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Abstract—This article discusses the steady state
analysis of a heterogeneous server queuing system
called the Geo/G/2 queue. We supposed that arrivals
occur according to a geometric process to receive ser-
vice on server-1 according to a geometric service time
distribution with mean rate μ or on server-2 accord-
ing to a general distribution B(t) with mean rate μ2.
There are two queue disciplines employed for service
namely; the serial queue discipline (queue discipline-
I) and the parallel queue discipline (queue discipline-
II). Using the embedded method when the discipline
is serial and the supplementary variable technique
when it is parallel, we present an exact analysis of the
arrival distribution. Furthermore, the actual waiting
time expectations are derived and approximated. Our
analysis can be applied in managing service systems
in many areas of communication, telecommunications,
business and computer systems where services are dis-
crete in nature for instance, in the performance evalu-
ation and design of buffers for statistical multiplexers,
traffic concentrators, switch modules, networks.

Keywords: Geometric arrival, Geo/G/2 queue,
Geo/(Geo+G)/2 queue, Geo/Geo,G/2 queue.

1 Introduction

We study a geometric arriving and general service time
queuing system1 called the Geo/G/2 queue with two
servers modeled as server-1 and server-2. This kind of
queuing system is a model of slots with finite bound-
aries where at most only one arrival (customer) oc-
curs in a given time (late arrival) for service. We sup-
pose that arrivals (customers, packets, inputs) and ser-
vice times (length of service) are integer multiples of a
given slot. This implies that departures only occur at
the other end of the slot. The service and inter-arrival
durations between consecutive arrivals are measured as
random numbers of slot durations. This give rise to a
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1Under two distinct queue disciplines.

discrete-time queuing system of the form Geo/Geo+G/2
or Geo/Geo,G/2 depending on the schedule for service
(queue discipline). Now, suppose that the proposed queu-
ing systems have an infinite number of waiting positions
with server-1 faster than server-2. Then, an interesting
feature of this investigation is that, it derives the discrete
results of this work to the corresponding continuous time
version M/G/2 queues analyzed in Sivasamy, Daman &
Sulaiman [15].

Normally, discrete-time scaling (small time scale) and
their corresponding models often reflect an underlying ap-
plication. For example, the clock time unit in a computer
system, the fixed size data units (bits, bytes, fixed length
packets) on a communication channel. Similarly, for suf-
ficiently small slot lengths, discrete-time queuing models
are approximations for the corresponding models where
the time scale is continuous. Furthermore, asynchronous
transfer mode (ATM) multiplexers and broadband in-
tegrated service digital network (B-ISDN) are used to
transfer data sets, voice and video communications on
discrete-time basis. In both the multiplexers and the
B-ISDN for instance, the time axis is normally divided
into slots (fixed-length of continuous intervals called slots
of unit length (right-end boundary=left end boundary)).
Takagi [17] indicated that this type of models is essen-
tially the best choice for analyzing computer and commu-
nication systems. Bruneel & Kim [5] compared some fea-
tures of discrete-time parallel queuing models with that
of the continuous ones and indicated that in continuous-
time parallel queuing models, the probability that an ar-
rival and a departure occurring simultaneously in a very
small time interval is zero. This is not so in discrete-time
models where both events can occur simultaneously at a
boundary epoch of a slot. Under this added advantage,
it requires that the order of occurrence be taken care of;
that is either arrival first (AF) or departure first (DF).
Hence, the need to study such models for the benefit of
computers or telecommunication systems such as the ones
exemplified above.

The literature on discrete-time queuing models is enor-
mous. Over the years, a lot of research has been carried
out. For a survey of related ones, see Takagi [17], Bruneel
[4], Bruneel & Kim [5], Ishizaki, Takine & Hasegawa [10],
Bruneel, Walraevens, Claeys, & Wittevrongel [6], Briem,
Theimer, & Kroner [3]. Precisely, Briem, Theimer & Kro-
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ner [3] studied a discrete-time single server queuing sys-
tem with a non-renewal customer process and provided
an exact analysis of both the infinite and the finite ca-
pacity queue yields in terms of the state probabilities at
departure instants as well as the loss probability. The
results show that one can obtain interesting results for
queues under discrete-time scaling assumption. For more
on single server discrete queuing systems, see Bruneel [5],
Ishizaki, Takine & Hasegawa [10]. Similarly, works on
multi-server queuing systems with discrete-time scaling
have grown tremendously in the last two decades. For a
survey of related ones; see Goswami & Mund [8], Artalejo
& Lopez Herrero [1], Goswami [7].

Now, what can be observed in these and many other liter-
ature sources on multi-server models under discrete time
assumption is the adoption of the FCFS queue discipline.
This assumption may not be realistic. For instance, if
a telecommunication system or device provides service
with varying speeds, then arriving packets might be pre-
ferred to be allocated the fastest device for service. On
the other hand, if allocated the slowest device randomly,
then there is a possibility that packets entering the sys-
tem after the one allocated to the slow device to clear
out earlier by obtaining service from the device with a
faster working rate. Apparently in this case, the FCFS
queue discipline is violated due to heterogeneity in ser-
vice speeds of the two working devices. This and similar
real life scenarios make the adoption of the FCFS queue
discipline unrealistic in multi-server discrete-time queu-
ing systems with embedded heterogeneity because of the
high probability of violation therein. Hence, there is the
need for designing alternative queue disciplines that can
reduce the impact of the violation so that the resulting
waiting times of customers in this kind of queuing sys-
tems are almost identical with that of the FCFS.

Our motivation to study these kind of models stemmed
from the several applications of the models working un-
der the proposed queue disciplines giving rise to either the
Geo/Geo+G/2 or Geo/Geo,G/2 queuing models respec-
tively. Specific examples of application scenarios include
computer systems, communication systems, telecommu-
nication networks, production management, Broadband
Integrated Services Digital Network (BISDN), dynamic
bandwidth allocation and flexible capacity allocation. In
these systems, information is digitized and segmented
into small packets arranged serially or in parallel. There-
fore, analyzing models for such systems is an excellent
tool for decision making relative to congestion man-
agement for better service delivery. Interestingly, un-
like in many models designed with similar assumptions,
here, the effects of the two queue disciplines can all be
computed2. Most importantly, the analysis of the dis-
crete time Geo/Geo,G/2 queue carried out is relatively
close to that of Boxma, Deng & Zwart [2] and Krish-

2Both analytically and numerically.

namoorthi [11] but more convenient for application in
communications and modern computer systems. In this
sense, each queue discipline here is an excellent alter-
native for use in our real life applications. Precisely,
the model under queue discipline-I is called the dis-
crete time Geo/Geo + G/2 with serialized servers and
the model under queue discipline-II is called the discrete
time Geo/Geo,G/2 queue with parallel servers. With
this structuring, our work stands to benefit both the ser-
vice provider and the customer through efficient resource
management in the former and minimization of waiting
times in the later.

1.1 Basic Assumptions

We suppose that a slot of unit length is given such
that arrivals occur on slot boundaries according to an
Arrival First (AF) policy. Marking the time axis by
0, 1, 2, .., t, ..., and supposing that these arrivals occur at
0−, 1−, , t−, time points such that a service starts only
at slot boundaries with each service duration taking a
number of slots. In addition, an arrival can leave the
system upon service completion only3. Furthermore, we
assumed that potential departures occur at slot bound-
aries at 0+, 1+, ..., t+, .... instants. Denote the time be-
tween successive arrivals (the inter-arrival time) by A.
For a detail description of the discrete time concepts em-
ployed here, see Gupta & Goswami [9] who modeled a
single-server bulk service queue with finite buffer space
in a discrete-time environment and provided the analysis
under both arrival first (AF) and departure first (DF)
management policies and distributions of buffer content
at various epochs. Such management policies play a sig-
nificant role in the determination of steady-state proba-
bilities relating to the number of arrivals in the system
(queue) at special epochs (e.g., arrival, departure, and ar-
bitrary epochs) and hence, they affect performance mea-
sures to a great extent. Now, assuming that the num-
ber of arrivals in successive slots are independent and
identically distributed (i.i.d.) random variables (derived
from a Geometric (or Bernoulli) Arrival Process:) sub-
ject to the condition that only one arrival occurs in a
slot with probability λ; (0 < λ < 1). This assump-
tion ensures that the inter-arrival time A is geometrically
distributed4 with mean 1

λ and probability distribution
P (A = k slots) = λ(1−λ)k−1 for k = 1, 2, ... Denote fur-
ther by A(z), the probability generating function (PGF)
of inter-arrival times and by L(z), the PGF of the number
of arrivals in a slot such that

A(z) =
λz

1− (1− λ)z
; |z| < 1, L(z) = 1− (1− z)λ (1)

Now, if it is supposed that for arrivals serviced by server-
1, the service time S1 follows the geometric distribution

3No reneging, balking by arrivals in the system.
4We further suppose that S1 and S2 are mutually independent

with each other and the inter-arrival time distribution.
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with probability mass function f1(k) = P (S1 = k) =
μ(1−μ)k−1; k = 1, 2, ... with mean 1

μ per slot. Then the

PGF of S1 and the corresponding Ls(z) representing the
PGF of the number of departures in a slot are respectively
given by5

F1(z) =

∞∑
k=1

μ(1− μ)k−1zk
μz

1− (1− μ)z
(2)

Let the service times S2 of arrivals serviced by server-2
follows a general distribution f2(k) = P (S2 = k) with
PGF

F2(z) =

∞∑
k=1

f2(z)z
k; |z| < 1 (3)

If the mean service time is β with rate μ2 = 1
β , then

one can provide an analysis for this discrete queuing sys-
tem similar to that carried out in Sivasamy, Daman &
Sulaiman [15] in the continuous-time case.

1.2 The Serial Queue Discipline

This is a new proposal of connecting the servers in series6

subject to the following:

1 If an arrival enters into an idle system, his service
is immediately initiated by server-1. This arrival is
served by server-1 at a constant rate μ if no other
arrival occurs during his on-going service period.

2 Otherwise if at least one more arrival occurs be-
fore his service completed, then the first arrival is
served jointly by both servers according to the ser-
vice time distribution fmin(k) = P (Smin ≤ k),
where Smin = Min(S1, S2) and the PGF of Smin

denoted by Fmin(z) given by7

Fmin(z) =

∞∑
k=1

fmin(k)z
k (4)

The expected values of S1, S2 and Smin are respectively
given by E[S1] = F ′

1(z) = 1
μ , E[S2] = F ′

2(1) = β = 1
μ2

and E[Smin] = F ′
min(1). For example, if the service time

S2 of arrivals on server-2 is a geometric random variable
with mean 1

μ2
, then the mean of Smin derived from (4) is

equal to8

5In this case, |z| < 1, Ls(z) = 1− (1− z)μ.
6Queue Discipline-1
7Further simplification of (4) yields Fmin(z) = F1(z) + F2((1−

μ)z)(1− F1(z))
8Similarly, the service rate of Smin = μ+μ2−μμ2,since there is

a positive probability of serving an arrival simultaneously by both
servers just before the end of a slot boundary.

E[Smin] = F ′
min(1) =

1

μ+ μ2 − μμ2

Lemma 1.1 If no arrival is served simultaneously and
the service time for all arrivals is equivalent to some k
slots, then the service (or departure) rate r(k) offered by
the combined service time distributions f1(k) and f2(k)
of the serialized servers in the Geo/Geo + G/2 queuing
system is given by

r(k) =
f1(k)

1− P (S1 < k)
+

f2(k)

1− P (S2 < k)
(5)

Proof Suppose ρ = λ
μ < 1. Then a closed form expres-

sion for r(k) can be obtained for particular cases of f2(k)
like the Geometric, Negative-binomial, or Phase (PH)
type distributions. Suppose that the service time dis-
tribution of arrivals served by the slow server (server-2)
is any of the distributions mentioned above with a finite
mean. Then our discussion follows viz;

1.3 Negative-binomial Distribution

Suppose that the service time S2 is a Negative-
Binomial NB(α, β) random variable with mass function
b(k;α, μ2) = P (S2 = k). Let S2 denotes the number of
slots required to complete a service by server-2 at the αth

success in a sequence of independent Bernoulli trials with
probability of success v ∈ (0 < v < 1), then

b(k;α, v) =
(
k−1
α−1

)
vα(1− v)k−α; k = α, α+ 1, ...

The mean of S2 is denoted by E[S2] =
α
v and the variance

by V ar[S2] =
α(1−v)

v2 . Similarly, the mean service rate μ2

is given by v
α . Finally, the service (or departure) rate

r(k) offered by the combined service time distributions
f1(k) and f2(k) of serialized servers of the Geo/Geo +
NB(α, v)/2 queuing system is given by9 μ+ v

α .

Corollary 1.2 Suppose that 1
μ2

→ ∞. Then the

Geo/Geo+G/2→Geo/Geo/1.

Queuing models operating under conditions (1) through
(4) above are a discrete-time class of the Geo/Geo+G/2
queues.

1.4 The‘Parallel Queue‘Discipline

Here, we adopt the queue discipline in Krishnamoorthi
[11] that minimizes the violation of the FCFS principle for

9One can carryout similar analysis for the above mentioned dis-
tributions also.
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a two heterogeneous server queue subject to the condition
that the mean service rates of server-1 and server-2 are μ
and μ2 respectively. If an arrival occurs and find:

1. Both servers free; it occupies server-I (assuming that
server-1 gives faster service on average).

2. Server-1 is engaged; it waits for service from server-I
whether or not server-II is free. But if the number of
arrivals waiting for service from server-I becomes m
(a positive integer), it goes to server-2 if that server
is free; otherwise it waits as the (m+ 1)th arrival in
the queue. Note that the first m arrivals in the queue
will be getting service from server-1 and the (m+1)th

arrival in the queue will go to server-2 if that server
becomes free prior to the finishing of service of the
arrival in server-1. Otherwise he will move up as the
mth arrival in the queue. Hence may decide to take
service from server-1.

3. Both servers are engaged and a queue of length n
greater than or equal to m is formed; It joins the
queue as the (n+ 1)th arrival. All arrivals after the
mth arrival in the queue take a decision only when
they reach the (m+ 1)th position in the queue. The
decision is taken according to the rule mentioned in
2 of server-I engaged above.

The positive integer m is to be chosen such that it is
one less than the greatest integer in the ratio μ

μ2
. It

is clear for this choice of m that: When there are m
arrivals10 waiting for service from server-I, an incoming
arrival finds it profitable to go to server-2 if that server
is free since (m+2)μ−1 < μ−1

2 . Similarly, when there are
only (m−1) arrivals waiting for service from server-1, an
incoming arrival will find it profitable to join the queue
for service from server-1, even if server-2 is free, since
(m+1)μ−1 < μ−1

2 . In case μ

μ−1
2

is an integer, then μ

μ−1
2

−1,

so that joining the queue for service from server-1 is not
any more or any less profitable than going to server-2 if
the server is free. But there is no harm in assuming that
even in this case, the arrival joins the queue for service
from server-1 when there are only (m−1) arrivals waiting
for service.

Thus, this queue discipline achieves the objective that
the least amount of waiting time is spent in the system
according to the conditions present upon its arrivals and
also reduces the violation of first-in first-out principle.
In section 3, we consider the discrete-time Geo/Geo,G/2
queue under the above queue discipline with m = 1 and
subject to the following time constraints that:

1. The service time is divided into slots numbered as
0, 1, 2, ..., ..., η with each slot of unit length.

10We analyze the case for m = 1 customer.

2. A potential arrival occurs in an interval (η−, η) while
a potential departure served by either server-1 or by
server-2 occurs in the interval (η, η+) as considered
in Gupta & Goswami [9].

3. The state of the queue length process is defined at
departure epoch η+ by two random variables N(η+)
denoting the number of arrivals in the system at time
η+ and η is past service time of the arrival served
by server-2 if any.

The rest of the work is organized as follows; in section
two, we derive the PGFs of the number of arrivals present
in the system, the waiting time distribution and their
mean values. Section 3 highlights the various special
features of the proposed methodology on the analysis of
two paralleled heterogeneous servers Geo/Geo,G/2 sys-
tem which does not violate the FCFS principle. Section
4 gives a concluding report and in section five, we give
a conjecture that takes the results of this work to an-
other model of interesting application similar to the ones
discussed in this work.

2 The Geo/G/2 Queue under 1.2

Here, we consider ’the embedded time points’ generated
at departure instants of arrivals just after a service com-
pletion either by server-1 or by server-2. Hence the
sequence of system states observed at these embedded
points with state representation Nk = N(tk) denoting
the number of arrivals left behind in the queue by the kth

departing arrival at departure epoch tk forms a Markov
Chain {Nk} with state space S = 0 , 1 , ....

2.1 PGF for the Number of Arrivals

Let qj be the steady state probability of finding j arrivals
in the system as observed by a departing arrival with a
z-transform V (z) =

∑j=∞
j=0 qjz

j . Similarly, let αj denotes
the probability that j arrivals occur in a service comple-
tion period with probability mass function fmin(k) and
δj denotes the probability that j arrivals occur in a geo-
metrically distributed service time with probability mass
function f1(k). Since these arrivals come from a geomet-
ric process at a steady rate λ, then for j = 1, 2, 3, ..., we
have

αj =

∞∑
k=1

fmin(k)
(
k
j

)
λj(1− λ)k−j (6)

and

δj =

∞∑
k=1

f1(k)
(
k
j

)
λj(1− λ)k−j (7)
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Now, denote the respective z-transforms of the probabil-
ity distributions {αj} and {δj} by Amin(z) and A1(z)
respectively such that

Amin(z) =

∞∑
j=0

αjz
j = Fmin(1− λ+ λz) (8)

and

A1(z) =

∞∑
j=0

δjz
j = F1(1− λ+ λz) (9)

Focusing on the embedded points under equilibrium con-
ditions, let the unit step conditional transition proba-
bility of the system going from state i of the (k − 1)st

embedded point to state j in the kth embedded point be
qij = P (Nk = j/Nk−1 = i); i, j ∈ S . These transition
probabilities will form a unit step transition probability
matrix Q = qij as below:

Q =

⎛
⎜⎜⎜⎜⎝

δ0 δ1 δ2 δ3 . . . .
δ0 δ1 δ2 δ3 . . . .
0 α0 α1 α2 α3 . . .
0 0 α0 α1 α2 α3 . .
0 0 0 α0 α1 α2 α3 .

⎞
⎟⎟⎟⎟⎠ (10)

If we denote by qj = limn→∞ qnij , the equilibrium state
probabilities at departure instants where qnij represents
the n-step probability of moving from state i to j such
that Q = qij with q = (q0, q1, q2, ...) and e = (1, 1, 1, ...)

′
,.

Assuming that A′
min(1) < 1, then the stationary dis-

tribution of the state transition matrix Q exits and is
given by the unique solution of the following system of
equations:

qQ = q,qe = 1 (11)

Now, multiplying the jth equation of qQ = q in (11)
by zj and summing all the left-hand sides and the right-
hand sides from j = 0 to j = ∞, we get the PGF Vmin(z)
of the queue length distribution qj of the sequence {Nk}
below11

Vmin(z) =
q1z[Amin(z)−A1(z)] + q0[Amin(z)−D]

Amin(z)− z
(12)

Since q1 = ρq0, A
′
min(1) < 1, A′

1(1) = ρ and V (1) = 1,
we derive from (12) that

Vmin(z) =
(z − 1)A1(z) + (1 + ρz)[A1(z)−Amin(z)]

z −Amin(z)
(13)

And12 the mean number E[N ] of arrivals present in the
system at a random point or at a departure epoch of time

11D = zA1(z)

12Here, q0 =
1−A

′
min(1)

1+(ρ−A
′
min

(1))(1+ρ)

is13

E[N ] =

(
ρ−A

′
min(1)

) [
ρ+A

′
min(1)(1 + ρ)

]
1 + (ρ−A

′
min(1))(1 + ρ)

+K (14)

The14 discrete time equivalent of PASTA (Poison Ar-
rivals See Time Averages) is referred to as BASTA
(Bernoulli Arrivals See Time Averages) or GASTA (Geo-
metric Arrivals See Time Averages). Using this property,
we envisage that the distribution Vmin(z) in (13) also hold
for the number of arrivals in the system as seen by an ar-
bitrary arrival entering the system. Now, if we denote
the PGF of the waiting time W representing the num-
ber of slots for which an arrival stays in the system with
distribution W (k) = P (W = k) by W (z) for 0 < z < 1.
Then replacing 1− (λ−λz) by z in (13), one obtains that

Vmin(z) = W (1− λ+ λz) (15)

And the mean waiting time of an arrival in the system
obtained from (15) satisfies the well-known Little’s for-
mula. For a numerical illustration, suppose that λ varies
from 5 to 15 as in Table-1 below while μ=8.0, μ2=7.5,
the following numerical values are obtained:

Table-1: Mean queue Length E(N) and Mean
waiting Time W̄

μ = 8.0 and μ2 = 7.5

λ ρ ρ1 q0 E[N ] W̄
5 0.63 0.32 0.45 1.01 0.20
8 1.00 0.52 0.25 2.05 0.26
10 1.25 0.65 0.15 3.12 0.31
11 1.38 0.71 0.11 3.90 0.35
12 1.50 0.77 0.08 5.04 0.42
13 1.63 0.84 0.05 6.97 0.54
14 1.75 0.90 0.03 11.2 0.80
15 1.88 0.97 0.01 32.0 2.14

From table-1, it can be seen that both the mean queue
length E[N] and the mean waiting time W̄ steadily in-
crease with increase in λ. Also, the stationary q0 values
decrease with increase in λ as expected.

Lemma 2.1 Suppose server-2 breaks down during an op-
erational period. Then the Geo/Geo+G/2 → Geo/Geo/1
queue.

Proof Suppose that the load ρ = λ
μ < 1. Denote by

Q0(z) and W0(z) the PGFs of the queue length and the
waiting time distributions of the Geo/Geo/1 system such
that

Q0(z) =
(1− z)(1− ρ)F1(1− λ = λz)

F1(1− λ = λz)− z
(16)

13This measure is obtained after differentiating the above equa-
tion at z=1.

14K=ρ+
[A

′
min(1)]2

1−A
′
min

(1)
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with mean

E[N ] = ρ+
λ2

2(1− ρ
E(S1(S1 − 1)) (17)

Similarly, let

W0(z) =
(1− z)(1− ρ)F1(z)

(1− z)− λ(1− F1(z))
(18)

with mean

W̄0 =
E[N ]

λ
(19)

Now, if server-2 breaks down, then the service situation
is equivalent to a long service time of mean service time
β = ∞ units. Consequently, F2(z) cannot exist. Putting
μ2=0 in (4) and an onward simplification, one obtains
that Amin(z) = F1(1 − λ + λz) = A1(z). Finally, the
lemma follows if Amin(z) is replaced by A1(z) in the PGF
of the queue length distribution Vmin(z) in (13).

3 The Geo/G/2 Queue under 1.4

We will now discuss the steady state analysis of the
Geo/Geo,G/2 queue under the parallel queue discipline
outlined above for m = 1 arrival. The analysis is carried
out using the past service time of the arrival being served
by server-2 as a supplementary variable.

Denote by N the steady state number of arrivals in the
system and by ζ the steady state past service time of
the current arrival on server-2. Looking at the system at
departure instants, then the bi-variate process {N, ζ} is a
Markov process with state space S = 0 , 1 , 2 , ...× [0 ,∞).
Suppose that P is a probability measure such that

R0 = P [Both servers are idle]

R1,0 = [Only Server − 1 is busy; N = 1]

R0,1(η) = P [Only Server − 2 is busy; N = 1]

R1,1(η) = P [Both Servers are busy; N = 2]

R1,1,0 = P [Only Server − 1 is busy; N = 2]

and that15

R1,1,1(η) = P [Both Servers are busy, N = 3]

Remark We assign η to Rj only when server-2 is busy.
Given that two or more customers are present in the sys-
tem and that their past service time lies in (η, η + dη)
then in steady state, Rj(η) → Rj .

We give the steady state difference equations (56)
through (66) in terms of the above probability measures
that describe the queue length process in Appendix A.

15For any Rj when both servers are busy, the supplementary
variable ζ is such that η ≤ ζ < η + dη.

3.1 Difference Operator

Let Δ denotes the forward type finite difference operator
that is; Δf(x) = f(x+1)−f(x) for a real valued function
f(x). Analogous to rules for finding the derivative, we
have: If c is a constant, then Δc = 0. Similarly, for two
constants a and b define Δ(af + bg) = aΔf + bΔg and
Δ(fg) = fΔg + gΔf +ΔgΔf.16

3.1.1 The Stationary PGF P(z)

Let, for j = (0, 1), (1, 1), (1, 1, 1), 4, 5, ,

Qj(η) =
Rj(η)

1−B(η)
(20)

and that

R̃j =

∞∑
η=0

Qj(η)ΔB(η); Q̃j = βR̃j (21)

Similarly, let

Q∗
j (z) =

∞∑
η=0

Qj(η)z
η (22)

Substituting the quantities defined by (20), (21) and (22)
into the equations provided by (56) through (66) of Ap-
pendix A coupled with the application of the product rule
for two functions specified above, one obtains the follow-
ing set of steady state equations:

λR0 = μR1,0 +
1

β
Q̃0,1 (23)

(λ+ μ)R1,0 = λR0 + μR1,1,0 +
1

β
Q̃1,1 (24)

(λ+ μ)R1,1,0 = λR1,0 +
1

β
Q̃1,1,1 (25)

ΔQ0,1(η) = −λQ0,1(η) + μQ1,1(η) (26)

Q0,1(0+) = 0 (27)

ΔQ1,1(η) = −(λ+ μ)Q1,1(η) + λQ0,1(η) + L (28)

Q1,1(0+) = 0 (29)

ΔQ1,1,1(η) = −(λ+ μ)Q1,1,1(η) + λQ1,1(η) +M (30)

16The ΔfΔg term is ignored in queuing applications.
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Q1,1,1(0+) = λR1,1,0 +
1

β
Q̃4 (31)

And17 for j=4,5,..., we have18

ΔQj(η) = −(λ+ μ)Qj(η) + λQj−1(η) + H (32)

Qj(0+) =
1

β
Q̃j+1 (33)

To solve (23) through (33), multiply each Qj(η) by an
appropriate zη : |z| < 1 and summing as in (22). One
obtains following difference equations19

(
1

z
− 1

)
Q∗

0,1(z) + λQ∗
0,1(z) = μQ∗

1,1(z) (34)

(
1

z
− 1

)
Q∗

1,1(z) + (λ+ μ)Q∗
1,1(z) = O(z ) (35)

(
1

z
− 1

)
Q∗

1,1,1(z) + (λ+ μ)Q∗
1,1,1(z) = T (z ) (36)

(
1

z
− 1

)
Q∗

4(z) + (λ+ μ)Q∗
4(z) = μQ∗

5(z) +K (37)

Finally20, for j=5,6,7,..., we have

(
1

z
− 1

)
Q∗

j (z) + (λ+ μ)Q∗
j (z) = μQ∗

j+1(z) + U (38)

Lemma 3.1 Given that the traffic condition λ < μ +
(μ2 = 1

β ) holds, then in a busy period

Q∗
j (1) = βRj (39)

Moreover, for j=(0,1), (1,1), (1,1,1),4,5, Q̃j = Rj .

Proof Denote by X(t) = j the queue length at time
t during a busy period when both servers in the
Geo/Geo,G/2 system are busy. Let t1, t2, ... be the de-
parture epochs of arrivals served by server-2 at which
the process restarts from the scratch.21 Then the same

17Here, L = μQ1 ,1 (η) and M = μQ4 (η).
18H = μQj+1(η)
19Here also, O = λQ∗

0 ,1 (z ) + μQ∗
1 ,1 ,1 (z ) and T = λQ∗

1 ,1 +

μQ∗
4 (z ) + λR1 ,1 ,0 + 1

β
Q̃4 .

20K = 1
β
Q̃5 and U = 1

β
Q̃j+1

21That is, there exits the first time epoch t1 beyond which with
probability one the process is a probabilistic replica of the whole
process starting at t=0.

property regenerates at t2, t3, ... such that the sequence
of time epochs tn forms a renewal process. Conse-
quently, {X(t)} is a regenerative process on the state
space Ω = {(0, 1), (1, 1), (1, 1, 1), 4, 5, ...}. Now, given
that λ < μ + (μ2 = 1

β ) holds, then upon service com-
pletion on server-2, the state probability is

Rj(t) = P [X(t) = j]; j = (0, 1), (1, 1), ... (40)

In addition, if the past service time is η units for the
arrival being served by server-2 at a time t, then the
conditional probability that there are j arrivals in the
system is

Rj(t) =

∞∑
η=0

P [X(t) = j|t1 = η]ΔB(η) (41)

=

∞∑
η=0

P [X(t) = j, t1 > t|t1 = η]
ΔB(η)

1−B(η)
(42)

=

Qj(t) +

t∑
η=0

P [X(t) = j|t1 > t− η|t1 = η]ΔB(η) (43)

=

Qj(t) +

t∑
η=0

Rj(t− η)ΔB(η) (44)

Which is the unique solution of the discrete time renewal
equation

Rj(t) = Qj(t) +

t∑
η=0

Qj(t− η)ΔM(η) (45)

Where M(t) = E[X(t)] is the renewal function of the
renewal process with distribution function B(t). Since
Qj(t) tends to zero as t → ∞. Application of the key
renewal theorem gives

Rj = lim
t→∞Rj(t) → 1

β

∞∑
t=0

Qj(t) =
1

β
Q∗(1) (46)

Remark Note that one cannot obtain {Rj} completely
for all general service time distributions. In case the ser-
vice time distribution B(•) has a constant hazard rate,
then a compact expression for each member of the se-
quence of {Rj} can be computed.22

Now, if lemma 3.1 is applied in (34) through (38) and then
simplified as z → 1, one can obtain a compact expression
for each member of the sequence Rj . Those simplified re-
sults are reported in Appendix-B. A summarized version

22Since
ΔB(η)
1−B(η)

→ 1
β

and
∑∞

η=0
Qj(t)ΔB(t) = 1

β
Rj
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is given below23 for two real values a = (μ2 + λμ + λ2)
and b = (a+ λμ+ 2λ2).

R1 =

(
λ

b

)[
λ2

μ2
+

a+ λ2 + λμ

μ

]
R0 (47)

R2 =

(
λ

b

)[
λ

μ

](
1

μ2

)[
aμ2

μ
+ λ2

]
R0 (48)

R1,1,1 =

(
λ

b

)[
λ2

μ2

](
λ

μ

)2

R0 (49)

R4 =

[
λ3 − μ2a

μ+ μ2

] [
λ3

μ2bμ2

]
R0 (50)

In general, for j ≥ 4

Rj =
[
(ρ1)

(j−4)
]
(
λ3 − μ2a

μ+ μ2
)

[
λ3

μ2bμ2

]
R0 (51)

∞∑
j=4

Rj =

[
λ3 − μ2a

μ+ μ2

] [
λ3

μ2bμ2

]
R0

(1− ρ1)
(52)

Similarly, the generating function P (z), the mean queue
length E[N ] and the mean waiting time W̄ are respec-
tively given by

P (z) =

∞∑
j=0

Rjz
j = R0 + ..+

R4z
4

(1− ρ1z)
(53)

E(N) = R1 + 2R2 + 3R3 +R4

[
4− 3ρ1
(1− ρ1)2

]
(54)

W̄ =
(R1 + 2R2 + 3R3) +R4

[
4−3ρ1

(1−ρ1)2

]
λ

(55)

Lemma 3.2 Suppose λ = μ. Then the underlying
Markov chain {N = j} is ergodic if and only if μ > 3μ2.

Proof Under the stability condition λ < μ+μ2 i.e. ρ1 <
1, the underlying Markov chain {N = j} is ergodic if
and only if each P (N = j) = Rj is positive inclusive of

R4 =
[
λ3−μ2a
μ+μ2

] [
λ3

μ2b

]
R0. This implies that λ3−μ2a

μ+μ2
> 0.

Now, given that λ = μ, then the lemma holds.

Lemma 3.3 The stationary distribution {Rj = P (N =
j)} of the system size of the Geo/Geo,G/2 queue exists
if and only if (λ3 > μ2 a) holds where a = λ2 + λμ+ μ2

23Detailed discussions and parallel results on the continuous time
version M/G/2 queue is available in Sivasamy, Daman & Sulaiman
[15].

Proof Since R4 is proportional to λ3 − μ2a and is
positive definite (being a probability value), it is trivial
that the stationary distribution {Rj = P (N = j)}
of the system size of the Geo/Geo,G/2 queue exist if
(λ3 > μ2 a) holds. Conversely, suppose (λ3 > μ2 a) > 0.
Then R4 is positive definite and so it is proportional to
(λ3 − μ2a).

4 Numerical Approximations

For a comparative study on the mean number of cus-
tomers E[N ] and the mean waiting times W̄ of the
two models namely; the Geo/(Geo + G)/2 and the
Geo/Geo,G/2 queues, we suppose that λ varies from
10.1 to 10.6 while μ = 5.5 and μ2 = 5.2. Table-2 below
summarizes the approximate values for E(N) and W̄ for
the two models studied here.24

Table-2: Mean Performance Analysis

λ E[N ]ser. W̄ser. E[N ]par. W̄par.

10.1 18.87 1.87 18.10 1.79
10.2 22.46 2.20 22.24 2.18
10.3 27.83 2.70 27.98 2.92
10.4 36.77 3.54 37.18 3.58
10.5 54.62 5.20 55.23 5.23
10.6 108.14 10.20 108.89 10.27

5 Discussions & Remarks

Note that under equilibrium conditions, there is an in-
significant difference between

1. E[N ]Geo/Geo+G/2 and E[N ]Geo/Geo,G/2.

2. W̄Geo/Geo+G/2 and W̄Geo/Geo,G/2.

Thus, one can conclude that though, some violations of
the ’first-come first-served (FCFS)’ principle occurred be-
cause of heterogeneity of servers in Geo/G/2 queues gen-
erally as pointed out by Krishnamoorthi [11] , the two al-
ternative queue disciplines here minimize such violations
in the long run. This is because the steady state charac-
teristics for the Geo/Geo,G/2 queue under the parallel
queue discipline and that of the Geo/Geo + G/2 queue
under serial queue discipline differ insignificantly as ob-
served in table-2 above. Similarly, we infer from these
results that, if the arrival rate is far away from the com-
bined service rate, then it is operationally better to allo-
cate an arrival to a server instead of joint service when

24The stability condition λ < (μ + μ2) holds since (μ + μ2) =
10.7 > 10.6 = λmax. Also, as in table-2, ser . means serial and par .
means parallel.
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another arrival is present. As can be seen in the table-2
above where in this case both the mean queue length and
the waiting time of the model under the parallel queue
discipline is stationary smaller than that of the model un-
der serial service. However, the serial queue discipline is
a better alternative especially in high-speed service sys-
tems with arrival rates approaching the combined service
rates.

The results obtained in this work can be applied in ser-
vice systems where customer distribution is required for
better practice. Comparing the model with similar ones
discussed in the literature, the ones here are simpler and
results compact, hence a good alternative for use. Most
importantly is the new result of our work that under the
serial queue discipline applied on the two-serially con-
nected servers as in the Geo/Geo+G/2 and the parallel
queue discipline applied when the servers are in paral-
lel as in the Geo/Geo,G/2 queue, the Geo/Geo + G/2
and Geo/Geo,G/2 models are identical if and only if
λ3 > μ2(μ

2 + λμ + λ2). This ensures that the associ-
ated Markov chain for the arrival distribution is ergodic.

There is a scope in studying the models discussed here
via Markov-renewal theory as in Senthamaraikannan and
Sivasamy [14].

The importance of control in the design and analysis of
models of service systems cannot be over emphasized.
For a detail discussion, see Mohammad & Ali [13]. Re-
cently, Sulaiman & Daman [16] have presented an exact
analysis of both the arrival distribution and waiting time
expectation for a continuous time M/G/2 queuing system
working under a control queue discipline.25 The analysis
shows that the M/G/2 queue with the embedded control
performs better than the continuous time M/G/2 queue
under both the serial and the parallel queue disciplines.
Under similar assumptions employed for the model with
control, we conjectured that

Conjecture 1 Under heavy traffic conditions, the
Geo/G(control)/2 model will perform better than the
Geo/G/2 queues studied in this work.
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Appendices

Appendix A
If Rj = P [N = j] is the probability that there are j
arrivals in the system, then

R0 = P [N = 0] = R0,0

R1 = P [N = 1] = R1,0 +R0,1

25Details of this queue discipline is found in Sulaiman & Daman
[16].

R2 = P [N = 2] = R1,1,0 +R1,1

R3 = P [N = 3] = R1,1,1

Rj = P (N = j); j = 4, j = 5, ....,

Thus when ζ > 0, it can easily be verified that the steady
state probability functions of the queue length distribu-
tion {Rj , η < ζ < η + dη} satisfy the below difference
equations26

λR0 = μR1,0 +

∞∑
η=0

R0,1(η)
ΔB(η)

1−B(η)
(56)

(λ+ μ)R1,0 = I +

∞∑
η=0

R1,1(η)
ΔB(η)

1−B(η)
(57)

ΔR0,1(η) = −(λ+
ΔB(η)

1−B(η)
)R0,1(η) + μR1,1(η) (58)

R0,1(0+) = 0, j = 1 (59)

(λ+ μ)R1,1,0 = λR1,0 +

∞∑
η=0

R1,1,1(η)
ΔB(η)

1−B(η)
(60)

ΔR1,1(η) = −
(
λ+ μ+

dB(η)

1−B(η)

)
R1,1(η) +Y (61)

R1,1(0+) = 0, j = 2 (62)

ΔR1,1,1(η) = −
(
λ+ μ+

ΔB(η)

1−B(η)

)
R1,1,1(η) + Z (63)

R1,1,1(0+) = λR1,1,0 +

∞∑
η=0

R4(η)
ΔB(η)

1−B(η)
(64)

For j ≥ 4 , we have27

ΔRj(η) = −
(
λ+ μ+

ΔB(η)

1−B(η)

)
Rj(η) + θ (65)

Rj(0+) =

∞∑
η=0

Rj+1(η)
ΔB(η)

1−B(η)
(66)

Appendix B
For a = (μ2 + λμ + λ2), b = (a + λμ + 2λ2), ρ = λ

μ and

ρ1 = λ
μ+μ2

, we have

R0 = R0

26Y=λR0,1(η) + μR1,1,1(η). Also, Z = λR1,1(η) + μR4(η). Fi-
nally, θ = λRj−1(η) + μRj+1(η).

27In (57), I = λR0 + μR1,1,0
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R1,1 = ρR0,1

R1,0 =

[
μ2

λ

(
λ2 + λμ+ a

λμ

)]
R0,1 (67)

R1,1,0 =

[[μ2

λ

]( a

μ2

)]
R0,1 (68)

R0,1 =

[
λ3

μ2[a+ 2λ2 + λμ]

]
R0 (69)

R2 =

[
λ2

μμ2[a+ 2λ2 + λμ]

(
a

μ
+ λ2

)]
R0 (70)

R1,1,1 =

(
λ

μ

)2 [
λ3

μ2[a+ 2λ2 + λμ]

]
R0 (71)

R4 =

[
λ3 − μ2a

μ+ μ2

] [
λ3

μ2[a+ 2λ2 + λμ]

]
R0 (72)
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