.

To represent the null-space Z , the LQ-factorization of
matrix A is used [10]. Let Q ∈ R9×9 be an orthonormal
matrix such that

AQ =
(
L 0

)
, (11)

where L ∈ R3×3 is a non-singular lower triangular matrix.
From (11) one can see that the matrix Y can be chosen as
the first 3 columns of matrix Q and the matrix Z can be
chosen as the remaining 6 columns of Q, i.e.

Q =
(
Y Z

)
. (12)

As the matrix of constraints A ∈ R3×9 can be written as

A =
(
I3 I3 I3

)
,

then the matrices Y and Z may be chosen as

Y =
1√
3
AT =

1√
3

I3
I3
I3

 , Z =
1√
3

 I3 I3
−I3 0

0 −I3

 (13)

For solving the constrained optimization problem we use
an iterative algorithm in which a feasible initial guess x(0)

is given and the algorithm generates a sequence of feasible
iterates x(k). In every iteration, the solution x(k) is approx-
imated as

x(k+1) = x(k) + λkd(k), (14)

where λk ∈ (0; 1〉 is the step size in the k-th iteration and
d(k) is the direction vector in the k-th iteration. We assume
that x(k) is feasible and the feasibility of x(k+1) is required,
so the direction vector d(k) must be necessarily orthogonal
to the rows of A, i.e.

Ad(k) = 0, (15)

which can be equivalently written as

d(k) = Zd(k)
Z , (16)

for some 6-dimensional vector d
(k)
Z . It can be seen that the

search direction d(k) is a 9-dimensional vector constructed to
lie in the 6-dimensional subspace Z . The columns of matrix
Z, which form an orthogonal basis of Z , are given by (13),
so it remains to determine the vector d

(k)
Z ∈ R6. This way

the constrained minimization problem is transferred to an
unconstrained problem in a lower dimension.

To find the vector d
(k)
Z , we use the modified Newton-

Raphson method which is based on the quadratic approxima-
tion of function ∆A around the point x(k). Let us denote by
g(x) ∈ R9 the gradient of the function ∆A which is obtained
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by differentiating the ∆A with respect to its variables, i.e.

g(x) = ∇(∆A)> =



µw(x1, T )

µc(x1, T )

−P (x1, T )

µw(x2, T )

µc(x2, T )

−P (x2, T )

µw(x3, T )

µc(x3, T )

−P (x3, T )


. (17)

Further, let us denote by H(x) ∈ R9×9 the Hessian of the
function ∆A which is obtained by differentiating the ∆A
twice with respect to its variables in a block-diagonal form
with 3 diagonal blocks given in the following form

H(x) = ∇2∆A =

H1

H2

H3

 ,

Hα(x) =


Bα Cα

Cα> Dα


, (18)

where α ∈ {1, 2, 3} and

Bα ∈ R2×2, Bαij =
∂µi
∂Nα,j

(xα, T )

Cα ∈ R2, Cαj = − ∂P

∂Nα,j
(xα, T ),

Dα ∈ R1, Dα = − ∂P

∂Vα
(xα, T ),

where i, j ∈ {w, c}
Approximating the function ∆A using the Taylor expan-

sion around the point x(k) up to the quadratic terms, the
search direction d(k) = Zd(k)

Z can be found as a solution of
the following minimization problem

min
d(k)∈R9

A d(k)=0

∆A(x(k) + d(k)) = min
d

(k)
Z ∈R6

∆A(x(k) + Z d
(k)
Z ) ≈

≈ min
d

(k)
Z ∈R6

∆A(x(k)) + g(x(k))>Z d
(k)
Z +

+
1

2
(Zd(k)

Z )>H(x(k))Zd(k)
Z . (19)

Define a quadratic function Φ as

Φ(dZ) = g(x(k))>ZdZ +
1

2
d>ZZ>H(x(k))ZdZ ,

then the vector d
(k)
Z is the argument of its minimum. The

function Φ has a stationary point if and only if there is a d
(k)
Z

for which the gradient of Φ vanishes, i.e.

∇Φ(d
(k)
Z ) = 0. (20)

The stationary point d
(k)
Z is a solution of the following

system of equations

HZ(x(k))d
(k)
Z = −gZ(x(k)), (21)

where HZ(x(k)) ∈ R6×6 and gZ(x(k)) ∈ R6 are the
restrictions of the Hessian matrix and of the gradient vector
to the subspace Z defined as

HZ(x(k)) = Z>H(x(k))Z (22)

and
gZ(x(k)) = Z>g(x(k)). (23)

Combining (13), (17), and (18), it follows from (23) that

gZ(x(k)) =
1√
2



µw(x1, T )− µw(x2, T )

µc(x1, T )− µc(x2, T )

−P (x1, T ) + P (x2, T )

µw(x1, T )− µw(x3, T )

µc(x1, T )− µc(x3, T )

−P (x1, T ) + P (x3, T )


, (24)

and from (22) that the restricted Hessian matrix can be found
in the following form

HZ(x(k)) =
1

2

(
H2
Z H1

H1 H3
Z

)
,

HαZ(x(k)) =


B̃α C̃α

C̃α> D̃α


, (25)

where α ∈ {2, 3}, H1 ∈ R3×3 is given by (18) and

B̃α ∈ R2×2, C̃α ∈ R2, D̃α ∈ R1,

B̃αij =
∂µi
∂N1,j

(x1, T ) +
∂µi
∂Nα,j

(xα, T ),

C̃αj = − ∂P

∂N1,j
(x1, T )− ∂P

∂Nα,j
(xα, T )

D̃α = − ∂P
∂V1

(x1, T )− ∂P

∂Vα
(xα, T ),

where i, j ∈ {w, c} The gradient vector in (17) depends on
the values of chemical potentials which can be determined up
to an arbitrary constant. Unlike in (17), the restricted gradient
given by (24) is a function of differences of the chemical
potentials between two states whose values can be evaluated
uniquely using the equation of state.

If d
(k)
Z solves the system of the equations (21) and the

matrix HZ is positive definite, then the search direction
d
(k)
Z is a descent direction. If the matrix of the projected

Hessian is not positive definite, then either the quadratic
approximation of the function is not bounded from below, or
a single minimum does not exist. In this case, it is necessary
to modify the direction d

(k)
Z . If the matrix HZ is indefinite,
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then the vector d
(k)
Z is found as a solution of a modified

system of equations

ĤZ(x(k))d
(k)
Z = −gZ(x(k)), (26)

where ĤZ(x(k)) is a positive definite matrix obtained by the
modified Cholesky decomposition of the matrix HZ(x(k)). In
this algorithm the usual Cholesky factorization is performed
to decompose matrix HZ(x(k)) as

HZ(x(k)) = LL>,

where L is a lower triangular matrix. If a negative ele-
ment appears on the diagonal of L during the Cholesky
factorization, a suitable value is added to this element to
ensure its positivity in the final decomposition. This way
we obtain the Cholesky factorization of a positive definite
matrix ĤZ(x(k)), which is used instead of matrix HZ(x(k))

in (26) to determine the direction d
(k)
Z in the Newton-

Raphson method. Due to this modification of the Newton-
Raphson method, the obtained direction is a descent direc-
tion. Therefore, for a sufficiently small step size λk > 0,
the decrease of ∆A can be guaranteed. In this work, the
line-search technique is used to find the step size λk. First,
we set λk = 1 and test if ∆A(x(k) + d(k)) < ∆A(x(k)).
If this condition is satisfied, we set x(k+1) = x(k) + d(k).
If not, we halve the value of λk unless the condition
∆A(x(k) + λkd(k)) < ∆A(x(k)) is satisfied and then set
x(k+1) = x(k) + λkd(k). Now, a single iteration of the
Newton-Raphson method is completed.

The iterations are stopped when either the maximal num-
ber of iterations is achieved (500), or when a stopping
criterion is satisfied and the required accuracy is achieved.
In this work the stopping criterion is given by

‖d(k)‖2 :=

 9∑
j=1

d
(k) 2
j

 1
2

≤ 10−7. (27)

IV. ALGORITHM OF THE MODIFIED NEWTON METHOD
FOR CONSTANT-VOLUME THREE-PHASE FLASH OF

CO2 −H2O SYSTEM

Now, we summarize the key steps of the algorithm.
Step 1 Let Nw, Nc, V and T > 0 be given. Set the number

of iterations k = 0. Get an initial feasible solution
x(0) ∈ R9 from the V T -stability algorithm [7]

x(0) =



N1,w

N1,c

V1
N2,w

N2,c

V2
N3,w

N3,c

V3


. (28)

Step 2 Assemble the Hessian matrix HZ(x(k)) and the
gradient vector gZ(x(k)) of ∆A in the k-th iteration
projected to the subspace Z using (25) and (24).

Step 3 Compute the projected step direction d
(k)
Z ∈ R6 and

the feasible direction d(k) ∈ R9 by

HZ(x(k))d
(k)
Z = −gZ(x(k)), (29)

d(k) = Zd(k)
Z . (30)

If the matrix HZ(x(k)) is not positive definite, find
the vector d

(k)
Z by solving a modified system of

equations

ĤZ(x(k))d
(k)
Z = −gZ(x(k)), (31)

where ĤZ(x(k)) is a positive definite matrix obtained
from the modified Cholesky decomposition of matrix
HZ(x(k)).

Step 4 Determine the step length λk > 0 for the k-th
iteration satisfying

∆A(x(k) + λkd(k)) < ∆A(x(k)). (32)

First, set the step length to λk = 1 and test if the
condition (32) holds. If not, use the bisection method
to find a value of λk satisfying (32).

Step 5 Update the approximation as

x(k+1) = x(k) + λkd(k). (33)

Step 6 Test the convergence using (27). If needed, increase
k by 1 and go to Step 2. If not needed, the algorithm
ends up with the solution x(k+1).

Note that the constant-volume stability algorithm from [7]
is used to test whether a single phase is stable or not at
given conditions. If the mixture is unstable, the V T -stability
provides an initial guess - the concentrations of a trial phase,
which, if taken in a sufficiently small amount from the initial
phase, lead to a two-phase system with lower value of the
Helmholtz free energy A than the hypothetical single-phase
state. From this, a criterion of stability at constant volume,
temperature, and moles can be derived (see [7] for details).

General Strategy for Phase Equilibrium Computation of
CO2 −H2O System

Using the Gibbs phase rule [8], the maximal number of
phases for the binary system of CO2 − H2O is N = 3 and
the system can exist in single-, two- and three-phase states.
The proposed general strategy for phase-equilibrium testing
is based on repeated constant-volume stability testing and
constant-volume phase-split calculation and can be summa-
rized in the following steps:

Step 1 Set the number of phases N = 1 and perform the
constant-volume single-phase stability using the al-
gorithm, which is provided in [7]. If the single-phase
state is stable, calculate the equilibrium pressure
from the equation of state and the procedure ends.

Step 2 If the single phase is unstable, an initial two-phase
split is provided from the phase-stability algorithm
and the constant-volume two-phase flash algorithm
is performed using the method described in [5].

Step 3 Perform the phase-stability algorithm on one of the
two equilibrium phases. If it is unstable, an initial
guess for the three-phase split calculation is pro-
vided.

Step 4 Perform the constant-volume three-phase flash cal-
culation to establish composition, densities and
amounts of the phases using the algorithm described
above.
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TABLE II
PARAMETERS OF THE PHYSICAL PART OF THE

CUBIC-PLUS-ASSOCIATION EQUATION OF STATE FOR THE H2O AND
CO2 MIXTURE (THE NOTATION IS EXPLAINED IN THE APPENDIX).

Component Ti,crit [K] Pi,crit [MPa] ωi [-] Mw,i [g·mol−1]

H2O 647.29 22.09 0.3440 18.02
CO2 304.14 7.375 0.2390 44.0

V. RESULTS

Studying a binary mixture of CO2−H2O under different
conditions, we have tested the proposed algorithm in several
examples of general phase-stability testing and phase-split
calculation both at constant volume, temperature and moles
of CO2 − H2O system. In all simulations we perform
isothermal compression of a CO2 − H2O mixture of a
given chemical composition zw, zc in a closed cell, where
zw = Nw/N, zc = Nc/N and N = Nw +Nc. Changing the
overall concentration c at a given temperature T , we provide
the results of the constant-volume two- and three-phase flash
calculations for the CO2 − H2O mixture at temperature T
and molar concentrations ci = czi. For the CO2 − H2O
system, we use the Cubic-Plus-Association (CPA) equation
of state [12], [13]. Parameters for the physical part used are
presented in Table II. Details for the equation of state can
be found in the Appendix.

Two-Phase Equilibrium of the CO2 −H2O System

First, we investigate phase equilibrium for a binary mix-
ture of water (H2O) and carbon dioxide (CO2) with mole
fractions zH2O ranging from 0.1 to 1.0 and zCO2

= 1−zH2O

at temperature T = 308.15 K. For this temperature, the
binary interaction coefficient is δH2O−CO2 = 0.09850 and
the cross association factor used in the CPA equation of state
is sCO2

= 0.025936802. Note that δH2O−CO2
and sCO2

are
strongly dependent on temperature. For T = 308.15 K and
mole fractions of water zH2O ranging from 0.1 to 1.0, the
mixture splits in all cases into two phases except from very
low overall molar concentrations c.

Changing the mole fraction of water zH2O from 0.1 to
0.9, the mixture behaviour does not change very much. In
all cases it can be seen that the mutual solubility of CO2

and water is limited. Saturations (volume fractions) of both
phases as functions of the overall molar concentration c
are presented for three different mole fractions zH2O (0.1,
0.5 and 0.9) in Figure 1. Mole fractions of both water and
carbon dioxide components in both phases as functions of the
overall molar concentration c are presented for the same three
values of mole fractions zH2O in Figure 2. In Figure 3, mass
densities of both phases as functions of the overall molar
concentration c are presented for zH2O = 0.9. Note that while
compressing the mixture, its composition in both phases and
mass densities of the phases almost do not vary, only slight
variations of volume fractions in both phases can be seen.
The equilibrium pressure as a function of the overall molar
concentration c is presented for mole fraction zH2O = 0.9
in Figure 4 illustrating a steady increase of the equilibrium
pressure during compression.

In all cases, quadratic convergence of the Newton-Raphson
method has been observed. Thus, numerical errors can be
estimated from the size of increment in the last few iterations.

(a) zH2O = 0.1

(b) zH2O = 0.5

(c) zH2O = 0.9

Fig. 1. Saturation of both phases as a function of the overall molar
concentration c for the binary mixture of CO2 −H2O with three different
values of zH2O at T = 308.15 K.

Using the Euclidean norm, the estimated error is approxi-
mately 10−14.

Three-Phase Equilibrium of the CO2 −H2O System

Now, we investigate phase equilibrium for a binary
mixture of water (H2O) and carbon dioxide (CO2) with
low mole fractions zH2O ranging from 0.003 to 0.008
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(a) zH2O = 0.1

(b) zH2O = 0.5

(c) zH2O = 0.9

Fig. 2. Mole fractions of both components in each phase as functions of
the overall molar concentration c for the binary mixture of CO2 − H2O
with three different values of zH2O at T = 308.15 K.

Fig. 3. Mass densities of both phases as a function of the overall molar
concentration c for the binary mixture of CO2 − H2O with zH2O = 0.9
at T = 308.15 K.

Fig. 4. Equilibrium pressure as a function of the overall molar concen-
tration c for the binary mixture of CO2 − H2O with zH2O = 0.9 at
T = 308.15 K.

and zCO2 = 1− zH2O at temperature T = 298.15 K.
For this temperature, the binary interaction coefficient is
δH2O−CO2

= 0.078795 and the cross association factor used
in the CPA equation of state is sCO2

= 0.021141. For
T = 298.15 K and very low mole fractions of water zH2O

ranging from 0.003 to 0.008, the mixture splits in all cases
into two or three phases except from very low overall molar
concentrations c.

Changing the mole fraction of water zH2O from 0.003
to 0.008 and compressing the mixture at temperature
T = 298.15 K, the mixture occurs in two-phase from
the lowest molar concentrations up to approximately
9000 mol.m−3, then becomes three-phase, while at mo-
lar concentrations higher than 14000 mol.m−3 the mixture
becomes two-phase again. Finally, from the molar con-
centrations approximately 18500 mol.m−3, 23500 mol.m−3

and 29000 mol.m−3, the mixture with zH2O = 0.003,
zH2O = 0.005 and zH2O = 0.008, respectively, becomes
single-phase (see Figure 5, 6 or 7).

In Figure 5, mass densities of each phase as functions
of the overall molar concentration c are presented for three
values of zH2O, i.e. 0.003; 0.005 and 0.008. Note that in
case of zH2O = 0.008 while at lower molar concentrations c
the two-phase region corresponds to a gas-liquid two-phase
region, at high molar concentrations c we can observe a
second two-phase area corresponding to a liquid-liquid two-
phase region as can be seen from the values of mass densities
of the phases (see Figure 5(c)).

Mole fractions of water and carbon dioxide components in
each phase as functions of the overall molar concentration c
are presented for the same three values of zH2O in Figure 6
in which the limited mutual solubility of CO2 and water can
be seen. Saturations (volume fractions) of each phase and
also equilibrium pressures as functions of the overall molar
concentration c look similar for different values of zH2O,
so we present them for zH2O = 0.003 in Figure 7 and 8. In
Figure 8, the equilibrium pressure as a function of the overall
molar concentration c is presented illustrating a steady rise of
the equilibrium pressure during the compression in two-phase
area, followed by the constant value of pressure within the
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three-phase area (for molar concentrations between approx-
imately 9000 mol.m−3 and 14000 mol.m−3), demonstrating
the similar behaviour as pure components, and the substantial
increase at molar concentrations higher than 14000 mol.m−3

when the gas phase is depleted. Notice again that as the
pressure is constant during the compression in the three-
phase region, the mass densities of each phase and the
composition of each phase remain constant as well.

Numerical errors are comparable to those from the two-
phase examples.

VI. DISCUSSION AND CONCLUSION

To draw some conclusion from the results, it can be seen
from Figure 3 that the mass densities of both phases intersect
at molar density approximately 50000 mol.m−3 and switch,
i.e. the heavier phase, which is rich in water, becomes the
lighter one and the lighter phase, which is rich in CO2,
becomes the heavier one. The pressure corresponding to this
molar concentration is approximately 40.86 MPa. Similarly,
when consider the CO2 − H2O system with zH2O = 0.008,
the mass densities of both phases intersect in the two-
phase region at molar density approximately 24000 mol.m−3

and switch (see Figure 5(c)). The pressure corresponding
to this molar concentration is approximately 37.83 MPa.
The switching of phases is an important evidence for CO2

sequestration because if the CO2 − H2O mixture is com-
pressed at the level for which the mass densities of both
phases intersect and switch (i.e. for molar concentrations
higher than 50000 mol.m−3 in case of the CO2 − H2O
mixture from Figure 3 and for molar concentrations higher
than 24000 mol.m−3 in case of the CO2−H2O mixture from
Figure 5(c)), then the phase rich in CO2 becomes heavier and
goes down in the reservoir. Consequently, the phase rich in
water becomes lighter and goes up, so that another amount
of CO2 can be dissolved into it.

As explained in the Introduction, specification of pressure,
temperature and moles may not determine uniquely the
equilibrium state of the system. In our previous work [5],
we have observed this issue in pure substances at saturation
pressure in two phases. In this work, the behaviour similar
to that of pure components has been observed in case of
CO2−H2O system in three phases, proving that there exist
mixtures more complex than the trivial ones which cannot be
fully described using the PT variables. In the plot illustrating
pressure as a function of the overall molar concentration (see
Figure 8), we can observe the constant plateau within the
three-phase area like in the case of pure CO2 within the
two-phase region. All these three-phase states occur at the
same pressure, temperature and moles, therefore, they are
indistinguishable in terms of the PT variables, but can be
distinguished using the V T variables because the volumes
are different in these states. The results of the algorithm
testing provide an important evidence that the PT and V T
variables are definitely not equivalent and that by specifying
the pressure, temperature and moles the equilibrium state
cannot be uniquely determined in pure component as well
as in more complex systems.

To conclude, in this work we have extended the results of
the previous work, in which we have dealt with the problem
of single-phase stability and two-phase split calculation in
a multicomponent mixture in a closed cell, both at constant

(a) zH2O = 0.003

(b) zH2O = 0.005

(c) zH2O = 0.008

Fig. 5. Mass densities of each phase as a function of the overall molar
concentration c for the binary mixture of CO2 −H2O with three different
values of zH2O at T = 298.15 K.

volume, temperature and moles (the so-called V T -stability
and V T -flash), to the constant-volume three-phase equilib-
rium computation for the binary mixture of CO2 − H2O
under geologic sequestration conditions. The performance
of the algorithm is shown on several examples of two- and
three-phase equilibrium computations of the mixture which
is described using the Cubic-Plus-Association equation of
state. In future work, the algorithm will be generalized and
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(a) zH2O = 0.003

(b) zH2O = 0.005

(c) zH2O = 0.008

Fig. 6. Mole fractions of both components in each phase as functions of
the overall molar concentration c for the binary mixture of CO2 − H2O
with three different values of zH2O at T = 298.15 K.

the behaviour of mixtures in three and more phases is to be
investigated to draw some general conclusions.

APPENDIX
EQUATION OF STATE

In this work we use use for the mixture of water (H2O)
and carbon dioxide (CO2) the Cubic-Plus-Association (CPA)
equation of state [12], [13].

This equation is based on the Peng-Robinson equation
of state [11] to describe the physical interactions and the
termodynamic perturbation theory to describe the bonding
of water molecules. We assume that each water molecule
has four association sites of two types (mark them α and
β), so each type has two sites. We assume the same for
each molecule of carbon dioxide, whose association sites
can be marked as α

′
and β

′
. Let χα and χβ be the mole

fractions of water not bonded at site α and β, respectively,

Fig. 7. Saturation of each phase as a function of the overall molar
concentration c for the binary mixture of CO2−H2O with zH2O = 0.003
at T = 298.15 K.

Fig. 8. Equilibrium pressure as a function of the overall molar concentration
c for the binary mixture of CO2 − H2O with zH2O = 0.003 at T =
298.15 K.

and let χα′ and χβ′ be the mole fractions of carbon dioxide
not bonded at site α

′
and β

′
, respectively. Assuming neither

cross association nor self association between carbon dioxide
molecules, and symmetric cross association between the two
sites of different type of water and carbon dioxide, we
obtain the following simplified expressions for the symmetric
association model

χα = χβ = χw =
1

1 + 2Nw

V χw∆αβ + 2Nc

V χc∆
αβ′ ,

χα′ = χβ′ = χc =
1

1 + 2Nw

V χc∆αβ′ .

In these equations the association strength between
molecules of water is given by

∆αβ = gκαβ [exp(εαβ/kBT − 1)],

where kB is the Boltzmann constant, καβ and εαβ are the
bonding volume and energy parameters of water, respec-
tively, and g is the contact value of the radial distribution
function of hard-sphere mixture that can be approximated
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TABLE III
PARAMETERS OF THE CPA EQUATION OF STATE FOR THE H2O AND CO2

MIXTURE (THE NOTATION IS EXPLAINED IN THE APPENDIX).

Symbol Units Value

καβ [m3mol−1] 1.801506 · 10−6

εαβ/kB [K] 1738.393603
a0w [J·m−3·mol−2] 0.096273
c1 [-] 1.755732
c2 [-] 0.003518
c3 [-] -0.274636

as g = g(η) ≈ 1−0.5η
(1−η)3 , where η = B

4V and B is the pa-
rameter from the Peng-Robinson equation of state which
will be explained later. The association strength between
water and carbon dioxide molecules is related to the strength
between water molecules as ∆αβ

′

= si∆
αβ where si

is the temperature-dependent cross association coefficient
which can be determined together with the binary interaction
coefficient by fitting the experimental data. Finally, the CPA
equation of state for the H2O− CO2 system is given by

P (V, T,Nw, Nc) =
NRT

V − B
− A
V 2 + 2BV − B2

+

+ 2RT

(
η

g

∂g

∂η
+ 1

)[
Nw
V

(χw − 1) +
Nc
V

(χc − 1)

]
,

where Nw and Nc are the mole numbers of water and carbon
dioxide, respectively, N = Nw +Nc, and ∂g

∂η = 2.5−η
(1−η)4 , R is

the universal gas constant, A and B are the parameters from
the Peng-Robinson equation of state given by

A =
∑
i=w,c

∑
j=w,c

NiNjaij , aij = (1− δi−j)
√
aiaj

B =
∑
i=w,c

Nibi.

The coefficients ai and bi for nonwater species (in our case
for carbon dioxide) read as

ai = 0.45724
R2T 2

i,crit

Pi,crit

[
1 +mi

(
1−

√
Tr,i

)]2
,

bi = 0.0778
RTi,crit
Pi,crit

Tr,i =
T

Ti,crit
,

mi =


0.37464 + 1.54226ωi − 0.26992ω2

i ,

for ωi < 0.5,

0.3796 + 1.485ωi − 0.1644ω2
i + 0.01667ω3

i ,

for ωi ≥ 0.5.

In these equations δi−j denotes the binary interaction param-
eter between the components i and j, Ti,crit, Pi,crit, and ωi
are the critical temperature, critical pressure, and accentric
factor of the i-th component, respectively.

The coefficients ai and bi for water read as

aw = a0w

[
1 + c1

(
1−

√
Tr,w

)
+ c2

(
1−

√
Tr,w

)2
+

+c3

(
1−

√
Tr,w

)3]2
,

bw = 1.458431 · 10−5,

where a0w, c1, c2, c3 are the parameters of the equation of
state given in Table III.
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