
Numerical Geometric Integration with HOMsPy
Asif Mushtaq∗

Abstract—The HOMsPy project is a collection of Python
programs for some higher order geometric methods to solve a
class of Hamilton equations numerically. The core program is
the kimoki module, which uses symbolic algebra to generate
a solver module for each specific Hamiltonian, together with
a driver module example. Both double-precision and multi-
precision modules can be generated. In this paper we (i) explain
how to use the kimoki module with some illustrative well-
known Hamiltonian problems, (ii) discuss how to run and
modify the generated driver modules, and (iii) demonstrate
through this some aspects of the implemented methods, like
how well they respect energy conservation and time reversal
invariance.

Index Terms—HOMsPy, higher-order-methods, symplecticity,
automatic-code-generation, hamiltonians

I. INTRODUCTION

MANY fundamental problems in molecular dynamics,
celestial mechanics, cosmology and in applied math-

ematics can be modeled as Hamiltonian problems, providing
a microscopic description of the particles (or similar ele-
mentary subsystems) involved. To get insight into the often
complicated behaviour of such models one must usually
resort to numerical simulations. Hamiltonian systems arise
at very large scales (celestial mechanics, cosmology) and
at small scales (atoms and molecular simulations). The
Hamilton equations of motion constitute a system of ordinary
first order differential equations,

q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa
, a = 1, . . . ,N (1)

where qa and pa are generalized coordinates of positions
and momenta, respectively, N is the number of variables,
˙ denotes differentiation with respect to time t, and H =
H(q,p). The initial conditions at t = 0 can be written as,

qa(0) = qa0 , pa(0) = pa0.

If we define,

z =

(
q
p

)
,∇H =

(
∂H
∂q1 , · · · , ∂H

∂qN
, ∂H
∂p1

, · · · , ∂H
∂pN

)T
, (2)

the equivalent expression of (1) can be written as,

ż = J∇H, (3)

where
J =

(
0 Id
−Id 0

)
, (4)

is a skew-symmetric matrix. Further Id and 0 represent the
(N × N) unit and zero matrices respectively. Hamiltonian
problems usually belong to the class of ordinary differential
equations which are difficult or mostly (almost) impossible

Manuscript received March 10, 2015; first revised June 05, 2015; second
revised July 22, 2015

A. Mushtaq, Member IAENG, is with the Department of Mathematical
Sciences, Norwegian University of Science and Technology, NTNU, N-7491
Trondheim, Norway. e-mail: Asif.Mushtaq@math.ntnu.no.

to solve analytically. The equation of motion can be derived
from the laws of physics for a physical system. Standard
(traditional) numerical integrators which are used to simulate
these equations, sometimes are not successful to provide the
information about these (hidden) laws.

Several numerical approaches are implemented to find
the solutions of Hamiltonian systems, but some of them
are inappropriate for long-time simulations. In recent years
geometric numerical integration methods are extensively
used and gaining popularity for the solution of Hamiltonian
problems. A geometrical integrator preserves one or more
geometric (physical) property(ies) exactly (i.e. within the
roundoff errors). In physical systems energy preservation,
symmetries, time-reversal invariance, symplectic structure
(for stochastic symplectic perspective we refer to [1]), an-
gular momentum and phase-space volume are some very
important and crucial geometric properties.

HOMsPy, Higher Order (symplectic) Methods in Python,
is a collection of Python routines designed to generate nu-
merical code for solving the differential equations generated
by Hamiltonian of the form,

H(q,p) =
1

2
pT M−1p + V (q). (5)

The main goal of this program is to provide a framework
for solving the Hamilton’s equations by some higher order
symplectic algorithms proposed in [2], [3], using a symbolic
program which automatically constructs the numerical solver,
discussed in [4], for each specific Hamiltonian problem. The
implemented symplectic schemes are based on extensions
of the Störmer-Verlet method. Explicit implementation of
the numerical code for a specific potential may be rather
laborious and erroneous to do by hand, since repeated differ-
entiation (with respect to many variables) and multiplication
by lengthy expressions are often involved.

We have therefore written a code-generating program us-
ing the sympy symbolic manipulation package. This takes a
given potential V as input, perform all the necessary algebra
symbolically, and automatically writes a python module for
solving one full timestep τ to the higher order (or selected
order) of accuracy. The program also writes a runfile example
(driver module) which demonstrates how the solver module
can be used.

A. Important features of the program

Important aspects of this program are listed below:
• The program can handle Hamiltonian problems of the

form
H(q,p) = T (p) + V (q),

where T (p) = 1
2p

Tp is the kinetic term and V (q) is
potential term. This program is very efficient for a large
class Hamiltonian where potential term is sufficiently
differentiable.

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

• The program has options for generating double-
precision (DP) and/or multi-precision (MP) solver(s)
for method(s) up to eight order in the timestep τ , and
provides an automatic code generating environment.

• For a given Hamiltonian, a set of driver modules are
automatically generated. In these, several parameters
are given default values to this program. Further, initial
values are generated randomly. It is straightforward for
the user to change those.

B. Overview
The structure of the paper is following: In section II,

general installation instructions for HOMsPy and associated
packages are provided. Full automatic code generation of the
program’s working is demonstrated on a simple pendulum
problem in section III. In sections IV and V, mandatory
and optional arguments of HOMsPy are discussed. In section
VI, discussion on different aspects of the two degree of
freedom problem Hamiltonian problem is presented with
example code snippets. In section VII, some power of
the multi-precision (MP) is demonstrated with the help of
error analysis on a non-linear anharmonic oscillator. Time
invariance reversibility is the part of section VIII and in
section IX some concluding remarks are provided.

II. INSTALLATION AND CONFIGURATION

This program, as well as the generated solver and driver
modules, is written in the Python programming language,
using the sympy [5], numpy [6], and optionally mpmath [7]
libraries. In addition matplotlib [8] is used for plotting.
In this section the focus of discussion will be the installation
and configuration of necessary softwares as well as HOMsPy.
For the basic understanding on scientific computations in
Python and for general installation in detail, see [9].

A. Prerequisites
We have used Python version 2.7.x, including the packages

sympy, numpy, mpmath (for multi-precision calculations),
and matplotlib for all development and testing. We have
registered that incompatible combinations of these packages
can lead to problems. We have not tested the code with
Python version 3.x.

B. Installation of HOMsPy

• Download aesd_v1_0.tar.gz or later versions
from
http://cpc.cs.qub.ac.uk/summaries/AESD v1 0.html,
or ask the author for a copy of HOMSPy.tar.

• HOMsPy contains three subdirectories:

kimoki: The directory containing the code generating
module.
examples: A directory containing a single file, named as
makeExamples.py. By running makeExamples.py eight
new files will be generated, four solver modules (Vi-
bratingBeam.py, AnharmonicOscillator.py, Anharmoni-
cOscillatorMP.py, TwoDPendulumMP.py), and four run-
file examples known as driver modules (runVibrating-
Beam.py, runAnharmonicOscillator.py, runAnharmoni-
cOscillatorMP.py, runTwoDPendulumMP.py). By run-
ning each runfile example two .png plots will be

generated, <example> soln.png and <example>
EgyErr.png. Each runfile example will also generate

several intermediate Python pickle (.pkl) files. These can
normally be deleted after use.
demo: This directory demonstrates how the examples
directory should look like after running makeExam-
ples.py, and the runfile examples. Note that the figures
will not look identical, because the examples are solved
with random initial conditions. This directory in addi-
tion contains six .log-files with output which is normally
printed to screen. These files contains information about
how long it takes to run the various programs.

C. Interactive use of the solver

The following simple interactive session will ensure the
proper working of Python program and its associated pack-
ages.

Interactive use of the solver module

1 >>> from __future__ import division
2 >>> from VibratingBeam import *
3 >>> z = numpy.array([1/3, 2/3])
4 >>> kiMoKi(z); print z
5 [0.40155244 0.69839148]
6 >>> kiMoKi(z); print z
7 [0.47313122 0.73369218]

Here z = [q, p] is a numpy array containing the current
state of the solution. Each call of kiMoKi updates this state
(data from previous time-steps are not kept).

III. USING HOMSPY ON A SIMPLE PENDULUM

Let us start with a simple illustrative example. Consider
the pendulum problem defined by the Hamiltonian

H(q, p) =
1

2
p2 − cos(q). (6)

The corresponding set of ODEs are

q̇ = p, ṗ = −sin(q).

User can include the following code snippet in makeExam-
ples.py to get the solver as well as driver modules. One can
opt the following procedure in oder to solve the pendulum
problem by HOMsPy:

• First write a function specifying the Hamiltonian, giving
symbolic names for the coordinates (q) and momentum
(p) to be used (and optionally also additional parame-
ters), and the symbolic expression of the potential V .
In the present example there is just one coordinate and
one momentum involved, with V = − cos(q). A code
snippet for the pendulum problem is shown below, with
the potential defined on line 7.

Creating a module for solving a pendulum problem

1 from sympy import cos
2 def makePendulum():
3 # Choose names for momentum
4 q, p = sympy.symbols([’q’,’p’])
5 qvars = [q]; pvars = [p]
6 # Define the potential term
7 V = -cos(q)

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

8 # Create code for DP solver
9 kimoki.makeModules(’Pendulum’,

V, qvars, pvars)

Note that the sympy versions all the functions which
occur in V must be known to the code generating
program, since it must compute (higher order) symbolic
derivatives of V . This is why one has to import the cos-
module from sympy in the snippet above.
Further, the numerical numpy and/or mpmath version
of all these functions, and their generated derivatives,
must be known to the solver module (with the same
names as used by sympy). For this reason the solver
module(s) always import most of the elementary func-
tions (I.e., sqrt, log, exp, sin, cos, tan, sinh, cosh, tanh,
asin, acos, atan, atan2, asinh, acosh, and atanh), using
the appropriate names (see the top of Pendulum.py
in this example). If more advanced functions (f.i. Bessel
functions) are required, they must be added by hand to
the imports at the top of the solver module.

• The call of
kimoki.makeModules(’Pendulum’,...)
will generate a solver module, Pendulum.py, and
runPendulum.py as a demonstration driver module.

– Pendulum.py, the solver, contains all necessary
code which is essential for our proposed higher or-
der method. The user does not need to do anything
with this file at the moment. But as an editable text
file it is of course available for modification.

– runPendulum.py, an example driver module,
is made to test the solver module, and provide
a starting point for real applications. It provides
solutions of the Hamilton equations for schemes
of various orders, using random initial conditions
and parameters, and generate plots of the results.
The drivers modules are added in HOMsPy for the
user convenience. They are ready to be executed,
but user can easily be modified. This is sometimes
even necessary.
In Figure 1, 8th order proposed method is used
to solve the pendulum problem. Initial conditions
are q(0) = 0 and p(0) = 1.0 with timestep
τ = 0.1. Here z0 denotes the position q, and z1
the momentum p.

• One may now run the program runPendulum.py.
Two separate tasks are executed by this program:
First the subroutine plotSingelSolution()
is called. This routine plots all components of a
solution, generated with random initial values and
parameters. The routine first checks if a solution has
already been generated and saved to a pickle
file, #Pendulum_SolnTau100Ord8.pkl.
If the file does not exist, the subroutine
computeSingleSolution(order) is called
in order to generate a file with the solution. The
solution is now read in and plotted, and the plot is
saved to the file Pendulum_Soln.png; it will be
similar to the plot in Figure 1.
NB! New execution of the makeExample.py can be
result in overwriting the existing driver module.
Second the subroutine plotEnergyErrors() is

0 2 4 6 8 10 12 14 16
Time t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

So
lu

tio
n

Numerical solution for timestep 1
10

 and method of order 8

z0

z1

Fig. 1: Numerical solution of pendulum problem

called. This routine plots how well energy is preserved
by the solver, for different values of the timestep τ
and order N of the solution. The energy error is
expect to scale like τN with τ . The routine checks
if #Pendulum_EgyErrTau<T>Ord<N>.pkl (with
<T> = 500, 1000, and 2000, and <N> = 2, 4, 6,
8), has already been generated. If not, the subrou-
tine computeEnergyErrors() is called in order
to generate the required file(s), before the data is
read in and plotted. The plots are saved to the file
Pendulum_EgyErr.png. Figure 2 shows the scaled
energy errors for different values of the timestep τ and
order N of the integrator. This figure verifies that the
error scales like τN . The periodicity of the solution is
reflected in the periodic variation of the energy error.

0 2 4 6 8 10 12 14 160.12
0.10
0.08
0.06
0.04
0.02
0.00
0.02
0.04

(E
(t

)−
E

(0
))
/τ

N

2nd order (N=2)

0 2 4 6 8 10 12 14 160.005

0.000

0.005

0.010

0.015

0.020
4th order (N=4)

τ=1
5

τ= 1
10

τ= 1
20

0 2 4 6 8 10 12 14 16
Time t

0.006
0.005
0.004
0.003
0.002
0.001
0.000
0.001

(E
(t

)−
E

(0
))
/
τN

6th order (N=6)

0 2 4 6 8 10 12 14 16
Time t

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020
8th order (N=8)

Approximate energy conservation

Fig. 2: Scaled energy errors for N th order methods.

• Some comments:
The code in the driver module is organized to first
generate the solution and additional data, and save
these to files, before the plots are made. For small
demonstrations this is superfluous (by default the pickle
files are removed immediately after they have been
read), but such a separation is advantageous when fine-

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

tuning plots (which may require many iterations) from
data taking long time to generate.
If the driver module crashes or is aborted, some pickle
files (with names starting with the symbol #) may not
have been removed.
For high-quality figures one may want to generate the
plots in .pdf-format, with axes labels and legends
by use of LATEX. This is possible in matplotlib,
provided a working TEX-installation is detected. The
driver module contains code for this (commented out to
avoid unnecessary errors). In fact, most of the code in
the driver module is related to plotting solution and data,
very little to generating it. A full routine to generate
.pdf-format of Figure 2 is provided in appendix A.

IV. ARGUMENTS TO THE MODULE GENERATING ROUTINE

The main call in function in the module kimoki is

makeModules(’name’, V, qvars, pvars[,
keywords]).

This will generate a solver and driver modules. The required
arguments are listed in Table I.

TABLE I: Mandatory (positional) arguments
Name Description Symbols

’name’ basename of the generated file Pendulum
Potential term potential term in term of q V

Variables define necessary variables qvars, pvars

TABLE II: Optional Keywords Parameters for
kimoki.makeModules()

Name Keyword Default

Parameters PARAMS = parameters PARAMS = None
Order MAXORDER = order MAXORDER = 8

Use Horner USEHORNER = None/True/False USEHORNER = None
Double-precision DP = True/False DP = True
Multi-precision MP = True/False MP = False

Verbose VERBOSE = True/False VERBOSE = False
All Tk ALLTK = True/False ALLTK = False

Count iterations COUNTITRS = True/False COUNTITRS = False
Use D3 USE D3 = True/False USE D3 = False

In addition a number of optional keyword arguments may
be given. They are listed in Table II.Some explanations of
the keyword parameters defined in Table II may be:

• The PARAMS keyword must be assigned a list of the
symbolic parameters which occurs in the definition of
the potential V. They can be used to make the solver
module more general, but at the cost of longer and more
complicated expressions in the numerical code.

• The kimoki module is capable of generating numerical
solvers with accuracy up to order τ8, while the accuracy
actually being used in each case is specified by a
runtime parameter to the solver. There are cases where
a solver of maximum order 8 is unwanted, because the
code becomes too large and complicated, too slow to
run, or takes too long to generate. For this reason there
is a keyword argument MAXORDER, which specifies the
the maximum order of the generated code.

• For simple polynomial potentials it may be of some
advantage to have expressions written in Horner or-
dered form. There is a routine in sympy for making

such conversions. The parameter USEHORNER specifies
whether it should be used. Given the value None it is
used when V is a polynomial in one variable, otherwise
not; given the value True it is always used when V
is a polynomial. It is our experience that the Horner
conversion routine in sympy can be extremely slow
and memory consuming.

• If the DP keyword is set to True double precision
solver and driver modules will be generated. If the
MP keyword is set to True multi-precision solver and
driver modules will be generated.

• When the VERBOSE keyword is set to True a fair
amount of diagnostic messages about progress and time
use is printed to standard output.

• Our higher order methods are based on generating an
effective potential and effective kinetic energy

Veff(q) = V (q) +
3∑

k=1

Vk(q) τ2k, (7a)

Teff(q,p) = 1
2p

Tp +
3∑

k=1

Tk(q,p) τ2k, (7b)

to be used in a Störmer-Verlet type integration scheme.
However, the functions Tk(p, q) are not actually used in
the integration scheme; instead a separately constructed
generating function G(q,P ; τ) is used. Hence, the
functions Tk are not needed for the integrators. If the
keyword ALLTK is set to True they are nevertheless
generated.

• The integration steps which are based on the generating
function (the push steps) G(q,P ; τ) require numerical
solution of a nonlinear algebraic equation. The solution
of this is done by iteration, which seems to work
well for small timesteps τ . To monitor the behavior of
the iterative solver, the keyword COUNTITRS may be
set to True. This will generate code for constructing
an histogram over the number of iterations. This his-
togram is available as the array <name>.itrs. For
the runPendulum example the number of iterations
varies between 2 and 5.

• In the original proposal the potential V6 was defined
in terms of an operator D3, cf. equations (32b) and
(33) in ref. [2]. In ref. [4] it was realized that this
is rather inefficient for problems with many variables,
since the number of operations in D3 grows like N 3.
An equivalent expression which is more efficient for
large N is given in footnote 4 on page 19 of ref. [4],
and was implemented as default. The original version
is used if the keyword USE_D3 is set to True; it may
be slightly faster for small values of N .

V. PARAMETERS OF THE SOLVER AND DRIVER MODULES

A. Solver module parameters

The parameters available in the solver module are
• An important parameter in the solver modules is
<name>.epsilon. This specifies how accurately the
algebraic equations of in the push step should be solved.
This must be somewhat below the numerical precision
used. A too large value of epsilon will destroy the
symplectic property of the solvers. As default values

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

we have used 10−12 for the double precision solvers,
and 10−20 for the multi-precision solvers (in the driver
module examples these parameters have been changed
to 10−13 and 10−30 respectively). Note that the numer-
ical precision used for the multi-precision solvers must
be set in the driver module.

• The timestep used is defined by the parameter
<name>.tau. By default tau is set to be 1

10 for
the double precision versions, and 1

100 for the multi-
precision versions.

• The order of integration to use is specified by the
parameter <name>.order. It can be lower than the
maximum order specified when the solver module
was generated; the latter is available as the parameter
<name>.maxorder (it is not good idea to change it).

• Other available parameters are <name>.params (a
list of the potential parameters, possibly empty) and
<name>.dim (the phasespace dimension 2N). They
should not be changed either.

B. Driver module parameters

The driver module is likely to be modified according to
use. The driver module parameters are,

• Initial values z0 are set to be random by default. These
values can be model specific so user can easily change
these values in the driver module. And nMax is the
numeber of time-steps used to solve the system.

• Step-size τ is set to be 1
10 for double-precision calcu-

lation and 1
100 is set for multi-precision calculations.

VI. EXPERIMENTING WITH HOMSPY:
HENON-HEILES HAMILTONIAN MODEL

In this section, a more interesting detailed interaction with
HOMsPy will be demonstrated with some experimentation
on the following Hamiltonian models. User can create his
own deriver module. Our automatically generated deriver
module is for the convenience and starting point for the
user. The Henon-Heiles model is a Hamiltonian with two
degree of freedom (N = 2). It is described in a classical
paper of Henon and Heiles [11] in 1964.

The Hamiltonian is given by

H(q,p) =
1

2
(‖p‖2 + ‖q‖2) + q21q2 −

q32
3
, (8)

where p = (p1, p2) and q = (q1, q2).
This test example will be used to demonstrate long-time
energy conservation, potential motion, and Poincare’ section.
An idea will be provided, how one can interact with HOMsPy
to get more insight into the model problem. The solver
and driver modules can be generated by the following code
snippet which can be written in makeExamples.py.

Creating a modules for solving Henon-Heiles model

1 def makeHenonHeiles():
2 # Choose names for coordinates
3 q1, q2, p1, p2 =

sympy.symbols([’q1’, ’q2’, ’p1’,
’p2’])

4 qvars = [q1, q2]; pvars = [p1, p2]

5 # Define the potential term
6 V = (q1**2 + q2**2)/2 + q1**2*q2 -

q2**3/3
7 KiMoKi.makeModules(’HenonHeiles’, V,

qvars, pvars)

Similar to earlier case, the call of
kimoki.makeModules(’HenonHeiles’,...)
will generate a solver module, HenonHeiles.py,
and a driver module, runHenonHeiles.py. At this
point one can create its own driver module with the
minimum lines of code provided in appendix B. But for
demonstration and discussion, in subsections ahead, I
will modify the driver module generated by the call of
kimoki.makeModules(’HenonHeiles’,...). and
will change the parameters involved in the model problem
according to desire. I plug in initial values (0.12, 0.12,−
0.12, 0.12) and τ = 1

8 given in ref. [12] into the driver
module.
NB! The precautionary strategy is to change the name
of driver module (runHenonHeiles.py) with an
appropriate name like analyseHenon-Heiles.py. In
this way one can escape of danger to overwrite the file in
case of re-execution of the makeExamples.py

A. Long-time energy error

In Figure 3 engery errors are computed with N th pro-
posed methods. This figure shows the bounded energy errors
for long time. A subroutine plotEnergyError() (see
appendix C) is written in the driver module to generate
Figure 3.

0 50 100 150 200 250
time t

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
(t
)−
E
(0
)

N = 2

N = 4

N = 6

N = 8

Fig. 3: Computation of energy error with all proposed higher
order symplectic methods by choosing τ = 0.125 and initial
values (q1, q2, p1, p2) = (0.12, 0.12, 0.12, 0.12).

B. Motion in Henon-Heiles potential:

The potential V (q) of this model basically has two kinds
of behaviour with respect to motion, one is a regular motion
and other one is a chaotic motion. These behaviors depend
upon initial values and initial energies as discussed and
showed in many numerical experiments in ref. [13]. For
initial low energy the chaotic region is negligible. If the
initial energy is less than 0.11 then the motion is regular
and for initial energy 0.11 < E < 1

6 the motion is either

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

regular or chaotic depending upon the initial conditions.
Figure 4 shows the surprising orbital motion at very low
frequency generated my 8th order method. Choosing same
parameters as in ref. [14], initial condition (q1, q2, p1, p2) =
(0.025, 0.050, 0.0, 0.0) , initial energy E0 = 0.0016, nMax
= 20000 and τ = 1. A code snippet is given in appendix D
to plot Figure 4.

Fig. 4: Henon-Heiles potential motion by using 8th order
proposed method.

C. Poincare’ section

Poincare’ section, also known surface to surface tech-
nique, is a very efficient technique to visualize three dimen-
sional constant energy trajectories.

This technique was introduced by Henri Poincare’ in the
20th century. Since the Henon-Heiles model has two degrees
of freedom, we will use this technique. Detailed discussion
on Poincare’ section is not our main aim but we will use it to
show the performance of higher order methods. Without any
loss of generality, fix the initial energy E0 and put q1 = 0.
Our aim is to plot (q2, p2), whenever the trajectory crosses
the hyperplane q1.

Further the fourth coordinate p1 will depend upon the other
three coordinates and fixed energy. The phase space is only
bounded if the energy is less then 1

6 as discussed above.
For Poincare’ section consider E0 as the initial fixed energy,
defined as

H(q,p) =
1

2
(p21 + p22) +

1

2
(q21 + q22) + q21q2 −

1

3
q32 ≡ E0

and initial condition

p1 =

√
2E0 − p22 − q22 +

2

3
q32 .

The chaotic and non-chaotic behaviors of the motion by
using the parameter used in ref. [12] are presented (for more
details about Poincare’ map see [10]). Figure 5 shows the
chaotic and non-chaotic motion of trajectories by using the
8th order method. Left frame of this figure shows the regular
motion of trajectories. We use (q2, p2) = (0.12, 0.12),
τ = 1/6, initial energy E0 = 0.029952 , computed
p1 = 0.1796, and time-steps nMax = 1200000. Right
frame of above figure is showing chaotic behaviour. We set

Fig. 5: Poincare’ section for the Henon-Heiles model.

q2 = p2 = 0, τ = 0.3, initial energy is E0 = 0.1592 ,
computed p1 = 0.5643 and time-steps nMax = 100000.
ref. [12].

VII. MULTI-PRECISION (MP) VERSION OF HOMSPY

In this section, I will present the second important aspect
of our program by an illustrative example which we have
discussed using double-precision (DP) version in ref. [4].
Higher order methods and multi-precision container solvers
play very important rule to achieve high accuracy. Often
some situations arise when minute information are required
in many field of engineering, mathematics and physics. To
tackle these situation multi-precision solvers can be impor-
tant. In higher order accuracy for small values of time-
steps rounding errors exceed the numerical truncation errors,
multi-precision calculation is one of the way to fix this
problem. In our paper [15], we discussed very-high-precision
about the solutions of a class of Schrödinger type equations.

A. One parametric family of quartic anharmonic oscillator:
procedural explanation

For the demonstration, we choose a problem of which the
exact solution is known. In this example, we also demonstrate
how parameter(s) (as α is a parameter given in equation
(9)) can be included. Consider the non-linear anharmonic
oscillator defined by the Hamiltonian

H =
1

2
p2 +

α

2
q2 +

1

4
q4. (9)

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

Exact solution to this problem can be expressed in terms of
the Jacobi elliptic functions [16],

q(t) = q0 cn(νt|k), (10a)
p(t) = −q0ν sn(νt|k) dn(νt|k). (10b)

Here the initial conditions are q(0) = q0, and p(0) = 0,
which implies that q0 is either a maximum or a minimum of
q(t). The parameters and energy of the solution are given by

ν =
(
α+ q20

)1/2
, k = 2−1/2 q0/ν, E =

α

2
q20 +

1

4
q40 . (11)

For detailed description of this problem see ref. [4]. A
code snippet to generating multi-precision solver and driver
modules is the following:

Solving anharmonic oscillators with multi-precision (MP)
strategy

1 def makeAnharmonicOscillator():
2 # Choose coordinate for momentum
3 q, p, alpha = sympy.symbols([’q’,

’p’, ’alpha’])
4 qvars = [q]; pvars = [p]; params =

[alpha]
5 # Define the potential coordinate
6 V = alpha*q**2/2 + q**4/4
7 # Code for multiprec computations
8 kimoki.makeModules(’Anharmonic
9 Oscillator’, V, qvars, pvars,

10 DP= True, MP= True, VERBOSE= True)

The code in line 8 shows that the makeModules func-
tion may take optional inputs: If the MP keyword is set
to True then two additional files are generated: In this
case the files AnharmonicOscillatorMP.py, which
is a solver module using multi-precision arithmetic, and
runAnharmonicOscillatorMP.py, which is a driver
module. When the VERBOSE keyword is set to True some
information from the code generating process will be written
to screen, mainly information about the time used to process
the various stages.

For further demonstration, I will consider the global error
at a fixed endpoint by using different time-steps. Here we
have used the same parameter as discussed in [4]. In our
driver module, we wrote the following routine:

Evaluation of the exact position and velocity of the initial
value problem

1 def ze_(t, alpha, q0):
2 # Positive energy solution;
3 #q(t) varies between q0 and -q0.
4 if alpha + q0*q0/2 >= 0:
5 nu=numpy.sqrt(alpha + q0*q0)
6 k=q0/(nu*numpy.sqrt(2))
7 q=q0*mpmath.ellipfun(’cn’, nu*t, k=k)
8 p=-nu*q0*mpmath.ellipfun(’sn’,nu*t,k=k)
9 *mpmath.ellipfun(’dn’,nu*t,k=k)

10 return q, p
11 ze=numpy.vectorize(ze_)

In similar way, other two if-else conditions can be
defined for the negative energy solutions where q(t) varies
between q0 and q1 and also varies between q0 and q1 > q0.

10−3 10−2 10−1 100

Timestep τ

10−25

10−23

10−21

10−19

10−17

10−15

10−13

10−11

10−9

‖(
q
(t

),
p
(t

))
−

(q
n
(t

),
p
n
(t

))
‖ 2

Global error at fix time t

DP
MP
Ref.line

Fig. 6: Convergence rates of double-precision (DP) and
multi-precision (MP) solver by using 8th order method at fix
time t = 10. We used τ = 1

10 ,
1
20 ,

1
40 ,

1
80 ,

1
160 ,

1
320 , q0 = 0.54

and α = 0.13.

Here ze is the exact solution written in vectorized form and
ellipfun() is defined in mpmath for the calculations of
elliptic functions. In Figure 6, the L2 error is calculated by
using DP and MP at fix time t. At τ = 1

10 and 1
20 , DP and

MP are behaving identically, at τ = 1
40 and afterwards DP

started to deviate and MP continues with the right behaviour
(as expected). It is not due to failure of the 8th order method
but it is due to the limited accuracy of DP calculations. By
increasing the accuracy till 35 decimal places in MP, trend
continues for very small time-steps τ = 1

40 , . . . ,
1

320 .
We may conclude that if one wants to use the full strength

of higher order methods then the limits of double precision
calculations must be superseded and opts for multi-precision
calculations.

VIII. CHECK OF TIME REVERSAL INVARIANCE

The equations generated by the Hamiltonian (5) is invari-
ant under time reversal

T : t→ −t, q → q, p→ −p. (12)

I.e., if one
(i) starts with some initial condition z0 = (q(0),p(0)),

(ii) integrates n timesteps forward in time to arrive at
zn = (q(nτ),p(nτ)),

(iii) makes a time reversal
z̄0 = (q(nτ),−p(nτ)) ≡ (q̄(0), p̄(0)),

(iv) integrates n more timesteps to arrive at
z̄n = (q̄(nτ), p̄(nτ)), and

(v) finally makes a second time reversal,
¯̄z0 = (q̄(nτ),−p̄(nτ)),

one should be back at the start, z0 = ¯̄z0. This works
well for the Störmer-Verlet method, which is explicitly time
reversal invariant. One may check that in this case ¯̄z0 and z0
only differs by an amount which depends on the numerical
precision (about 15 decimals for standard double precision
calculations), and not on the timestep τ .

Our higher order evolution equations are also time reversal
invariant, but our generating function method of solving these
equations is not explicitly time reversal invariant. Hence,

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

one should expect ¯̄z0 and z0 to differ by an amount which
depends on the timestep τ and the order of the method.

This last example is an investigation of this feature for
the pendulum problem discussed in section III. The solver
module has already been generated, but we have to modify
the driver module to the problem at hand. The basic steps
for checking each case is

Code snippet for computation of solution with time reversal

1 soln0 = computeSolution(z0, tau,
order, nMax)

2 z1 = numpy.array([soln0[-1][0],
3 -soln0[-1][1]])
4 soln1 = computeSolution(z1, tau,

order, nMax)
5 z2 = numpy.array([soln1[-1][0],
6 -soln1[-1][1]])
7 # Closer starting point.
8 maxdiff = -1
9 for diff in z0-z2:

10 if mpmath.fabs(diff) > maxdiff:
11 maxdiff = mpmath.fabs(diff)

0 5k 10k 15k 20k 25k
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6 Order = 4

0 5k 10k 15k 20k 25k
10−21
10−20
10−19
10−18
10−17
10−16
10−15
10−14
10−13
10−12
10−11
10−10
10−9 Order = 6

0 5k 10k 15k 20k 25k
10−2710−2610−2510−2410−2310−2210−2110−2010−1910−1810−1710−1610−1510−1410−1310−12 Order = 8 Legend

τ = 1
10

τ = 1
20

τ = 1
40

τ = 1
80

τ = 1
160

Approximate preservation of time reversal invariance

Fig. 7: This figure illustrates how well the solvers preserve
time reversal invariance. We have used the same initial value
z0 in all runs. As can be seen there is some weak dependence
on the number of timesteps (ranging from 500 to 25 000).
Further, the errors scales roughly like τN+2, where τ is
the timestep and N is the order of the method, with a N -
dependent prefactor.

As shown in Figure 7 time reversal invariance is not
preserved exactly, but to an accuracy which scales roughly
like τN+2, where τ is the timestep, and N is the order of the
method. There is a weak increasing trend with the number
of timesteps. The methods preserve time reversal invariance
to about the same accuracy as they preserve energy.

IX. CONCLUDING REMARKS

In this paper we have discussed the automatic genera-
tion [4] of the higher order symplectic methods proposed by

Mushtaq et. al. [2]. To make the programs freely available to
everyone, we have chosen to implement the automatic code
generator in Python, using the sympy package. This is not
the best choice for complex problems; it is our experience
that many sympy routines fail to scale well with problem
size and complexity. Due to this problem we have not made
any attempts to optimize the numerical code emitted by the
code generator.

Further, the automatic code generator makes no attempts
to find simplifying aspects of the problem, like underlying
symmetries, or structured and/or linear behavior. For serious
treatment of problems with such properties, it is the best to
generate the codes directly from the expressions proposed in
reference in [2].

For the generation of more efficient numerical codes, it is
fairly straightforward to modify kimoki to emit numerical
code in other languages, like Fortran or C, amenable to
further optimization by the compiler.

APPENDIX

A. Energy Errors of pendulum problem
Routine to plot the energy errors (Figure 2).

1 rc(’text’, usetex=True)
2 # Use this if you have LaTeX installed
3 import matplotlib; matplotlib.use(’PDF’)
4 def plotEnergyErrors():
5 subplots = [’221’, ’222’, ’223’,

’224’]
6 fig = pyplot.figure(1)
7 pyplot.subplots_adjust(wspace=0.4,

hspace=0.25, top=0.9)
8 suptitle = r’Approximate energy

conservation’
9 pyplot.suptitle(suptitle)

10 titles = [r’2nd order ($N=2$)’,
r’4th order ($N=4$)’,

11 r’6th order ($N=6$)’,
r’8th order ($N=8$)’]

12 lines = [r’b’, r’r’, r’y’]
13 lws = [5, 2.5, 1]
14 xlabel = [’’, ’’, r’Time t’,

r’Time t’]
15 for k in

xrange(PendulumMP.maxorder//2):
16 order = 2*k+2
17 fig.add_subplot(subplots[k])
18 pyplot.title(titles[k])
19 pyplot.xlabel(xlabel[k])
20 if (k==0) or (k==2):
21 pyplot.ylabel(r’$(E(t) -

E(0))/\tauˆN$’)
22 for ell in xrange(3):
23 # Read energy error from "pickle" file:
24 filename =

"#PendulumMP_EgyErrTau%dOrd%d.pkl" %
(int(10000*taus[ell]),order)

25 try:
26 input = open(filename, ’rb’)
27 except:
28 # The energy errors yet to be computed

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

29 computeEnergyErrors()
30 input = open(filename, ’rb’)
31 [tau, order, nMax,

energyError] = pickle.load(input)
32 input.close()
33 os.remove(filename)
34

pyplot.plot(tau*numpy.arange(nMax),
energyError/tau**order,

35 lines[ell], lw=lws[ell],
label=labels[ell])

36 if k==1:
37 leg =

pyplot.legend(loc=’upper center’)
38

leg.get_frame().set_alpha(0.65)
39 pyplot.savefig("PendulumMP_EgyErr",

dpi=1000, bbox_inches=’tight’)
40 pyplot.clf()

B. Driver module, created by user
Deriver module script which uses the solver module,
HenonHeiles.py

1 import HenonHeiles
2 HenonHeiles.tau = 1
3 HenonHeiles.order = 8
4 nMax = 20000
5 z0 =

numpy.array([0.025,0.05,0.0,0.0])
6 soln = numpy.zeros((nMax,z0.size))
7 energyError = numpy.zeros(nMax);
8 z = numpy.copy(z0);
9 soln[0,:] = z

10 energyError[0] = 0.0;
11 e0 = HenonHeiles.energy(z)
12 for n in xrange(1,nMax):
13 HenonHeiles.kiMoKi(z)
14 soln[n,:] = z
15 energyError[n] =

HenonHeiles.energy(z)-e0;
16 times =

numpy.arange(nMax)*HenonHeiles.tau

C. Code snippet to produce energy errors

Solving Henon-Heiles model, with check of energy conser-
vation

1 def plotEnergyError():
2 for ord in [2,4,6,8] :
3 z0 =

numpy.array([0.12,0.12,0.12,0.12]);
4 tau =0.125; nMax = 2001
5 err =

numpy.abs(computeEnergyError(z0,
tau, ord, nMax))

6
pyplot.semilogy(tau*numpy.arange(nMax)

7 ,err)
8

pyplot.savefig("HenonHeiles_EgyErr")

Here the work of computing the energy error is been done at
line 5. The function computeEnergyError is produced
automatically, here we are just using it to fulfill our require-
ment. savefig save the figure in pdf format. Figure 3 is
the resulting output of this code snippet.
D. Code snippet for 3D representation

Code snippet to plot Figure 4
1 fig = pyplot.figure()
2 ax = fig.gca(projection=’3d’)
3 ax.plot(deltaE1[:],

deltaE0[:],deltaE2[:],
’r.’,alpha=0.05, label =’N=8’)

4 ax.set_xlabel(r’q_2’),
ax.set_ylabel(r’q_1’),
ax.set_zlabel(r’p_1’)

5 ax.legend(), ax.view_init(57, 18)
6

pyplot.savefig("HenonHeiles_MotionN8",
dpi=1000, bbox_inches=’tight’)

ACKNOWLEDGEMENT

I would like to thanks prof. Anne Kværnø and prof. Kåre
Olaussen for their useful discussions, helpful feedbacks, and
careful proof reading of this document. I acknowledge sup-
port provided by the prof. Trond Kvamsdal from department
of mathematical sciences and also partial support provided
by Statoil via prof. Roger Sollie, through a professor II grant
in Applied mathematical physics.

REFERENCES

[1] L. Wang, J. Hong, and R. Scherer, ”Stochastic Symplectic Approxima-
tion for a Linear System with Additive Noises”, IAENG International
Journal of Applied Mathematics, vol. 42, no. 1, pp60-65, 2012.

[2] A. Mushtaq, A. Kværnø, K. Olaussen, ”Higher order Geometric
Integrators for a class of Hamiltonian systems”, International Journal
of Geometric Methods in Modern Physics, vol. 11, no. 1, pp1450009-
1–1450009-20, 2014.

[3] A. Mushtaq, A. Kværnø, K. Olaussen, ”Systematic Improvement of
Splitting Methods for the Hamilton Equations”, Proceedings for the
World Congress on Engineering, London July 4–6, vol I, pp247-251,
2012.

[4] A. Mushtaq, K. Olaussen, ”Automatic code generator for higher
order integrators”, Computer Physics Communication, vol. 185, no.
5, pp1461-1472, 2014.

[5] SymPy Developement Team, http://sympy.org/
[6] NumPy Developers, http://numpy.org/
[7] F. Johansson et. al., ”Python library for arbitrary–precision floating-

point arithmetic”, http://code.google.code/p/mpmath/,
2010.

[8] J. D. Hunter, ”Matplotlib: A 2D graphics environment”, Computing
in Science & Engineering vol. 9, pp90–95, 2007

[9] C. Führer, J. E. Solem, O. Verdier, ”Computation with Python”,
Pearson 2013.

[10] Q. Feng, ”Approximating Discrete Models for a Two-degree-of-
freedom Friction System”, IAENG International Journal of Applied
Mathematics, vol. 38, no. 1, pp1-8, 2008.

[11] M. Henon and C. Heiles, ”The Application of the Third Integral of
Motion: Some numerical experiments”, The Astronomical Journal,
vol.69, no.1, pp69-79, February 1964.

[12] P. J. Channel, and J. C. Scovel, Symplectic integration of Hamiltonian
systems , Nonlinearity 3, pp231–259, 1990

[13] G. Benettin, L. Galgani, J. Strelcun, ”Kolmogorov entropy and numer-
ical experiments”, Physical Review A, vol. 6, pp2338–2345,1976.

[14] R. I. McLachlan, and G. R. W. Quispel. ”Geometric integrators for
ODEs”, Journal of Physics A: Mathematical and General, vol. 39, no.
19, pp5251-5281, 2006.

[15] A. Mushtaq, A. Noreen, K. Olaussen, I. Øverbø, ”Very-high-precision
solutions of a class of Schrödinger type equations”, Computer Physics
Communications, vol. 182, no. 9, pp1810-1813, 2011

[16] M. Abramowitz and I.S. Segun, Handbook of Mathematical Functions,
Ch. 16, Dover Publications, 1968.

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_17

(Advance online publication: 14 November 2015)

__

