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Abstract—Paddy is one of Indonesian staple food
in which its availability is highly needed. A predic-
tion model of paddy availability in future such as by
means of spatial regression is deemed necessary. The
purpose of this study is to construct a spatial regres-
sion model to predict paddy production in Indonesia.
The result of the research showed that paddy pro-
duction could be presented using lag spatial regres-
sion with some influencing factors including harvested
area, monthly average temperatures and numbers of
workers.
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1 Introduction

Paddy is Indonesian staple food consumed by most of In-
donesian citizens. It is a commodity that has political
and strategic value since the stability of its availability
and commodity price become the indicators to measure
Indonesian government success. For the reason, avail-
ability and adequacy of paddy must be continuously well
concerned. The too high price of paddy most frequently
stimulates the social issues.

According to BPS [2] paddy production in 2011 decreased
by 23 tons (1.85 percent) compare to the one in 2010.
In 2012 (prediction number I), paddy production was
projected to rise until 21 tons (1.72 percent) compare
to paddy production last 2011. Until recently, the ef-
forts to fulfill national staple food needs through food
self-sufficiency of strategic commodity of paddy have not
shown an optimal result. This situation is clearly re-
flected in availability levels of some domestic food com-
modities that are relied highly upon the import such as
soybean at 70 percent while paddy is only about 5 per-
cent. Nevertheless, under the development program of
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national food security in 2012, the paddy production as
the commodity of carbohydrates food increased by 2.74
percent. The policy of stable food price is one of impor-
tant instrument to maintain national food security. Con-
sidering that food price is highly determined by the avail-
ability or food production, an attempt to predict paddy
production in future is deemed essential. There are some
methods that can be applied to predict paddy produc-
tion and to analyze its influencing factors, one of which
is through regression analysis.

Regression analysis is one of the methods applied to ob-
serve the relation between variables and to estimate or
predict. Zhang [7] stated that the use of the least square
method in regression analysis will not be accurate in sol-
ving problems which contain outliers or extreme obser-
vation. In this case, paddy production which is reached
beyond general production can be categorized as outliers;
thus, the use of the least square method to estimate the
regression parameters is considered inappropriate (Su-
santi and Pratiwi [5], Yohai [6]). Besides, paddy produc-
tion is influenced by geographic and demographic factors.
The relation of the factors to paddy production can be
identified through spatial regression analysis. Something
closely related to the others rather than distant relation
has a more significant influence (Anselin [1]). Lag spatial
regression model is a regression model which input spatial
or position impacts. This model follows both an autore-
gressive process which can be observed from dependency
between one area with another related area and error re-
gression model which focuses on error values dependency
of an area with errors in another related one. Based on
that, regression model of paddy production with spatial
regression is needed.

2 RESEARCH METHOD

This research uses secondary data gathered from related
government department, which is Indonesian Ministry of
Agriculture and Statistics Indonesia in 2012. The data
included the amount of paddy production in province i-
th (Yi), harvested area of paddy in province i-th (X1i),
average monthly rainfall in province i-th (X2i), aver-
age monthly humidity in province i-th (X3i), average
monthly temperature in province i-th (X4i), average
monthly time of irradiation in province i-th (X5i), a-
verage rice price in consumers level in province i-th (X6i)
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and number of workers in sub sector of food plantation
in province i-th (X7i).

In this research, the data was provided for each area unit
or province; thus, the spatial effects testing become criti-
cal. In contrast, the ignorance of spatial effect can make
the estimation inefficient and conclusion inappropriate.
This study was started by determining the best regression
model by means of gradual regression method and regres-
sion model assumption testing. Further, it was followed
by testing on spatial autocorrelation, position and space
effects using Lagrange multiplier test. When finding spa-
tial autocorrelation and space impact, spatial regression
modeling might be conducted using spatial weighting ma-
trix. It was continued by conducting spatial regression
model assumption testing and finally by predicting the
paddy availability in Indonesia.

3 SPATIAL REGRESSION MODEL

Common model of spatial regression (Spatial Autore-
gressive Moving Average, SARMA) in matrix form
(Lesage [4], Anselin [1]) could be written as

y = ρWy + Xβv + u

u = λWu + ε

ε ∼ N(0, σ2)

(1)

with y as dependent variable vector of n × 1, X as inde-
pendent variable matrix of n × (k + 1), β as regression
parameter coefficient vector of (k+1)×1, ρ as spatial lag
dependent variable of coefficient parameter, λ as spatial
lag error of coefficient parameter, u, ε as error vector of
n × 1, W as weighting matrix of n × n, n as the num-
bers of location, k as the numbers of independent variable
(k = 1, 2, . . . , l) and I as identity matrix of n×n. Spatial
regression model could be improved from model (1), that
is if ρ = 0 and λ = 0 so model (1) is regression linear
model y = Xβ + ε, if value ρ �= 0 and λ = 0 so model (1)
is lag spatial regression, y = ρWy + Xβ + ε, and if value
ρ = 0 dan λ �= 0 so model (1) is error spatial regression
model, y = Xβ + λWu + ε. Next Moran index scat-
ter diagram could be applied to test spatial dependency.
This diagram is a diagram used to see a relation between
observation value in a location and average observation
value based on neighborhood locations and related loca-
tions (Lee and Wong, [3]).

To decide spatial regression model used, Lagrange lag
multiplier and error testing should be done. Lagrange
lag multiplier testing was used to observe spatial depen-
dency in dependent variable while Lagrange error mul-
tiplier testing was used to see error spatial dependency
model. The statistic of lag Lagrange multiplier testing is

LMp = (1/T )(e′Wy/σ2)2 ∼ X2(1)

where
T = trace (W + W ′). ∗ W

σ2 = e′e/n
e: residual value of MKT
n: number of observation
C: Wqueen standard matrix

The decision making here is H0 is rejected if value LMρ >
X2(α; 1) or p-value < α. Meanwhile, statistic of error
Lagrange multiplier testing is

LMλ = (e′We/σ2)[T22 − (T21)2var(ρ)]−1 ∼ X2(1)

where

T22 = trace(W ∗ W + W ′W ),

T21 = trace(W ∗ CA−1 + W ′CA−1),
A = (In − ρC)

with decision making that H0 is rejected if value LMρ >
X2(α; 1) or p-value < α.

3.1 Parameter Estimate of Spatial Regres-
sion Model

In equation (1) if value ρ �= 0 and λ = 0, spatial regression
model would be lag spatial regression model (Anselin, [1])
with equation:

y = ρWy + Xβ + ε

where ε ∼ N(0, σ2I).

Likelihood maximum method was used to estimate lag
spatial regression model parameter. The likelihood func-
tion for ε ∼ N(0, σ2I) could be formulated as

L(ε, σ2) =
1

(2π)n/2σn
exp
(
−εT ε

2σ2

)
where ε = y − ρWy − Xβ.

Partial derivative of likelihood function from lag spatial
regression model for dependent variable (y) is∣∣∣∂ε

∂y

∣∣∣= ∣∣∣∂y−ρWy−Xβ

∂y

∣∣∣= |I − ρW |

Thus, likelihood function for dependent variable can be
written as

L(λ, β, σ2) =
|I − ρW |
(2π)n/2σn

×

exp

(
− (y − ρWy − Xβ)T (y − ρWy − Xβ)

2σ2

)
with its log likelihood function as

ln
(
L(λ, β, σ2)

)
= −n

2
ln(2π) − n

2
(σ2) + ln |I − ρW |−

(y − ρWy − Xβ)T (y − ρWy − Xβ)
2σ2

(2)
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To obtain the estimation of σ2, β and λ could be con-
ducted by maximizing log likelihood function in equa-
tion (2). Thus, the estimation for σ2 obtained was as
follows:

σ̂2 =
(y − ρWy − Xβ)T (y − ρWy − Xβ)

2σ2

and estimation for β is

β̂ = (XT X)−1XT (I − ρW )y

Parameter estimation for λ could be done through an
approach with numeric method. Next, based on equa-
tion (1), if value W1 = 0 or ρ = 0, spatial regression
model would be error spatial model with equation of

y = Xβ + λW2 + ε

where ε ∼ N(0, σ2I). Maximum likelihood method was
used to estimate error spatial regression model parame-
ter. Likelihood function for ε ∼ N(0, σ2I) in equation
above is

L(ε, σ2) =
1

(2π)n/2σn
exp
(
−εT ε

2σ2

)
where ε = (I − λW )(y − Xβ). Likelihood function from
error spatial regression model for dependent variable (y)
is ∣∣∣∂ε

∂y

∣∣∣= ∣∣∣∂(I−λW )(y−Xβ)

∂y

∣∣∣= |I − λW |

Thus, likelihood function for dependent variable is

L(λ, β, σ2) =
|I − λW |
(2π)n/2σn

×

exp

(
− (I − λW )T (I − λW )(y − Xβ)T (y − Xβ)

2σ2

)

Therefore, likelihood log function is

ln
(
L(λ, β, σ2)

)
= −n

2
ln(2π) − n

2
(σ2) + ln |I − λW |−

(I − λW )T (I − λW )(y − Xβ)T (y − Xβ)
2σ2

(3)

To obtain the estimator of λ, β, σ2 the derivation of (3)
was conducted to each parameter to obtain

∂ ln
(
L(λ, β, σ2

)
∂y

= Σn
i=1

−ωt

1 − λωt
−

(y − Xβ)T (I − λW )(y − Xβ)
2σ2

∂ ln
(
L(λ, β, σ2

)
∂β

=
−XT (I − λW )T (I − λW )(y − Xβ)

2σ2

∂ ln
(
L(λ, β, σ2

)
∂σ2

=
−n

2σ2
+

(y − Xβ)T (I − λW )T (I − λW )(y − Xβ)

2
(
σ2
)2

so that

β̂ = [(X−λW rX)T (X−λWX)]−1(X−λWy)T (y−λW )y

According to Anselin [1], determination coefficient (R2)
in regression model could be stated as

R2 = 1 − eT (I − λW )T (I − λW )e
(−Ayw)T (I − λW )T (I − λW )(y − Ayw)

where A is unit vector (nx1), yw = n(λ − 1)2. Determi-
nation coefficient is nonnegative with 0 ≤ R2 ≤ 1. The
closer the value R2 with 1, the more suitable model with
the data.

3.2 Significance Test for Spatial Regression
Model

Significance testing of parameter model was conducted
using likelihood ratio test. It was done to see which pa-
rameter influenced model significantly. The steps to test
parameter include:

(i) H0 : ρ, λ = 0 (spatial parameter was not significantly
influenced)
H1 : ρ, λ �= 0 (spatial parameter was significantly
influenced)

(ii) Significance level (α)

(iii) Critical area: rejects H0 if LRTρ,λ > χ2
(α;1)

(iv) Statistic of likelihood ratio testing for lag spatial re-
gression model is

LRTρ = −2[ln
(
L(ρ, β, σ2)

)− ln
(
L(β, σ2)

)
]

= −2[−n

2
ln(2π) − n

2
(σ2) + ln |I − ρW |

− (y − ρWy − Xβ)T (y − ρWy − Xβ)
2σ2

+
n

2
ln(2π) +

n

2
(σ2) +

(y − Xβ)T (y − Xβ)
2σ2

]

= −2 ln |I − ρW |

+
(y − ρWy − Xβ)T (y − ρWy − Xβ)

2σ2

− (y − Xβ)T (y − Xβ)
2σ2

Meanwhile, the statistic of likelihood ratio testing
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for error spatial regression model is

LRTλ = −2[ln
(
L(λ, β, σ2)

)− ln
(
L(β, σ2)

)
]

= −2[−n

2
ln(2π) − n

2
(σ2) + ln |I − λW |

− (y − Xβ)T (I − λW )T (I − λW )(y − Xβ)
2σ2

+
n

2
ln(2π) +

n

2
(σ2) +

(y − Xβ)T (y − Xβ)
2σ2

]

= −2 ln |I − λW |

+
(y − Xβ)T (I − λW )T (I − λW )(y − Xβ)

2σ2

− (y − Xβ)T (y − Xβ)
2σ2

(v) Conclusion: If LRT > χ2
(α;1), spatial parameter is

significantly affected to the model.

4 RESULTS AND DISCUSSION

Linear regression model of paddy production in Indonesia
in 2011 by using ILS method can be written by

Yi = 8563420 + 4.894764X1i − 453.7847X2i

− 24534.28X3i − 250119.5X4i − 64.33128X5i

+ 15.44982X6i + 0.4266961X7i

(4)

In linear regression model (4), there are some variables
which are not significantly affected. For this, it was ne-
cessary to conduct the best regression model using step
method. In a paddy plantation production case in 2011,
the best regression model that was obtained was a model
by adding independent variables such as the paddy har-
vested area, average monthly temperature and numbers
of farming workers in sub sector food plantation. The
linear regression model was conducted through a step
method as follows:

Yi = 5747827+5.032749X1i−220472.5X4i+0.4093232X7i

with value R2 was 0.994140. It means that 99.4 % paddy
production in Indonesia in 2011 could be explained by
the paddy harvested area, average monthly temperature
and numbers of farming workers in sub sector food plan-
tation. Meanwhile, the rest at 0.586 % was explained
by other unobserved factors in this study. In the en-
tire test on the best regression model, it was obtained
the value of 4.5515 × 10−33 < α = 0.05; thus, it can be
concluded that at least there was one regression para-
meter significantly influential for the paddy production
in Indonesia in 2011. The values of parameter estimation
and p-value to each parameter could be observed in Ta-
ble 1. As seen in Table 1, three parameters in regression
model have a significant influence because each of p-value
< α = 0.05. Then, regression assumption model testing
was done with the result showing the fulfilled normal-
ity, homogeneity and non multi collinearity assumptions.

Table 1: Parameter estimation value and p-value to each
parameter

Independent Parameter p-value
variable estimation

value
Constants 5747827 0.0002957

X1 5.032749 0.0000000
X4 -220472.5 0.0002068
X7 0.4093232 0.0062885

Figure 1: Scatter Diagram of Moran Index for Paddy
Production

However, error on closed-relation area may connect or
was spatially correlated. The indicators of any auto spa-
tial correlation effects could be observed from Moran in-
dex in scatter diagram as seen in Figure 1. Diagonal lines
were closed to zero, meaning no spatial autocorrelation
in the model by using spatial regression model. Further-
more, steps to construct spatial regression model were
conducted by testing spatial effects with Lagrange multi-
plier, maximum likelihood estimation, parameter signifi-
cance testing, assumptions testing.

4.1 Lag Spatial Model

The Moran’s scatter diagram can only be applied to iden-
tify the existence of spatial autocorrelation in a certain
area but cannot discover spatial autocorrelation in model.
Hence Lagrange lag and error testing were highly needed.
The Lagrange lag multiplier testing included:

1. H0: there was no lag spatial dependency (ρ = 0)
H1: there was lag spatial dependency (ρ �= 0).

2. Significance level (α) = 0.05.

3. Critical area
H0 was rejected if LMp > χ2(0.05, 1) = 3.841.

4. Statistic value, LMp = 5.3173358.

5. Conclusion
Since LMp = 5.3173358 > 3.841 so we concluded
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that H0 was rejected meaning that there was lag
spatial dependency in the model.

Therefore, regression model had spatial autocorrelation
in lag; thus, it could be presented with lag spatial re-
gression model. The value of parameter estimation of lag
spatial regression model and z could be calculated as seen
in Table 2. Model of lag spatial discussed can be seen as
follows:

Y =0.03951494Wy + 4.996965X1 − 252877.3X4

+ 0.3585264X7.
(5)

Based on Table 2 it could be seen that absolute value of z

Table 2: Parameter estimation value and z value
calculated in lag spatial regression model

Independent Parameter z value
variable estimation

Wy 0.03951494 2.49251
Constants 6577387 0.0000001

X1 4.996965 26.33706
X4 252877.3 -5.425352
X7 0.3585264 2.963367

calculated in each independent variable was greater than
z0.025 = 1.96; thus, it can be concluded that paddy har-
vested area, average monthly temperature and numbers
of farming workers in sub sector food plantation had sig-
nificant influence on Indonesia paddy production in 2011.
After obtaining the estimation of parameter model, the
significance testing of parameter model was conducted
using likelihood ratio testing that included:

1. H0: ρ = 0 (spatial parameter was not significantly
influenced)
H1: ρ �= 0 (spatial parameter was significantly influ-
enced).

2. Significance level (α) = 0.05.

3. Critical area
H0 was rejected if LRTρ > χ2(0.05, 4) = 3.841.

4. Statistic value, LRTρ = 5.716419.

5. Conclusion
Since LRTρ = 5.716419 > 3.841, it could be con-
cluded that H0 was rejected meaning that lag spatial
parameter was significantly influenced.

Furthermore, homoscedastic testing was conducted to de-
termine whether a spatial lag regression models met the
assumptions. Homoscedastic test performed by Breusch-
Pagan could be seen as follows:

1. H0: There was no heteroscedasticity H1: There was
heteroscedasticity

2. Significance level (α) = 0.05.

3. Critical area
H0 was rejected if BP > χ2

(0.05,2) = 9.488.

4. Statistic value, BP = 1.453798.

5. Conclusion
Since BP = 1.453798 < 9.488, it then could be con-
cluded that H0 was not rejected meaning that there
was no heteroscedasticity in the model.

4.2 Error Spatial Model

The initial step in presenting error spatial model of In-
donesia paddy production data in 2011 is Lagrange mul-
tiplier testing:

1. H0: λ = 0 (spatial parameter was not significantly
influenced)
H1: λ �= 0 (spatial parameter was significantly influ-
enced).

2. Significance level (α) = 0.05.

3. Critical area
H0 was rejected if LRTλ > χ2

(0.05,4) = 3.841.

4. Statistic value, LRTλ = 0.2367617.

5. Conclusion
Since LRTλ = 0.2367617 < 3.841, it could be con-
cluded that H0 was not rejected meaning that error
spatial parameter was not significantly influenced.

Based on Lagrange error multiplier testing, it could be
concluded that this model did not have any spatial auto-
correlation in error. Thus, given lag spatial dependency
and no error spatial dependency causes Indonesia paddy
production in 2011 could be presented as lag spatial re-
gression model. Model (5) shows that an increase of one
hectare of paddy harvested area would increase paddy
production as 4.996965 tons. Each increasing of 10C aver-
age monthly temperature would reduce paddy production
as 252877.3 tons and each of increase of one agricultural
labor in food crop sub sector would increase paddy pro-
duction as 0.3585264 ton. Spatial autocorrelation at lag
in the model (5) is shown by the spatial lag parameter
value of 0.03951494.

Based on lag spatial model, paddy production in all
provinces was estimated so the production map in In-
donesia could be created (Figure 2). There are 21
provinces that are included in the low category and 9
provinces included in the moderate category. Provinces
with highest paddy production are Central Java, East
Java and West Java.
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Figure 2: Prediction of Paddy Production in Indonesia
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