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Abstract—Efficiency is a basic issue in Data En-
velopment Analysis (DEA). There are different types
of efficiency in DEA, e.g. Technical Efficiency (TE),
Cost Efficiency (CE) and Revenue Efficiency (RE).
They may be different in terms of efficiency score val-
ues because they use different information obtained
from Decision Making Units (DMUs). One of these
efficiency types (TE) uses only input and output
quantities, another (CE) uses input, output and in-
put cost vectors and still another (RE) uses input,
output and output benefit vectors. In real problems,
not the cost of each input or the benefit of each out-
put is usually known and accessible, and just the costs
(benefits) of some inputs (outputs) of each DMU are
known. In this paper, we suggest a method and mod-
els to measure the efficiency of DMUs when some in-
put costs and some output benefits are known. The
proposed measure is a generalization of TE, CE and
RE. This measure is very useful to evaluate the per-
formance of DMUs and uses more information than
the other measures. We show that the CCR model to
evaluate TE and the minimal cost model to evaluate
CE are special cases of the proposed model. Finally
we present three examples to compare the proposed
measure of efficiency with the other measures of effi-
ciency.

Keywords: Data Envelopment Analysis, Technical effi-

ciency, Cost efficiency, Revenue efficiency.

1 Introduction

Data Envelopment Analysis (DEA) is a mathematical
method that measures the relative efficiency of a group
of Decision Making Units (DMUs) with multiple inputs
and outputs but with no obvious production function to
aggregate the data in its entirety. Debreu (1951) pro-
vided the first measure of efficiency and Koopmans (1957)
was the first to define the concept of Technical Efficiency
(TE). The measurement of TE as defined by Farrell

∗Corresponding author.
a: Department of Mathematics, College of Sciences, Shiraz Univer-
sity, Shiraz, Iran
b: Department of Mathematics, Payame Noor University, Tehran
Iran
c: Faculty of Mathematical Sciences, Tabriz University, Tabriz,
Iran.
Email Adresses: mirdehghan@shirazu.ac.ir (S.M. Mirdehghan),
m.nazari@pnu.ac.ir (M. Nazaari A.), j.vakili@tabrizu.ac.ir (J. Vak-
ili).

(1957) was operationalized and popularized by Charnes
et al. (1978), which led to the establishment of DEA
as a prominent methodological tool for assessing relative
efficiency. The standard DEA method measures TE as-
suming Constant Returns to Scale (CRS) which was ini-
tially proposed by Charnes, Cooper and Rhodes (CCR)
(1978). Some of DEA researchers worked on the the-
ories of DEA and found some characterizations of DEA
models. Fukuyama (2000), Sueyoshi and Sekitani (2007),
Jahanshahloo et al. (2008) and (2009) found some prop-
erties in DEA to find returns to scale, reference set and
strong defining hyperplanes. On the other hand, some
of the other researchers in different fields and majors ap-
plied DEA models to evaluate commerical firms, hospi-
tals and etc; see for example Ayaz and Alptekin (2012),
Karadayi and Karsak (2014) and Yang (2009). In eval-
uating a DMU sometimes the optimal solution(s) of the
traditional models is far from the expected results. To
solve this shortcoming, the weight restrictions have been
added to the traditional models regarding the manage-
ment decision. Podinovski (2004) and (2007) and Podi-
novski and Thanassoulis (2007) presented some theories
of the weight restriction methods.

Cost Efficiency (CE) evaluates the ability of a DMU to
produce the current output at minimal cost, given its in-
put prices. The concept of CE can be traced back to
Farrell (1957), who originated many of the ideas under-
lying efficiency assessment. CE can be interpreted as an
achievable measure of potential cost reduction given the
outputs produced and current input prices at each DMU.
The Farrell concept was developed by Färe et al. (1985),
who formulated a Linear Programming (LP) model for
CE assessment. This LP model requires input and out-
put quantity data as well as input prices at each DMU.
Jahanshahloo et al. (2008) simplified a version of the
cost efficiency model proposed by Camanho and Dyson
(2005) which they showed that the measure of CE can be
obtained with the inclusion of weight restrictions in DEA
models.

In Charnes et al.’s (1978) model, each member of a set
of DMUs must be evaluated relative to its peers. This
evaluation is generally assumed to be based on a set of
quantitative output and input factors. In many real world
settings, however, it is essential to take into account the
presence of qualitative factors when rendering a decision
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on the performance of a DMU. But providing a more
precise, quantitative measure reflecting such a factor is
generally beyond the realm of reality. In some situations,
such factors can be legitimately ’quantified’, but very of-
ten such quantification may be superficially forced as a
modeling convenience.

In this paper we propose a model for evaluating the mea-
sure of efficiency when some input prices and some output
benefits are available for all DMUs. We notate this pro-
posed efficiency measure by PE, and we show that the
multiplier form model, the minimal cost model and the
maximal revenue model for evaluating TE, CE and Rev-
enue Efficiency (RE), respectively, are special cases of our
proposed model. This means TE (by using CCR model),
CE and RE are special measures of PE. This method is
completely different from the existing weight restriction
methods. The structure of this paper is as follows: Sec-
tion 2 describes the DEA models used for the estimation
of TE, Farrell-Debreu and Tone CE and RE. Some def-
initions and models in are extracted from Cooper et al.
(2007). In Section 3 we propose a model for evaluat-
ing PE. Also, in this section we prove that the minimal
cost model for evaluating CE is a special case of the pro-
posed model. Section 4 contains three examples to apply
the proposed model and compare PE with the other mea-
sures of efficiency. Conclusions and suggestions for future
research are presented in Section 5.

2 Background

2.1 Technical Efficiency

Relative efficiency is defined as the ratio of the total
weighted output to the total weighted input. Suppose
that we have n DMUs with activity vectors (xt

j ,y
t
j); j =

1, 2, . . . , n, where xj and yj are nonnegative and nonzero
column vectors in Rm and Rs, respectively. All DMUs
(DMUj (j = 1, . . . , n)) use the same number, m, of in-
puts (xij (i = 1, . . . , m)) to produce the same number,
s, of outputs (yrj (r = 1, . . . , s)). Note that the input
and output vectors of all DMUs are the same in type but
different in quantity.
Let

s be the number of outputs;

m be the number of inputs;

n be the number of DMUs whose performance must be
evaluated;

yrj be the value (≥ 0) of output r (r = 1, 2, . . . , s) for
DMUj (j = 1, 2, . . . , n);

xij be the value (≥ 0) of input i (i = 1, 2, . . . , m) for
DMUj (j = 1, 2, . . . , n);

uro be the weight (≥ 0) attached to output r (r =
1, 2, . . . , s) by DMUo (o ∈ {1, 2, . . . , n});
vio be the weight (≥ 0) attached to input i (i =
1, 2, . . . , m) by DMUo (o ∈ {1, 2, . . . , n});
θ∗o be the (relative) efficiency of DMUo (o ∈ {1, 2, . . . , n});
ε be a very small non-Archimedean number, smaller than
any positive real number (0 < ε � 1).

The fractional model to evaluate the relative efficiency of
DMUo (o ∈ J = {1, 2, . . . , n}) is as follows:

θ∗o = max
∑s

r=1
uroyro/

∑m

i=1
vioxio

max{
∑s

r=1
uroyrj/

∑m

i=1
vioxij : j∈J}

s.t. uro ≥ 0; r = 1, 2, . . . , s
vio ≥ 0; i = 1, 2, . . . , m.

(1)

The measure of relative efficiency of DMUo is θ∗o ;
note that 0 ≤ θ∗o ≤ 1 (and θ∗o = 0 if and only if
yro = 0 (r = 1, 2, . . . , s)). The result of the DEA is
the determination of the hyperplanes that define an
envelope surface or Pareto frontier. DMUs that lie on
the envelope surface are deemed efficient, whilst those
that do not are deemed inefficient. By Charnes-Cooper
transformations, the fractional model is transformed to
the following LP:

max
∑s

r=1 uroyro

s.t.
∑m

i=1 vioxio = 1∑s
r=1 uroyrj −

∑m
i=1 vioxij ≤ 0; j = 1, 2, . . . , n

uro ≥ 0; r = 1, 2, . . . , s
vio ≥ 0; i = 1, 2, . . . , m.

(2)
Model (2) is called the ”input-oriented” multiplier form
to evaluate the relative efficiency of DMUo. It is assumed
that the production function exhibits constant returns to
scale. The dual of (2) is

min θ
s.t.

∑n
j=1 λjxij + s−i = θxio; i = 1, 2, . . . , m∑n
j=1 λjyrj − s+

r = yro; r = 1, 2, . . . , s

λj ≥ 0; j = 1, 2, . . . , n
s−i ≥ 0; i = 1, 2, . . . , m
s+

r ≥ 0; r = 1, 2, . . . , s
θ is unrestricted.

(3)

Model (3) is called the ”input-oriented” envelopment
form to evaluate the relative efficiency of DMUo. We
know that the optimal value of Models (2) and (3) are
equal. In the above model s−i (i = 1, 2. . . . , m) are the
input excesses and s+

r (r = 1, 2. . . . , s) are the output
shortfalls.

Definition 1 DMUo is called technical efficient if the
optimal value of Problem (3) equals 1. Otherwise, it is
called technical inefficient.
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Technical efficiency is also referred to as radial efficiency.
Technical efficient DMUs are classified in two types;
strong efficient DMUs and weak efficient DMUs. In eval-
uating DMUo, which is a technical efficient DMU, by (3)
if all slacks s−i and s+

r (i = 1, ..., m, r = 1, ..., s) equal
zero in all possible optimal solutions then DMUo is called
a strong efficient DMU otherwise, it is called a weak effi-
cient DMU.

If a DMU proves to be inefficient, a combination of other
efficient units can produce either greater outputs for the
same composite of inputs or produce the same outputs
for a smaller composite of inputs. Similarly, the ”output-
oriented” envelopment form and the ”output-oriented”
multiplier form are as follows:

φ∗
o = max φ

s.t.
∑n

j=1 λjxij + s−i = xio; ∀i∑n
j=1 λjyrj − s+

r = φyro; ∀r

λj ≥ 0; ∀j
s−i ≥ 0; ∀i
s+

r ≥ 0; ∀r
φ is unrestricted.

(4)

min
∑s

r=1 vixio

s.t.
∑s

r=1 uryro = 1∑s
r=1 uryrj −

∑m
i=1 vixij ≤ 0; ∀j

ur ≥ 0; ∀r
vi ≥ 0; ∀i.

(5)

We know that θ∗o = 1
φ∗

o
, where φ∗

o is the optimal value of
(4).

2.2 Cost Efficiency

Cost efficiency evaluates the ability of a DMU to pro-
duce the current outputs at minimal cost, given its input
prices. Looking beyond TE, Farrell (1957) also proposed
a measure of cost efficiency, which assumes that prices
are fixed and known and maybe different among DMUs.
Suppose that there exist n DMUs as defined in 2.1, and
cij ≥ 0 is the cost of the ith input of DMUj which may
vary from one DMU to another. The minimal cost model
to produce at least the current output of DMUo (yo)
yields the optimal value of the following LP (

∑m
i=1 ciox

∗
i ).

CEo = 1∑m

i=1
cioxio

min
∑m

i=1 cioxi

s.t.
∑n

j=1 λjxij ≤ xi; ∀i∑n
j=1 λjyrj ≥ yro; ∀r

λj ≥ 0; ∀j
xi ≥ 0; ∀i.

(6)

Because the cost of inputs are nonnegative for each DMU,
there exists an optimal solution such as (λ∗t

,x∗t

) such
that all constraints (

∑n
j=1 λjxij ≤ xi) are binding. This

means the optimal value of (6) equals the optimal value

of the following LP:

CEo = 1∑m

i=1
cioxio

min
∑m

i=1 cioxi

s.t.
∑n

j=1 λjxij = xi; ∀i∑n
j=1 λjyrj ≥ yro; ∀r

λj ≥ 0; ∀j
xi ≥ 0; ∀i.

(7)

CEo is the cost efficiency of DMUo and it is clear that
CEo ≤ 1. Also this cost efficiency measure is named
Farrell-Debreu cost efficiency measure.

Tone(2002) found an unacceptable property of the
traditional Farrell-Debreu cost efficiency measure when
the unit prices of input are not identical among DMUs.
He suggested a new approach to measure the cost
efficiency which we call Tone Cost Efficiency (TCE).
TCE is obtained from the following model:

TCEo = 1∑m

i=1
xio

min
∑m

i=1 xi

s.t.
∑n

j=1 λjxij ≤ xi; ∀i∑n
j=1 λjyrj ≥ yro; ∀r

λj ≥ 0; ∀j
xi ≥ 0; ∀i.

(8)

Where xij = cijxij and xi are variables (i = 1, ..., m, j =
1, ..., n).
The difference between Farrell-Debreu cost model and
Tone model is: in the Farrell-Debreu model, the unit
cost of DMUo is fixed at co and then the optimal input
vector x∗ that produces the output vector yo is found,
while, in Tone cost model, the optimal input vector x∗

is searched which can produce yo.

2.3 Revenue Efficiency

Revenue efficiency evaluates the ability of a DMU to pro-
duce outputs at maximal revenue when it consumes the
current inputs. Suppose that there exist n DMUs as de-
fined in 2.1, and brj ≥ 0 is the benefit of the rth output
of DMUj . The maximal revenue model to consume at
most the current input of DMUo (xo) gives the optimal
value of the following LP (

∑s
r=1 broy

∗
r ).

max
∑s

r=1 broyr

s.t.
∑n

j=1 λjxij ≤ xio; ∀i∑n
j=1 λjyrj ≥ yr; ∀r

λj ≥ 0; ∀j
yr ≥ 0; ∀r.

(9)

Based on an optimal solution y∗t

= (y∗
1 , y∗

2 , . . . , y∗
s ) of this

model, the revenue efficiency of DMUo is defined as:

REo =
∑s

r=1 broyro∑s
r=1 broy∗

r

(10)

According to (10) we conclude that REo ≤ 1.
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In Cooper et al. (2006) ’s a similar discussion to Tone
cost model, which has been presented in 2.2, has been
presented for the revenue efficiency.

3 The Proposed Efficiency Measure

In this section, we propose a model to evaluate efficiency
when some (not necessarily all) elements of the input cost
vector and some (not necessarily all) elements of the out-
put benefit vector are available. We consider the frac-
tional multiplier form model (1) to obtain the proposed
model.

Suppose that there exist n DMUs, namely
DMU1, DMU2, . . . , DMUn where DMUj ; j =
1, 2, . . . , n has the input vector xj with m elements
and the output vector yj with s elements.
We form the virtual input and output by weights (vi)
and (ur) (yet unknown) as follows:

virtual input = v1x1o + v2x2o + . . . + vmxmo,

virtual output = u1y1o + u2y2o + . . . + usyso.

Then, we try to determine the weights, using linear pro-
gramming so as to maximize the ratio

virtual output

virtual input
.

The optimal weights may (and generally will) vary from
one DMU to another. Thus, the weights in DEA are
derived from the data rather than being fixed in advance.
A best set of weights is assigned to each DMU with values
that may vary from one DMU to another.

Let J = {1, 2, . . . , n}. To evaluate the efficiency mea-
sure of DMUo (o ∈ {1, 2, . . . , n}), we solve the following
fractional programming model to obtain values for the in-
put weights (vi; i = 1, 2, . . . , m) and the output weights
(ur; r = 1, 2, . . . , s) as variables:

max θ =
u1y1o+u2y2o+...+usyso

v1x1o+v2x2o+...+vmxmo

max{ u1y1j+u2y2j+...+usysj
v1x1j+v2x2j+...+vmxmj

:j∈J}
s.t. ur ≥ 0; r = 1, 2, . . . , s

vi ≥ 0; i = 1, 2, . . . , m.

(11)

The objective is to obtain weights (vi) and (ur) that max-
imize the ratio θ of DMUo as the DMU under assessment.
According to the objective function, the optimal objective
value θ∗ is at most 1. Mathematically, the nonnegativity
constraints are not sufficient for the fractional terms in
the objective function to have a definite value. We do not
consider this assumption in explicit mathematical form at
this time. Instead, we put this in managerial terms by
assuming that all outputs and inputs have some nonzero
values and this is to be reflected in the weights ur and vi

being assigned some positive values.

According to the above discussion, Model (11) obtains
the best weights for inputs and outputs to maximize the
objective function. On the other hands in real prob-
lems we may have the real value of some input prices
and some output benefits, while Model (11) ignores this
fact and so the efficiency obtained from this model is un-
acceptable because the optimal weights given by Model
(11) may be different from the real weights (the market
prices) that are available. Also, the optimal weights of
(11) are the same for all DMUs in evaluating the DMU
under assessment. For example, in assessing DMUo, if
(v∗1 , v∗

2 , . . . , v∗m, u∗
1, u

∗
2, . . . , u

∗
s) is an optimal weight vec-

tor of (11), v∗
i is the weight (shadow price) of the ith

input of all DMUs while in real problems the ith inputs
may be different in price in each DMU.

Suppose that there exist n DMUs
(DMU1, DMU2, . . . , DMUn) with activity vec-
tors D1,D2, . . . ,Dn where Dj = (xt

j ,y
t
j);

xt
j = (x1j , x2j , . . . , xmj) and yt

j = (y1j , y2j , . . . , ysj).
Furthermore, some input prices and some output benefits
are available. Without loss of generality, suppose that
the input prices of the first p (p ≤ m) elements of
each input vector and the output benefits of the first
q (q ≤ s) elements of each output vector are available.
Let vt

j = (v1j , v2j , . . . , vpj), ut
j = (u1j , u2j , . . . , uqj),

vt = (vp+1, vp+2, . . . , vm) and ut = (uq+1, uq+2 . . . , us)
where vij ; i = 1, 2, . . . , p, is the ith input cost of DMUj

and urj ; r = 1, 2, . . . , q, is the rth output benefit of
DMUj . Note that input cost vectors (vt

j) and output
benefit vectors (ut

j) may be different for each DMU.

To obtain the proposed efficiency of DMUo consider the
following model:

θ1 = max
u1oy1o+...+uqoyqo+uq+1yq+1o+...+usyso

v1ox1o+...+vpoxpo+vp+1xp+1o+...+vmxmo

max{ u1jy1j+...+uqjyqj+uq+1yq+1j+...+usysj

v1jx1j+...+vpjxpj+vp+1xp+1j+...+vmxmj
: j∈J}

s.t. ur ≥ 0; r = q + 1, q + 2, . . . , s
vi ≥ 0; i = p + 1, p + 2, . . . , m,

(12)
where ur (r = q + 1, . . . , s) and vi (i = p + 1, . . . , m) are
variables and urj , vij (r = 1, 2, . . . , q, i = 1, 2, . . . , p, j =
1, 2, . . . , n) are constants. We assume that v1jx1j +
v2jx2j + . . . + vpjxpj + vp+1xp+1j + vp+2xp+2j + . . . +
vmxmj �= 0 for all j. Let xt

j = (x1j , x2j , . . . , xpj),
x̃t

j = (xp+1j , xp+2j , . . . , xmj), yt
j = (y1j , y2j , . . . , yqj) and

ỹt
j = (yq+1j , yq+2j , . . . , ysj).

Any two vectors vt
j , xj can be multiplied. The result

of this multiplication is a real number called the inner
product of the two vectors, which is defined as:

vt
jxj = v1jx1j + v2jx2j + . . . + vpjxpj .

Let kj = vt
jxj , wj = ut

jyj and z = 1

max{wj+utỹj

kj+vtx̃j

: j∈J}
.
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Model (12) is transformed to the following model:

max woz+utỹoz

ko+vtx̃o

s.t.
wjz+utỹjz

kj+vtx̃j

≤ 1; j ∈ J

u ≥ 0
v ≥ 0
z ≥ ε.

(13)

To transform Model (13) to a linear programming
problem, let t = 1

ko+vtx̃o

and use the following variables
changes:

uttz −→ ut

vtt −→ vt

zt −→ z.

Note that variables z and t are greater than zero.
Model (13) is transformed as follows:

θ2 = max woz + utỹo

s.t. kot + vtx̃o = 1,

wjz + utỹj − (kjt + vtx̃j) ≤ 0; j ∈ J
t ≥ ε, u ≥ 0
z ≥ ε, v ≥ 0

(14)
where ε is a non-archimedean number. The above model
is called the ”Input-oriented multiplier proposed model.”

Remark: The proposed method is completely dif-
ferent from the existing weight restriction methods. In
the DEA literature some weight restrictions have been
added to some DEA models. In evaluating a DMU
by the DEA models (without any weight restriction)
the corresponding weights to an input/output for all
DMUs are the same. For example to assess DMUo,
the first input (output) of all observed DMUs have
the same unknown weights and, in our notation it has
been presented by v1 (u1). While the proposed method
assigns the actual market price as a weight to each input
and output which their market prices are available, and
assigns the unknown weights to each input and output
as variables which their market prices are not available.

Theorem 1 The optimal values of (12) and (14) are
equal.

Proof: Suppose that (u∗t

,v∗t

) is an optimal solution of

(12). Let t∗ = 1

ko+v∗t x̃o

and z∗ = t∗/ max{wj+u∗t
ỹj

kj+v∗t x̃j

: j ∈
J} then (ut,vt, t, z) = (z∗u∗t

, t∗v∗t

, t∗, z∗) is a feasible
solution of (14), so

θ2 ≥ woz
∗ + u∗t

z∗ỹo = θ1. (15)

Also, suppose that (u∗t

,v∗t

, t∗, z∗) is an optimal so-

lution of (14), then (ut,vt) = (u∗t

z∗ , v∗t

t∗ ) is a feasi-
ble solution of (12). Moreover, because (u∗t

,v∗t

, t∗, z∗)
is a feasible solution of (14), kot

∗ + v∗t

x̃o = 1 and
wjz

∗+u∗t

ỹj −(kjt
∗+v∗t

x̃j) ≤ 0 for all j ∈ J . Therefore

max{wjz∗+u∗t
ỹj

kjt∗+v∗t x̃j

: j ∈ J} ≤ 1. So

θ1 ≥ [(wo+u∗t

z∗ ỹo)/(ko+v∗t

t∗ x̃o)]/ max{(wj+u∗t

z∗ ỹj)/(kj+
v∗t

t∗ x̃j) : j ∈ J} = [(woz
∗ + u∗t

ỹo)/(kot
∗ +

v∗t

x̃o)]/ max{(wjz
∗ + u∗t

ỹj)/(kjt
∗ + v∗t

x̃j) : j ∈ J} ≥
woz

∗ + u∗t

ỹo = θ2.

From (15) and the above relation, we have θ1 = θ2 and
the proof is completed.

The proof of this theorem shows that if (u∗t

,v∗t

, t∗, z∗) is

an optimal solution of (14), then (u∗t

z∗ , v∗t

t∗ ) is an optimal
solution of (12), and one of the best weight vectors for the
inputs and outputs of DMUo, which their market prices
are not available, is (u∗t

z∗ , v∗t

t∗ ).

The dual of (14) is called the ”input-oriented envelopment
proposed model” and is shown below:

min θ − ε(s+ + s−)
s.t.

∑n
j=1 λjxij ≤ θxio; i = p + 1, . . . , m∑n
j=1 λjkj + s− = θko∑n
j=1 λjyrj ≥ yro; r = q + 1, . . . , s∑n
j=1 λjwj − s+ = wo

λj ≥ 0; j ∈ J
s+ ≥ 0
s− ≥ 0
θ is unrestricted.

(16)

Because of the non-Archimedean number ε, we solve the
following problems to find the optimal solution of (16).

min θ
s.t.

∑n
j=1 λjxij ≤ θxio; i = p + 1, . . . , m∑n
j=1 λjkj ≤ θko∑n
j=1 λjyrj ≥ yro; r = q + 1, . . . , s∑n
j=1 λjwj ≥ wo

λj ≥ 0; j ∈ J
θ is unrestricted.

(17)

Using our knowledge of θ∗, the optimal value of (17), we
solve the following LP using λ, s+ and s−as variables:

max s+ + s−

s.t.
∑n

j=1 λjxij ≤ θ∗xio; i = p + 1, . . . , m∑n
j=1 λjkj + s− = θ∗ko∑n
j=1 λjyrj ≥ yro; r = q + 1, . . . , s∑n
j=1 λjwj − s+ = wo

λj ≥ 0; j ∈ J
s+ ≥ 0
s− ≥ 0

(18)
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It is easy to show that θ∗ is the optimal value of (17)
and (λ∗t

, s+∗, s−∗) is an optimal solution of (18) if and
only if (λ∗t

, θ∗, s+∗, s−∗) is an optimal solution of (16).

Suppose that (λ∗t

, θ∗, s+∗, s−∗) is an optimal solution of
(16). Consider the following virtual DMU

(
n∑

j=1

λ∗
jx

t
j ,

n∑
j=1

λ∗
jy

t
j)

1. For the first p inputs whose weights (market prices)
are known, the total cost (

∑n
j=1 λ∗

jkj) is contracted with
respect to ko, and
2. for the last m − p inputs, whose weights are un-
known, the virtual inputs are contracted with respect to
x̃o. These mean that the first p inputs and the last m−p
inputs of the virtual DMU are contracted with respect to
in cost and quantity, respectively, by a contraction factor
θ∗.
(λ

t
, θ, s+, s−), in which λo = 1, λj = 0 (j ∈ J and j �= o),

θ = 1, s+ = 0 and s− = 0, is a feasible solution of (16).
Also if

∑m
i=p+1 xio + ko �= 0, then the optimal value of

(16) is bounded. By the duality theorem the dual of (16),
i.e. (14), is feasible.

Definition 2 DMUo is efficient if and only if the op-
timal value of (17) equals one and the optimal value of
(18) equals zero otherwise, it is inefficient.

In a similar way we can show that the ”output-oriented
multiplier proposed model” and the ”output-oriented en-
velopment proposed model” are as follows:

min kot + vtx̃o

s.t. woz + utỹo = 1
wjz + utỹj − (kjt + vtx̃j) ≤ 0; j ∈ J
t ≥ ε, u ≥ 0
z ≥ ε, v ≥ 0

(19)

max φ + ε(s+ + s−)
s.t.

∑n
j=1 λjx̃j ≤ x̃o∑n
j=1 λjkj + s− = ko∑n
j=1 λjỹj ≥ φỹo∑n
j=1 λjwj − s+ = φwo

λj ≥ 0; j ∈ J
s+ ≥ 0
s− ≥ 0
φ is unrestricted.

(20)

Theorem 2 φ̃ = 1
θ∗ , where ’∗’ and ’∼’ indicate the op-

timality of (16) and (20), respectively.

Proof: Suppose that (λ∗t

, θ∗, s+∗, s−∗) and
(λ̃t, φ̃, s̃+, s̃−) are the optimal solutions of (16) and

(20), respectively. (λt, φ, s+, s−) = (λ∗t

θ∗ , 1
θ∗ , s+∗

θ∗ , s−∗
θ∗ ) is

a feasible solution of (21), therefore φ̃ + ε(s̃+ + s̃−) ≥
1
θ∗ + ε

θ∗ (s+∗ + s−∗). So

1 − φ̃θ∗ ≤ ε[θ∗(s̃+ + s̃−) − (s+∗ + s−∗)]. (21)

Also (λt, θ, s+, s−) = ( λ̃t

φ̃
, 1

φ̃
, s̃+

φ̃
, s̃−

φ̃
) is a feasible solution

of (16), so θ∗−ε(s+∗ +s−∗) ≤ 1

φ̃
− ε

φ̃
(s̃+ + s̃−). It implies

1 − φ̃θ∗ ≥ ε[(s̃+ + s̃−) − φ̃(s+∗ + s−∗)]. (22)

Since ε is a non-Archimedean number, then (21) and (22)
show that φ̃θ∗ = 1.

Consider Model (14). If all input prices and output ben-
efits are unknown or we do not use input cost and output
benefit information in Model (14), then parameters wj

and kj for all j and variables z and t are omitted. There-
fore, what remains of Model (14) is the ”input-oriented
multiplier CCR model” and its optimal value is TE.

Here we show that the minimal cost model (7) for eval-
uating cost efficiency is a special case of our proposed
model; that is, the optimal value of our proposed model
when all input prices are available and all output benefits
are unknown is the cost efficiency measure of DMUo.

Consider the proposed model to evaluate DMUo when
all input prices are available and all output benefits are
unknown. In evaluating the measure of PE for DMUo, we
assume that the input cost vectors of all DMUs are the
same and equal to co, the input cost vector of DMUo. In
this case, the proposed model is converted to:

max utyo

s.t. cot

xot = 1
utyj − cot

xjt ≤ 0; j = 1, 2, . . . , n
u ≥ 0
t ≥ ε.

(23)

In the above model cot

xo > 0 and t = 1
cotxo

. By setting
the value of t in the other constraints, the modified model
is:

max utyo

s.t. utyj ≤ cot
xj

cotxo
; j = 1, 2, . . . , n

u ≥ 0

(24)

The dual of the above model is:

min cot

cotxo

∑n
j=1 λjxj

s.t.
∑n

j=1 λjyj ≥ yo

λj ≥ 0; j = 1, . . . , n.

(25)

Let x =
∑n

j=1 λjxj , so the above model is equal to:

min cot
x

cotxo

s.t.
∑n

j=1 λjxj = x∑n
j=1 λjyj ≥ yo

λj ≥ 0; j = 1, . . . , n.

(26)
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where λj (j = 1, . . . , n) and x are variables.

The preceding model is the ”Cost Model” to evaluate
DMUo, and its optimal value is the cost efficiency mea-
sure of DMUo. A similar process can be used to prove
that PE is equal to TCE. In this case kj = cjxj and, vtx̃j

and wjz will be removed from (14).

Furthermore, the model for measuring the revenue effi-
ciency is a special case of the model for evaluating PE
when all output benefits are available, and by using the
”output-oriented multiplier proposed model” the proof is
similar to the above.

4 Examples

Example 1
Kim et al. (1999) examined 33 telephone offices, each
having 3 inputs and 5 outputs, in Korea. We select 3 in-
puts and 3 outputs from among their data for evaluating
the DMUs. All inputs and outputs are quantitative. We
use the following factors:
Inputs

(x1) : Manpower. the number of regular employees.

(x2) : operating costs. Various costs except for interest
cost (million dollars).

(x3) : number of telephone lines.
Outputs

(y1) : local revenues. The total revenues of local telephone
services in each office (million dollars).

(y2) : long distance revenues. The total revenues of long-
distance telephone services in each office (million dollars).

(y3) : international revenues. The total revenues of inter-
national telephone services in each office (million dollars).
Table 1 displays the data.

In this example, outputs 1, 2 and 3 are quantitative and
denote the benefits attained from consuming inputs. So,
in evaluating DMUs with our proposed model we can use
1,000,000 as weights for outputs 1, 2 and 3.

The DMUs in Table 1 have been evaluated using the pro-
posed model (Model (14)). Also, we use the maximal
revenue model (Model (9)) and Equation (10) to find
the revenue efficiency of DMUs and apply CRS model
(Model(3)) to find the technical efficiency, the results of
which are presented in Table 2.

We can see that in this example PE and RE of all DMUs
are equal because all output benefits are available and
equal. This is an example to show that the revenue effi-
ciency is a special case of PE. In this example, 6 DMUs
are CCR-efficient but the number of the proposed effi-
cient DMUs is 4. Also, it can be seen that PE measures

are not greater than CCR efficiency measures.
Note that this result is not true generally (see Example
3).

Table 1
Data for Example 1.
DMU x1 x2 x3 y1 y2 y3

1 239 7.03 158 47.99 16.67 34.04
2 261 3.94 163 37.47 14.11 19.97
3 170 2.10 90 20.70 6.80 12.64
4 290 4.54 201 41.82 11.07 6.27
5 200 3.99 140 33.44 9.81 6.49
6 283 4.65 214 42.43 11.34 5.16
7 286 6.54 197 47.03 14.62 13.04
8 375 6.22 314 55.48 16.39 7.31
9 301 4.82 257 49.20 16.15 6.33
10 333 6.87 235 47.12 13.86 6.51
11 346 6.46 244 49.43 15.88 8.87
12 175 2.06 112 20.43 4.95 1.67
13 217 4.11 131 29.41 11.39 4.38
14 441 7.71 214 61.20 25.59 33.01
15 204 3.64 163 32.27 9.57 3.65
16 216 3.24 154 32.81 11.46 9.02
17 347 5.65 301 59.01 17.82 8.19
18 288 4.66 212 42.27 14.52 7.33
19 185 3.37 178 32.95 9.46 2.91
20 242 5.12 270 65.06 24.57 20.72
21 234 2.52 126 31.55 8.55 7.27
22 204 4.24 174 32.47 11.15 2.95
23 356 7.95 299 66.04 22.25 14.91
24 292 4.52 236 49.97 14.77 6.35
25 141 5.21 63 21.48 9.76 16.26
26 220 6.09 179 47.94 17.25 22.09
27 298 3.44 225 42.35 11.14 4.25
28 261 4.30 213 41.70 11.13 4.68
29 216 3.86 156 31.57 11.89 10.48
30 171 2.45 150 24.09 9.08 2.60
31 123 1.72 61 11.97 4.78 2.95
32 89 0.88 42 6.40 3.18 1.48
33 109 1.35 57 10.57 3.43 2.00
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Table 2
Results of Example 1.
DMU Technical Revenue Proposed
no Efficiency Efficiency Efficiency
1 1.000 1.000 1.000
2 0.990 0.965 0.965
3 1.000 0.996 0.996
4 0.822 0.668 0.668
5 0.896 0.722 0.722
6 0.792 0.636 0.636
7 0.860 0.714 0.714
8 0.721 0.606 0.606
9 0.803 0.690 0.690
10 0.748 0.577 0.577
11 0.773 0.640 0.640
12 0.780 0.609 0.609
13 0.821 0.666 0.666
14 1.000 1.000 1.000
15 0.788 0.636 0.636
16 0.857 0.810 0.810
17 0.822 0.698 0.698
18 0.794 0.695 0.695
19 0.769 0.624 0.624
20 1.000 1.000 1.000
21 1.000 0.900 0.900
22 0.731 0.587 0.587
23 0.848 0.728 0.728
24 0.872 0.734 0.734
25 1.000 1.000 1.000
26 0.975 0.928 0.928
27 0.969 0.779 0.779
28 0.795 0.776 0.776
29 0.787 0.752 0.752
30 0.774 0.677 0.677
31 0.739 0.658 0.658
32 0.803 0.618 0.618
33 0.720 0.623 0.623

Example 2

Table 3 exhibits four DMUs with two inputs and
two outputs, along with the unit cost for each input.
The results of evaluating TE, CE and PE are also
presented in Table 4.

Table 3
Data of Example 2.
DMU x1 x2 y1 y2 c1 c2

A 2 3 5 8 2 2
B 1 5 2 6 2 4
C 3 8 4 8 3 3
D 2 7 1 2 4 2

Table 4
Results of Example 2.
DMU TE CE TCE PE
A 1.000 1.000 1.000 1.000
B 1.000 0.545 0.341 0.341
C 0.571 0.455 0.303 0.303
D 0.214 0.159 0.114 0.114

According to the results we can see that PE is not equal
to CE for DMUs B, C and D because in evaluating PE
for each DMU the model uses the corresponding costs
for each DMU, but in evaluating the cost efficiency of
DMUo, the minimal cost model actually uses the input
costs of DMUo for all other DMUs. This is while the
input costs are practically different in evaluating other
DMUs.
In 2.2. we said that Tone cost model has solved the
shortcoming of Farrell-Debreu cost model. Regarding
Table 4 we see that the results of Farrell-Debreu cost
efficiency (CE) are different from TCE. Moreover, we
see that the results of PE and TCE are the same. It
shows that PE solves the traditional Farrell-Debreu
shortcoming too. In general the results of TCE and PE,
when we use the inputs and outputs quantities as well
as all input prices, are the same.

Example 3.

In this example, we evaluate 12 DMUs with two
inputs and two outputs. The unit cost for input 1 and
the unit benefit for output 1 are available. The costs
and the benefits are different for each DMU. The data
are summarized in Table 5.

Table 5
Data for Example 3.
DMUs x1 x2 y1 y2 c1 b1

A 20 151 100 90 500 550
B 19 131 150 50 350 400
C 25 160 160 55 450 480
D 27 168 180 72 600 600
E 22 158 94 66 300 400
F 55 255 230 90 450 430
G 33 235 220 88 500 540
H 31 206 152 80 450 420
I 30 244 190 100 380 350
J 50 268 250 100 410 410
K 53 306 260 147 440 540
L 38 284 250 120 400 295

Using the data in Table 5, we cannot evaluate cost
efficiency and revenue efficiency because not all input
costs or output benefits are available. However, we can
obtain PE for each DMU. The results of evaluating TE
and PE are summarized in Table 6.
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Table 6
Results of Example 3.

DMU A B C D E F
PE 1.000 1.000 0.894 1.000 1.000 0.719
TE 1.000 1.000 0.883 1.000 0.763 0.835

DMUs G H I J K L
PE 0.942 0.732 0.936 0.765 0.949 0.847
TE 0.902 0.796 0.960 0.871 0.955 0.958

Table 6 shows that there does not exist any relation
between TE and PE. For example the PE of DMUs
C, E and G are greater than their TE, while the PE
of F, H, I, J, K and L are less than their TE.

5 Conclusion

There are different types of efficiency measures such as
technical efficiency, cost efficiency and revenue efficiency.
These measures are different in terms of efficiency score
values because each uses different information obtained
from decision making units, e.g. technical efficiency only
uses the quantities of inputs and outputs; cost efficiency
uses the quantities of inputs, outputs and all input prices;
and revenue efficiency uses the quantities of inputs, out-
puts and all output benefits. But in real problems, some
input prices (not necessarily all) and some output ben-
efits (not necessarily all) are known. The conventional
techniques for measuring efficiency do not use some input
prices and some output benefits together. In this paper
we proposed a linear programming model to estimate the
measure of efficiency when only some input prices and
some output benefits are known. This measure is nearer
to real world conditions than other measures (TE, CE
and RE), because we use real weights in PE while the
weights obtained from multiplier forms (used for evalu-
ating TE, CE and RE) are possibly different from real
weights. The weights obtained from the CCR multiplier
form are the best weights to maximize TE. The measures
of TE, CE and RE are special cases of PE, and in this
paper we showed that TE and CE measures and the cor-
responding models are special cases of PE measure and
the proposed model, respectively. A shortcoming of the
CE measure that our proposed model overcomes is the
fact that in evaluating the CE of DMUo it uses the in-
put cost vector of DMUo, i.e. co, for all other DMUs
(see Tone (2002)). Our proposed model uses their corre-
sponding input cost vectors for other DMUs. A similar
argument can be put forward for RE. PE measure can be
used in real worlds problems and it can yield some meth-
ods to rank DMUs. The envelopment proposed model to
evaluate PE has n + 3 variables and m + s + 2 − (p + q)
restrictions (except the nonnegativity constraints) while
the envelopment form of the CCR model has n + 1 vari-
ables and m + s restrictions (except the nonnegativity
constraints). Since our proposed model has fewer con-
straints (when p + q > 2) compared to the envelopment
form of the CCR model, it seems to be able to evaluate

PE better than the envelopment form of the CCR model
in terms of complexity. Using this measure for practi-
cal problems and finding some methods to rank DMUs
and applying this measure (PE) to other fields of DEA,
e.g. ranking, Productivity, returns to scale and etc. are
directions for future research.
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