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Abstract—The transreal numbers, introduced by James An-
derson, are an extension of the real numbers. The four
arithmetical operations of addition, subtraction, multiplication
and division are closed on the set of transreal numbers.
Transreal arithmetic has engendered controversy because it
allows division by zero and is proposed as a replacement for
real arithmetic. Anderson introduced the transreals intuitively
and axiomatically. In the history of mathematics, constructive
proofs have ended controversies. We construct the transreal
numbers and transreal arithmetic from the very well accepted
real numbers and real arithmetic. This construction proves
consistency. We then extend the very well accepted algebraic
structure of a field to a transfield. We show that, just as
the rationals are the smallest, ordered field and reals are the
unique, ordered, complete field, so, under suitable conditions,
transrationals are the smallest, ordered transfield and transreals
are the smallest, ordered, complete transfield. Thus we both
prove consistency and demonstrate the wider applicability of
the transreals. We hope this does enough to end controversy
about the correctness of the transreals, leaving an assessment
of their usefulness to future experience.

Index Terms—transreal numbers, division by zero, nonstan-
dard arithmetic, algebraic transfields.

I. INTRODUCTION

CONTEMPORARY computers have a processing lim-
itation arising from the need to have control mecha-

nisms to handle division by zero. Providing detection and
processing of such divisions causes an excessive expenditure
of space in the processor, slows processing time, wastes elec-
trical energy and wastes programmer time in anticipating and
handling errors. James Anderson designed a supercomputer
which must handle physical faults but which does not need
any special mechanism to deal with division by zero or any
logical exceptions [3][11].

According to Anderson, his computer has several advan-
tages. Every operation can be applied to any arguments
giving a valid result, every syntactically correct arithmetical
sentence is semantically correct and, consequently, there are
no exceptions. Because of this, pipelines never break and
programs can crash only on a physical fault. Compared
to the IEEE standard for floating-point arithmetic, transreal
arithmetic doubles absolute, not relative, numerical precision
by re-using a redundant binade. Furthermore, it also removes
superfluous relational operations. Anderson states that the
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unordered relation is logically redundant, having utility only
in the IEEE 754 model of error handling. Thus transreal
arithmetic simplifies the relational operators, simplifies pro-
gramming and removes an entire class of errors. Therefore,
transreal arithmetic is better suited to safety critical applica-
tions [8]. Moreover, Anderson proposes the use of transreal
arithmetic to define pipeline machines that are infinitely
scalable. With these machines exascale processing may well
be technologically achievable. Using his total arithmetic,
Anderson makes unbreakable pipelines where, apart from
physical errors, a core is guaranteed to pass on its data
every clock tick. Anderson arrived at this position in a
succession of three architectures. First he exploited a single
instruction implemented in a fixed-point arithmetic. Then the
architecture was modified, by the introduction of a second
operation, to operate on trans-floating-point numbers. Finally
the architecture was completely pipelined [11].

Having outlined the technological background, let us now
concentrate on mathematical details. In the 2000s Anderson
proposed the set of transreal numbers. This set, denoted by
RT , is the set of real numbers, together with three new
elements: −1/0, 1/0 and 0/0 [3]. Like many axiomatic
theories, the transreals have raised doubts and controversies,
as Martinez relates in his book about an interview with
Anderson on BBC television: “Many readers have replied
that division by zero is clearly ‘impossible.’ Some have
complained that the everyday examples Anderson gives are
defective or ‘obviously ridiculous’ because airplanes and
heart pacemakers have control mechanisms that are pro-
grammed to handle exceptions, to prevent internal calculators
from dividing by zero” [17]. Herein lies the importance of
our present paper. We emphasise that, although it does not
deal directly with Anderson’s computer, our paper is in the
interest of Computer Science because it provides a proof of
consistency of the arithmetic used in Anderson’s computer.
Our paper may be of interest to the History of Mathematics
because it draws parallels between the development of the
transreals and other number systems. Finally our paper may
be of interest to contemporary Mathematics because it shows
how the very well accepted algebraic structure of a field,
generalises to a transfield, which we introduce here.

Before examining the issue of division by zero, let us
apprise the reader of the development of transreal numbers.
Division by zero has been considered for more than a
thousand years, during which time many approaches have
been explored.

Anderson provided a solution to division by zero inspired
by projective geometry [1]. Since then several studies have
developed the transreal numbers. In [2] Anderson considers
the syntactic application of the rules for adding and multi-
plying fractions, notwithstanding the fact that fractions may
have a zero denominator. In [4] Anderson proposes the set
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of transrational numbers, QT := Q ∪ {−1/0, 1/0, 0/0}. In
[5], a list of axioms that establish the set and arithmetic of
the transreal numbers is given. In [6] Anderson extends the
trigonometric, logarithmic and exponential functions to the
transreal numbers and, in [7], Anderson proposes a topology
for transreal space and establishes the transmetric.

Martinez, in his book on the history of mathematics [17],
talks about the paradigm of division by zero, about how it
was treated throughout history until we arrive at Anderson’s
proposal. In [20], Reis, Gomide and Kubrusly draw an
analogy between the present moment in the development
of the transreal numbers and the historical development of
several other kinds of numbers. Further, in [15], Gomide
and Reis make a study of the motivations for Anderson’s
conception of nullity and compare the transfinite numbers
of Cantor to the transreals, stating that the latter allow
the extension of the concept of a metric to infinite and
indeterminate distances.

Anderson argues [8] that trans-floating-point arithmetic
removes nine quadrillion redundancies from 64-bit, IEEE
754, floating-point arithmetic. Anderson and Gomide [10]
propose an arithmetisation of paraconsistent logic using the
transreals. Anderson and Reis [9] formalise the concepts
of limit and continuity in transreal space and elucidate the
transreal tangent. Arguing from this firm foundation, they
maintain that there are three category errors in the IEEE 754
standard. Firstly the claim that IEEE infinities are limits of
real arithmetic confuses limiting processes with arithmetic.
Secondly a defence of IEEE negative zero confuses the
limit of a function with the value of a function. Thirdly the
definition of IEEE NaN confuses undefined with unordered.
All of which speaks to the value of transreal numbers in
developing computer hardware.

Reis and Anderson [22] rehearse the concepts of derivative
and integral in transreal space. This paper won an award
for best paper at the International Conference on Computer
Science and Applications 2014. In [23] they develop the set
of transcomplex numbers. Reis [21] proposes a contextual
interpretation for arithmetical operations between transreals.
In [25] Reis and Anderson continue the development of
transreal calculus. They extend the real derivative and inte-
gral to a transreal derivative and integral. This demonstrates
that transreal calculus contains real calculus and operates at
singularities where real calculus fails. Hence software that
implements calculus, such as is used in scientific, engineering
and financial applications, is extended to operate at singular-
ities where it currently fails. This promises to make software
both more competent and more reliable.

Reis and Anderson [24] extend all elementary functions
of real numbers to transreal numbers. Gomide, Reis and
Anderson [16] propose a logical space based on total seman-
tics. This is a semantics containing the classical truth values,
fuzzy values, a contradiction value and a gap value. This
logical space of propositions is inspired by Wittgenstein’s
conception of a logical space [31]. It is a trans-Cartesian
space where axes are possible worlds, co-ordinates are tran-
sreal numbers and points are propositions. Besides the above
mentioned texts, transmathematics was the subject of the first
author’s doctoral thesis. In addition to the above matters,
dos Reis’s thesis makes a digression about the challenge for
transmathematics of entering the select group of theories that

are well accepted by academia [26]. This is the world’s first
doctorate to be awarded for transmathematics. Transmathe-
matics was also the subject of postdoctoral research by the
second author. Gomide focused on the philosophical study
of transmathematics in the study of logic. This is the world’s
first post-doctoral research in transmathematics.

Anderson proposes the existence of transreal numbers
in an axiomatic way. By contrast, in our current paper,
we propose a construction of the transreals from the reals.
Thus the transreal numbers and their arithmetic arise as a
consequence of the reals and not via free-standing axioms.
We define transreal numbers by a particular class of subsets
of pairs of real numbers and then define addition and multi-
plication operations (by using addition and multiplication of
real numbers) on these pairs and show that there is a “copy”
of the reals within this class. This class of ordered pairs plays
the role of the set of transreal numbers. Then we establish
on RT some arithmetical and ordering properties of a field.
We then generalise algebraic fields to transfields so that
they support arithmetics where the operations of addition,
subtraction, multiplication, and division are total functions.
We give several different examples of transfields, derive some
of their properties. We show that, just as the rationals are
the smallest, ordered field and reals are the unique ordered,
complete field, so, under suitable conditions, transrationals
are the smallest, ordered transfield and transreals are the
smallest, ordered, complete transfield.

II. INITIAL CONSIDERATIONS

The impossibility of division by zero, in the real numbers,
is well known. One of the difficulties in defining such
division is that both historical and currently popular inter-
pretations of the division operation are not valid when the
divisor is zero. For example the integral equality n/d = m
can be interpreted as follows: n objects can be divided into
(set out as) d groups of m objects. This account of division
makes no sense, for non-zero n, when d is zero because
there is no number such that zero groups (d = 0), of any m
objects, sum to n 6= 0. Even if we dispense with historical
and pedagogical models, by operating formally, a problem
remains. Division in the real numbers, R, is multiplication
by the multiplicative inverse. That is, if a, b ∈ R and b 6= 0
then a/b means a × b−1, where b−1 is a real number such
that b× b−1 = 1. Now if we wish to allow a denominator of
zero, we must have a multiplicative inverse of zero. This is
not possible in the usual definition of multiplication because,
if there is c ∈ R such that 0 × c = 1, we would have
0 = 0× c = 1, which is absurd! That said, it is clear that if
we want to divide by zero, we need to extend the definition
of division and, perhaps, the definition of number.

We believe that the transreal numbers are going through
a common process in the history of mathematics. The real
numbers themselves were initially conceived intuitively. Pos-
itive integers and positive rationals are present in the earliest
records of mathematics but the recognition of irrational
numbers is attributed to the Greeks of the fourth century
BC [28]. Over time the real numbers were widely used and
were informally understood to be in a bijective correspon-
dence with the set of points on a straight line. Despite this
understanding, for many people the irrational numbers were
not accepted as numbers, but as convenient objects in certain
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studies [28]. The advent of the differential and integral
calculus, around seventeenth century, brought new ideas and,
together with these new ideas, controversies about their
methods. These controversies were partially responsible for
causing a move toward the formalisation of the mathematical
concepts of number, in other words, the establishment of
numbers without the assumption of geometrical intuition.

In the eighteenth century, efforts were made to formalise
the real numbers, but their consolidation occurred only in
the nineteenth century with a construction from the rational
numbers by Dedekind. Dedekind’s motivation was to estab-
lish the set of real numbers, not just by the admission of its
existence, but by constructing the real numbers from numbers
that were already established.

Another example of this constructive process occurred
with the complex numbers. When, in the sixteenth century,
Bombelli found the square root of a negative number, while
solving an equation of the third degree, he had the courage
to operate on this object by assuming that it followed the
arithmetical properties of the real numbers. He found, indeed,
at the end of his calculation, a solution to the equation in
question. At that moment, Bombelli was not preoccupied
with rigour nor with the interpretation of the strange object,
he was just brave and supposed the existence of new entities
that could be called numbers.

Complex numbers were studied by other mathematicians
but with the phenomenological quality of being imaginary
numbers. Only in the nineteenth century, did Hamilton give
a rigorous definition of the complex numbers and their
arithmetic, deducing their properties from the properties of
real numbers.

The odyssey of the hyperreal numbers should also be men-
tioned. One of the fundamental concepts of the differential
and integral calculus is now understood to be the limit. But
Leibniz, one of the founders of modern calculus, did not
use the idea of a limit. For instance he did not take the
limit of a number tending to zero. Leibniz took a fixed
number that was infinitely close to zero [14]. Even without
a rigorous definition of infinitesimal numbers, formalising
the idea of infinitely small numbers, Leibniz was still able
to deduced several results of modern calculus. The infinites-
imals suffered severe criticism and only in the 1960s did
Robinson [27] construct the infinitesimal numbers from the
real numbers and deduce the properties foreseen by Leibniz.

Just as the aforementioned numbers were introduced in-
tuitively, before being formalised with constructive proofs,
so the transreals were initially proposed, by Anderson, using
intuitions about the syntax of the rules for adding and mul-
tiplying fractions. Now the time has come for the transreals
to receive a rigorous, constructive proof of consistency.

III. CONSTRUCTION OF THE TRANSREAL NUMBERS
FROM THE REAL NUMBERS

In what follows, we propose a construction of the transreal
numbers from the real numbers. We define, for a given
class of subsets of pairs of the real numbers, arithmetical
operations (using real arithmetical operations) and we show
that there is a copy of the real numbers in this class.
Thus the transreal numbers and the arithmetic proposed by
Anderson become consequences of these definitions and of
the properties of real numbers.

Definition 1: Let T :=
{

(x, y); x, y ∈ R and y ≥ 0
}

.
Given (x, y), (w, z) ∈ T , we say that (x, y) ∼ (w, z), that is
(x, y) is equivalent to (w, z), with respect to ∼, if and only
if there is a positive α ∈ R such that x = αw and y = αz.

Proposition 2: The relation ∼ is an equivalence relation
on T .

Proof: The reflexivity of ∼ is immediate. Now let
(x, y), (w, z), (u, v) ∈ T such that (x, y) ∼ (w, z) and
(w, z) ∼ (u, v). Then there are positive α, β ∈ R such
that x = αw, y = αz, w = βu and z = βv. Symmetry
follows from w = 1

αx and z = 1
αy. Transitivity follows

from x = αβu and y = αβv.

For each (x, y) ∈ T , let us denote by [x, y] the equivalence
class of (x, y), that is

[x, y] :=
{

(w, z) ∈ T ; (w, z) ∼ (x, y)
}
.

Let us denote by T/∼ the quotient set of T with respect to
∼, that is T/∼ :=

{
[x, y]; (x, y) ∈ T

}
.

Proposition 3: It follows that

T/∼ =
{

[t, 1]; t ∈ R
}⋃{

[0, 0], [1, 0], [−1, 0]
}
.

Furthermore the elements [t, 1], [0, 0], [1, 0], [−1, 0] are
pairwise distinct and for each t, s ∈ R, it is the case that
[t, 1] 6= [s, 1] whenever t 6= s.

Proof: If [x, y] ∈ T/∼ then either y > 0 or y = 0.
If y > 0 then [x, y] = [x/y, 1] ∈

{
[t, 1]; t ∈ R

}
because

x = y xy and y = y × 1. On the other hand

y = 0⇒

 if x = 0 then [x, y] = [0, 0]
if x > 0 then [x, y] = [1, 0]
if x < 0 then [x, y] = [−1, 0]

.

The rest of the proof follows immediately.

Now let us define operations on T/∼ which extend the
arithmetical operations between real numbers.

Definition 4: Given [x, y], [w, z] ∈ T/ ∼ let us define
the operations addition, multiplication, opposite, reciprocal,
subtraction and division, respectively, by:

a) [x, y]⊕[w, z] :=

{
[2x, y] , if [x, y] = [w, z]
[xz + wy, yz] , if [x, y] 6= [w, z]

.

b) [x, y]⊗ [w, z] := [xw, yz].

c) 	[x, y] := [−x, y].

d) [x, y](−1) :=

{
[y, x] , if x ≥ 0
[−y,−x] , if x < 0

.

e) [x, y]	 [w, z] := [x, y]⊕ (	[w, z]).

f) [x, y]� [w, z] := [x, y]⊗ [w, z](−1).

Proposition 5: The operations ⊕, ⊗, 	 and (−1) are well
defined. That is [x, y] ⊕ [w, z], [x, y] ⊗ [w, z], 	[x, y] and
[x, y](−1) are independent of the choice of representatives of
the classes [x, y] and [w, z].
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Proof: Let [x, y], [w, z] ∈ T/∼, (x′, y′) ∈ [x, y] and
(w′, z′) ∈ [w, z]. Then there are positive α, β ∈ R such that
x = αx′, y = αy′, w = βw′ and z = βz′.

a) If [x, y] = [w, z] then [x′, y′] = [w′, z′]. Thus [x, y] ⊕
[w, z] = [2x, y] = [2x′, y′] = [x′, y′] ⊕ [w′, z′]. If
[x, y] 6= [w, z] then [x′, y′] 6= [w′, z′] and xz + wy =
αx′βz′+βw′αy′ = αβ(x′z′+w′y′) and yz = αy′βz′ =
αβy′z′. Thus [x, y]⊕ [w, z] = [xz + wy, yz] = [x′z′ +
w′y′, y′z′] = [x′, y′]⊕ [w′, z′].

b) Notice that xw = αx′βw′ = αβx′w′ and yz =
αy′βz′ = αβy′z′, whence [x, y] ⊗ [w, z] = [xw, yz] =
[x′w′, y′z′] = [x′, y′]⊗ [w′, z′].

c) Note that −x = −(αx′) = α(−x′) and y = αy′. Thus
	[x, y] = [−x, y] = [−x′, y′] = 	[x′, y′].

d) Notice that y = αy′, x = αx′, −y = α(−y′) and
−x = α(−x′). Thus if x ≥ 0 then [x, y](−1) = [y, x] =
[y′, x′] = [x′, y′](−1) and if x < 0 then [x, y](−1) =
[−y,−x] = [−y′,−x′] = [x′, y′](−1).

Now let us define an order relation on T/∼.

Definition 6: Let arbitrary [x, y], [w, z] ∈ T/∼. We say
that [x, y] ≺ [w, z] if and only if either [x, y] = [−1, 0] and
[w, z] = [1, 0] or else xz < wy. Furthermore we say that
[x, y] � [w, z] if and only if [x, y] ≺ [w, z] or [x, y] = [w, z].

Notice that the relation � is well defined and is an order
relation on T/∼.

The following theorem assures us that, in an appropriate
sense, R is subset of T/∼.

Theorem 7: The set R :=
{

[t, 1]; t ∈ R
}

is an ordered,
complete field.

Proof: The result follows from the fact that
π : R −→ R, π(t) = [t, 1] is bijective and, for any t, s ∈ R,

i) π(t)⊕ π(s) = π(t+ s),

ii) π(t)⊗ π(s) = π(ts) and

iii) π(t) � π(s) if and only if t ≤ s,

and from the fact that R is an ordered, complete field.

Note that for each t ∈ R, 	[t, 1] = [−t, 1] and if t 6= 0
then [t, 1](−1) = [t−1, 1].

Observation 8: Since π is an isomorphism of ordered,
complete fields between R and R, we can say that R is
a “copy” of R in T/∼. Therefore let us abuse language
and notation: henceforth R will be denoted by R and will
be called the set of real numbers and each [t, 1] ∈ R will
be denoted, simply, by t and will be called a real number.
In this sense we can say that R ⊂ T/∼ and we replace
the symbols ⊕, ⊗, 	, �, (−1), ≺ and �, respectively, by
+, ×, −, /, −1, < and ≤.

We define negative infinity, infinity, nullity, respectively,
by −∞ := [−1, 0],∞ := [1, 0], Φ := [0, 0]. The elements of
T/∼ are transreal numbers, hence T/∼ is the set of transreal
numbers. RT := T/∼, whence RT = R ∪ {−∞,∞,Φ} and
−∞,∞ and Φ are strictly transreal numbers.

The next theorem gives transreal arithmetic and ordering.

Theorem 9: For each x ∈ RT , it follows that:
a) −Φ = Φ, −(∞) = −∞ and −(−∞) =∞.

b) 0−1 =∞, Φ−1 = Φ, (−∞)−1 = 0 and ∞−1 = 0.

c) Φ+x = Φ, ∞+x =

{
Φ , if x ∈ {−∞,Φ}
∞ , otherwise and

−∞+ x = −(∞− x).

d) Φ× x = Φ, ∞× x =

 Φ , if x ∈ {0,Φ}
−∞ , if x < 0
∞ , if x > 0

and

−∞× x = −(∞× x).

e) If x ∈ R then −∞ < x <∞.

f) The following does not hold x < Φ or Φ < x.

Proof: Denote x = [x1, x2].
a) −Φ = −[0, 0] = [0, 0] = Φ,
−(∞) = −[1, 0] = [−1, 0] = −∞ and
−(−∞) = −[−1, 0] = [1, 0] =∞.

b) 0−1 = [0, 1]−1 = [1, 0] =∞,
Φ−1 = [0, 0]−1 = [0, 0] = Φ,
(−∞)−1 = [−1, 0]−1 = [−0,−(−1)] = [0, 1] = 0 and
∞−1 = [1, 0]−1 = [0, 1] = 0.

c) Φ + x = [0, 0] + [x1, x2] = [0× x2 + x1 × 0, 0× x2] =
[0, 0] = Φ,
∞+(−∞) = [1, 0]+[−1, 0] = [1×0+(−1)×0, 0×0] =
[0, 0] = Φ,
∞+Φ = [1, 0]+[0, 0] = [1×0+0×0, 0×0] = [0, 0] = Φ
and
∞+∞ = [1, 0] + [1, 0] = [2, 0] = [1, 0] =∞.
If x ∈ R,∞+x = [1, 0]+[x, 1] = [1×1+x×0, 0×1] =
[1, 0] =∞.
The addition −∞+ x holds analogously.

d) Φ×x = [0, 0]× [x1, x2] = [0×x1, 0×x2] = [0, 0] = Φ,
∞×0 = [1, 0]× [0, 1] = [1×0, 0×1] = [0, 0] = Φ and
∞× Φ = [1, 0]× [0, 0] = [1× 0, 0× 0] = [0, 0] = Φ.
If x < 0 then x1 < 0, whence ∞ × x = [1, 0] ×
[x1, x2] = [1× x1, 0× x2] = [x1, 0] = [−1, 0] = −∞.
If x > 0 then x1 > 0, whence ∞ × x = [1, 0] ×
[x1, x2] = [1× x1, 0× x2] = [x1, 0] = [1, 0] =∞.
The multiplication −∞× x holds analogously.

e) If x = [x1, x2] ∈ R then x2 > 0, whence −1 × x2 =
−x2 < 0 = x1 × 0 and x1 × 0 = 0 < x2 = 1× x2.

f) Φ 6= [−1, 0], Φ 6= [1, 0] and the inequality x1 × 0 =
0 < 0 = 0× x2 does not hold.

IAENG International Journal of Applied Mathematics, 46:1, IJAM_46_1_03

(Advance online publication: 15 February 2016)

 
______________________________________________________________________________________ 



If x, y ∈ RT , we write x 6≤ y if and only if x ≤ y does
not hold.

Corollary 10: Let x, y ∈ R where x > 0 and y < 0. It
follows that:

a) x/0 =∞.

b) y/0 = −∞.

c) 0/0 = Φ.

Proof:
a) x/0 = x× 0−1 = x×∞ =∞.

b) y/0 = y × 0−1 = y ×∞ = −∞.

c) 0/0 = 0× 0−1 = 0×∞ = Φ.

In the next theorem we establish on RT some arithmetical
and ordering properties that are true on R. Regarding the
properties that are not true for all transreal numbers, we
indicate the necessary restrictions.

Theorem 11: Let x, y, z ∈ RT . It follows that:
a) (Additive Commutativity) x+ y = y + x.

b) (Additive Associativity) (x+ y) + z = x+ (y + z).

c) (Additive Identity) x+ 0 = 0 + x = 0.

d) (Additive Inverse) if x /∈ {−∞,∞,Φ} then x− x = 0.

e) (Multiplicative Commutativity) x× y = y × x.

f) (Multiplicative Associativity) (x×y)×z = x× (y×z).

g) (Multiplicative Identity) x× 1 = 1× x = x.

h) (Multiplicative Inverse) if x /∈ {0,−∞,∞,Φ} then x
x = 1.

i) (Distributivity) if x /∈ {−∞,∞} or yz > 0 or y+z = 0
or x, y, z ∈ {−∞,∞} then x×(y+z) = (x×y)+(x×z)
and (y + z)× x = (y × x) + (z × x).

j) (Additive Monotonicity) if not simultaneously z = −∞,
x = −∞ and y =∞ and not simultaneously z = −∞,
x ∈ R and y = ∞ and not simultaneously z = ∞,
x = −∞ and y = ∞ and not simultaneously z = ∞,
x = −∞ and y ∈ R then

x ≤ y ⇒ x+ z ≤ y + z.

k) (Multiplicative Monotonicity) if not simultaneously z =
0, x = −∞ and y ∈ R and not simultaneously z = 0,
x ∈ R and y =∞ then

x ≤ y and z ≥ 0⇒ xz ≤ yz.

l) (Existence of Supremum) if A ⊂ RT \{Φ} is non-empty
then A has supremum in RT .

Notice that, as show in the following examples, the re-
strictions on items (d), (h), (i), (j) and (k) of Theorem 11 are
indeed necessary.

Example 12: From Theorem 9, Φ−Φ = −∞− (−∞) =
∞−∞ = Φ.

Example 13: From Theorem 9, 0
0 = Φ

Φ = −∞
−∞ = ∞

∞ = Φ.

Example 14: ∞ × (−2 + 3) = ∞ × 1 = ∞ 6= Φ =
−∞+∞ = (∞× (−2)) + (∞× 3).

∞× (0 + 3) =∞× 3 =∞ 6= Φ = Φ +∞ = (∞× 0) +
(∞× 3).

∞× (−∞+ 3) =∞× (−∞) = −∞ 6= Φ = −∞+∞ =
(∞× (−∞)) + (∞× 3).

Example 15: −∞ ≤ ∞ and −∞+ (−∞) = −∞ 6≤ Φ =
∞+ (−∞).

If x ∈ R then x ≤ ∞ and x + (−∞) = −∞ 6≤ Φ =
∞+ (−∞).

−∞ ≤ ∞ and −∞+∞ = Φ 6≤ ∞ =∞+∞.

If y ∈ R then −∞ ≤ y and −∞+∞ = Φ 6≤ ∞ = y+∞.

Example 16: If y ∈ R then −∞ ≤ y and −∞×0 = Φ 6≤
0 = y × 0.

If x ∈ R then x ≤ ∞ and x× 0 = 0 6≤ Φ =∞× 0.

The transreal numbers have not been easily accepted. We
believe that one reason for the resistance to Anderson’s
proposal is the fact that, in his presentation [5], the set of
transreals is defined by RT := R ∪ {−1/0, 1/0, 0/0}. By
defining RT in this way, Anderson presents a cyclical argu-
ment. He defines the transreals as being the reals joined to
the elements −1/0, 1/0 and 0/0 and defines these elements
as transreal numbers not real. That is, the objects −1/0, 1/0
and 0/0 are used to define themselves.

Another reason for transreals appearing strange is that,
in the new objects, the symbol “/” is undefined in context.
Usually this symbol means division and a fraction with
denominator zero has no sense in the set of real numbers
(which is the set for which the arithmetical properties are
already established). It is used as a symbol in the “old”
representation to denote a “new” operation. That is, Anderson
uses the division symbol between real numbers to represent
something not yet defined, the division between transreal
numbers.

It is worth mentioning that in our text, after a certain
moment, we use also the symbol “/” to represent division
between transreal numbers, but this is justified by Observa-
tion 8. We emphasise that this procedure is quite common in
mathematics. Dedekind defines operations for addition and
multiplication in the set of cuts and uses the same symbols
for addition and for multiplication in the “old” arithmetic of
the rationals and in the new operations because there is an
isomorphism of ordered fields between a certain subset of
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cuts and the set of rational numbers. The same happens in
many other cases, such as: the construction of the complexes
from the reals, the construction of the hyperreals from the
reals, the rationals from the integers and the integers from
the naturals.

To solve the problem of cyclical arguments, we used the
concept of an equivalence relation. Notice that we want the
fractions −1/0, 1/0 and 0/0 to be elements of the new set.
Each fraction is determined by two real numbers, each one in
a specific position. So the starting point was to think of each
transreal number as an ordered pair of real numbers. The next
step was to establish the criteria to consider two “fractions”
(ordered pairs) as equivalent fractions. This justifies the
relation created in Definition 1. And so we came to consider
the quotient set T/∼ and no just T. That is, a transreal
number is not a pair of real numbers, but a certain class of
ordered pairs of real numbers.

In Definition 4 we extended the arithmetical operations to
the transreals. Note that the rules for obtaining the results of
these operations are the same rules that customary practice
dictates are used between fractions of real numbers, except
for addition, whose definition was dismembered into two
cases. Even so, addition can be obtained similarly to the well
known practical rules for adding fractions of real numbers:

To sum two fractions, x and y, of real numbers.
If x and y have the same denominator then copy
the denominator into the result and add up the two
numerators to give the numerator of the result.
Otherwise create new fractions, with a common
denominator, by multiplying the numerator and the
denominator of x by the denominator of y and by
multiplying the numerator and the denominator of
y by the denominator of x then, as before, copy
the new common denominator into the result and
add up the numerators of the two new fractions to
give the numerator of the result.

In the transreal case:

To sum transreal numbers x and y. If x = y
then copy the second element into the result and
add up the first elements to give the first element of
the result. Otherwise multiply the first element and
the second element of x by the second element of y,
multiply the first element and the second element
of y by the second element of x then, as before,
copy the new second element into the result and
add up the first elements of the two new pairs to
give the first element of the result.

We note that, of course, opposite does not means additive
inverse and reciprocal does not mean multiplicative inverse.
However, we stress that changing the meaning of operations,
when it extends the concept of number, is a common oc-
currence. For example, for the natural numbers 3 and 6, the
result of 6/3 is the number of instalments, all equal to 3,
whose sum is 6. This interpretation is meaningless when
we operate on 3/6. There is no number of instalments, all
equal to 6, whose sum is 3. Of course, in the set of rational
numbers, 3/6 = 0.5, but this division no longer has the
previous meaning. It makes no sense to say that the sum
of 0.5 parts, all equal to 6, is equal to 3. We observe that
if [x, y] ∈ T/∼ then −[x, y] does not mean the additive

inverse of [x, y], instead it means the image of [x, y] in
the function [x, y] 7−→ [−x, y]. Likewise [x, y]−1 does not
mean the multiplicative inverse of [x, y], it means the image

of [x, y] in the function [x, y] 7−→
{

[y, x], x ≥ 0
[−y,−x] , x < 0

.

Nevertheless we also observed that, when restricted to real
numbers, the arithmetical operations defined on transreals
coincide with the “old” operations of the reals.

It should be mentioned that the equivalence and arithmetic
proposed here were motivated by the arithmetic of function

limit theory. Note that if k ∈ R and k > 0 then lim
x→0+

k

x
=

∞ [29]. This motivates an equivalence relation so that if
k ∈ R and k > 0 then k/0 = ∞. Among many other
examples, we highlight that if a ∈ R and f and g are real
functions such that lim

x→a
f(x) =∞ and lim

x→a
g(x) =∞ then

lim
x→a

(f(x) + g(x)) = ∞. This motivates an arithmetic such
that ∞+∞ =∞.

We are proposing the enlargement of the number concept.
As already mentioned, this is not a new process in the
development of mathematics. We are aware that the new set
of numbers, RT , has some properties that appear somewhat
unnatural in numbers. To cite one example, the distributive
property does not hold for all transreal numbers, as seen in
Example 14. However, at various moments in the extension
of concepts, some properties are lost. Among many other
examples we can point out that the set of complex numbers
is not an ordered field, as the reals are, the hyperreals do not
have the Archimedean property that the reals have, the matrix
product and product between Hamilton’s quaternions are not
commutative, unlike the reals, and in Cantor’s transfinite
arithmetic, addition is not commutative, unlike the reals.

IV. ALGEBRAIC TRANSFIELDS

The transreal numbers were created with the aim of
extending the real numbers to a set where the arithmetic is
total. The arithmetical operations were extended to fractions
of denominator zero, inspired by the usual arithmetic of
fractions. This inspiration led to the arithmetic described in
Theorem 9. In Theorem 11 we looked at what properties of
real numbers are valid in the transreals. In fact, we know that
the real numbers form a more abstract structure, namely the
algebraic field. We now investigate how transreal numbers
fit into a more general algebraic structure. In this section
we propose the transfield as a generalisation of the field –
not in the sense that every transfield is a field, but in the
sense that a field is a system of axioms that establishes
properties of addition and multiplication operations which
are extended by the special axioms of a transfield so that
addition, multiplication, subtraction and division are total
operations. Thus a transfield contains a field and supplies
total operations.

We start by defining a transfield so that the smallest
number of axioms are used to admit the maximum possible
structure of real arithmetic, subject to the constraint that a
transfield describes both the transreals and the transcom-
plexes [23]. In particular, associativity of addition is not
required so that the transcomplexes are admitted and neither
absorptivity nor extremals are required because these are not
parts of real arithmetic and enforcing them would increase
the number of axioms.
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We then elucidate various properties of transfields. The
reals are an important algebraic structure: the set of real num-
bers is, up to isomorphism, the unique, ordered, complete
field. We examine whether the transreals occupy a similar
place with respect to transfields. Unfortunately (or fortu-
nately!) the transreals are not the unique, ordered, complete
transfield, but they are the smallest of these transfields under
suitable conditions, established in Theorem 39. Similarly we
find that the transrationals are the smallest, ordered transfield.

Definition 17: A transfield is a set T provided with two
binary operations + and × and two unary operations − and
−1 (named, respectively, addition, multiplication, opposite
and reciprocal) such that:

a) T is closed for +, ×, − and −1.

b) + and × are commutative, each has an identity element
and × is associative.

c) There is F ⊂ T such that F is a field with respect
to + and × and F and T have common additive and
multiplicative identities.

d) For each x ∈ F , −x coincides with the additive inverse
of x in F and, for each x ∈ F , different from the
additive identity, x−1 coincides with the multiplicative
inverse of x in F .

When we refer to a transfield just by T , the operations
+,×,−,−1 and the field F are implied.

Observation 18: Let us use the following notation: the ad-
ditive and multiplicative identities are denoted, respectively,
by 0 and 1. Further oo denotes 0−1 and Φ denotes 0×0−1.
We emphasise that 0 and 1 are not necessarily the real
number zero, 0, and one, 1, oo is not necessarily the transreal
number infinity, ∞, and Φ is not necessarily the transreal
number nullity, Φ. The symbols 0, 1, oo and Φ just denote,
respectively, the additive identity, the multiplicative identity,
the reciprocal of the additive identity and the product of the
additive identity with its reciprocal.

If T is a transfield and x, y ∈ T , we define subtraction as
x − y := x + (−y) and division as x ÷ y := x × y−1. As
usual 1

x and 1/x denote x−1 while x
y and x/y denote x÷y.

Example 19: Let Θ be an arbitrary, atomic element and
let T19 := R ∪ {Θ} with the operations +, ×, − and −1,
defined as follows. For each x, y ∈ T19, if x, y ∈ R then
x + y, x × y, −x and, if x 6= 0, x−1 are defined in the
usual way. Further −Θ := Θ, 0−1 := Θ, Θ−1 := Θ,
Θ + x := x+ Θ := Θ and Θ× x := x×Θ := Θ. Notice
that T19 is a transfield with, among other options, F = R or
F = Q. Notice also that oo = Φ = Θ.

Definition 20: A transfield T is said to be an ordered
transfield if and only if there is P ⊂ T such that:

a) Given x ∈ T , exactly one of these four alternatives
occurs: either x = Φ or x = 0 or x ∈ P or −x ∈ P .

b) If x, y ∈ P then x+ y, x× y ∈ P .

In this way, we say that T is ordered by P . Further, if
x, y ∈ T we denote x < y if and only if y−x ∈ P . We also
denote x ≤ y if and only if x < y or x = y. We call P the
set of positive elements of T . When we refer to an ordered
transfield just by T , the set P is implied.

Example 21: Notice that T19 is ordered by P = R+.

Example 22: Let Θ be an arbitrary, atomic element and
let T22 := C ∪ {Θ} with the operations +, ×, − and −1,
defined as follows. For each x, y ∈ T22, if x, y ∈ C then
x + y, x × y, −x and, if x 6= 0, x−1 are defined in the
usual way. Further −Θ := Θ, 0−1 := Θ, Θ−1 := Θ,
Θ + x := x+ Θ := Θ and Θ× x := x×Θ := Θ. Notice
that T22 is a transfield with, among other options, F = C,
but T22 is not ordered.

Example 23: Let a, b, c, d and e be arbitrary, atomic ele-
ments and T23 := {a, b, c, d, e} with the operations +, ×, −
and −1, defined by the tables below.

+ a b c d e

a a b c d e
b b a c d e
c c c c e e
d d d e d e
e e e e e e

−a = a
−b = b
−c = d
−d = c
−e = e

× a b c d e

a a a e e e
b a b c d e
c e c d c e
d e d c d e
e e e e e e

a−1 = d
b−1 = b
c−1 = a
d−1 = a
e−1 = e

Notice that T23 is a transfield, with F = {a, b}, but T23

is not ordered. Notice also that 0 = a, 1 = b, oo = d and
Φ = e.

Definition 24: An ordered transfield, T , is said to be an
ordered, complete transfield if and only if every nonempty
subset of T , which has an upper bound, has a supremum in
T .

Example 25: Notice that T19 is complete.

Example 26: Let Θ be an arbitrary, atomic element and
let T26 := Q ∪ {Θ} with the operations +, ×, − and −1,
defined as follows. For each x, y ∈ T19, if x, y ∈ Q then
x + y, x × y, −x and, if x 6= 0, x−1 are defined in the
usual way. Further −Θ := Θ, 0−1 := Θ, Θ−1 := Θ,
Θ + x := x+ Θ := Θ and Θ× x := x×Θ := Θ. Notice
that T26 is an ordered transfield but is not complete.

Definition 27: Let T be an ordered transfield. We say that
T has the extremal property if and only if, for all x ∈ T :

a) oo ∈ P .

b) −(−oo) = oo.

c) oo−1 = 0 and (−oo)−1 = 0.
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d) oo + x =

{
Φ , if x ∈ {−oo,Φ}
oo , otherwise and −oo + x =

−(oo− x).

e) oo× x =

 Φ , if x ∈ {0,Φ}
−oo , if x < 0
oo , if x > 0

and −oo× x =

−(oo× x).

If T has the extremal property, we call oo the extremal
element.

Example 28: Notice that T19 and T26 do not have the
extremal property since, for example, oo = Θ = Φ /∈ P .
Further T22 and T23 also do not have the extremal property
since they are not ordered.

Example 29: Let Φ,−oo, oo be arbitrary, atomic elements
and let T29 := R∪{Φ,−oo, oo} with the operations +, ×, −
and −1 defined as follows. For each x, y ∈ T29, if x, y ∈ R
then x+ y, x× y, −x and, if x 6= 0, x−1 are defined in the
usual way. Further:

−Φ := Φ, −(oo) := −oo and −(−oo) := oo,

0−1 := oo, Φ−1 := 0, (−oo)−1 := 0 and oo−1 := 0,

Φ + x := x+ Φ := Φ,

oo + x := x+ oo :=

{
Φ , if x ∈ {−oo,Φ}
oo , otherwise and

−oo + x = x+ (−oo) := −(oo− x),

Φ× x := x×Φ := Φ,

oo× x := x× oo :=

 Φ , if x ∈ {0,Φ}
−oo , if x < 0
oo , if x > 0

and

−oo× x = x× (−oo) := −(oo× x).

Notice that T29 is an ordered transfield which has the
extremal property.

Proposition 30: If T is an ordered transfield with the
extremal property then:

a) x < oo for all x ∈ T \ {Φ, oo}.
b) −oo < x for all x ∈ T \ {Φ,−oo}.

Proof: Let T be an ordered transfield with the extremal
property.

a) Let x ∈ T \ {Φ, oo}. From Definition 27, items (d) and
(a), it follows that oo − x = oo + (−x) = oo ∈ P .
Hence, from Definition 20, x < oo.

b) Let x ∈ T \{Φ,−oo}. From Definition 27, items (b), (d)
and (a), it follows that x− (−oo) = x+ oo = oo + x =
oo ∈ P . Hence, from Definition 20, −oo < x.

If T is an ordered transfield with the extremal property
then, because of Proposition 30, we can say that −oo < x <
oo for all x ∈ T \ {Φ,−oo, oo}. Similarly −oo ≤ x ≤ oo for
all x ∈ T \ {Φ}.

Definition 31: Let T be a transfield. We say that T has
the absorptive property if and only if, for all x ∈ T ,

−Φ = Φ, Φ−1 = Φ, Φ + x = Φ and Φ× x = Φ.

If T has the absorptive property, we call Φ the absorptive
element.

Example 32: Notice that T19, T23 and T26 have the ab-
sorptive property. While T29 does not have the absorptive
property, since Φ−1 = 0 6= Φ.

Example 33: Notice that RT , the set of the transreal
numbers, is an ordered, complete transfield with extremal
and absorptive properties.

Example 34: Notice that CT , the set of the transcomplex
numbers [23], is a transfield with the absorptive property.
Notice also that CT is not ordered and, therefore, it does not
have the extremal property.

Observation 35: As a curious fact, note that addition is
associative in RT but is not associative in CT .

Proposition 36: If T is an ordered transfield with the
absorptive property then for all x ∈ T , neither x < Φ nor
Φ < x.

Proof: Suppose T is an ordered transfield with the
absorptive property and let x ∈ T be arbitrary. By Definition
31 and Definition 20, Φ − x = x − Φ = Φ /∈ P , whence
neither x < Φ nor Φ < x.

Let T be an ordered transfield. If x, y ∈ T , we write x 6< y
if and only if x < y does not hold and we write x 6> y if and
only if x > y does not hold. Notice that 6> is not equivalent
to ≤. For example, if T has the absorptive property, Φ 6> 0
but Φ ≤ 0 does not hold.

Proposition 37: If T is an ordered transfield with the
absorptive property then Φ is the unique element y ∈ T
such that y+x = y for all x ∈ T or y×x = y for all x ∈ T .
In other words, if y ∈ T and y + x = y for all x ∈ T or
y × x = y for all x ∈ T then y = Φ.

Proof: Let T be an ordered transfield with the absorptive
property and let y ∈ T . If y + x = y for all x ∈ T then
Φ = y + Φ = y and if y × x = y for all x ∈ T then
Φ = y ×Φ = y.

Definition 38: Let T and S be ordered transfields. A
function f : T → S is an isomorphism of ordered transfields
if and only if f is bijective and, for all x, y ∈ T , it is the
case that:

i) f(x+ y) = f(x) + f(y),
ii) f(x× y) = f(x)× f(y),

iii) f(−x) = −f(x),
iv) f(x−1) = (f(x))−1,
v) f(x) < f(y) if and only if x < y.

If there is an isomorphism of ordered transfields f : T →
S, we say that T is isomorphic to S.
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Theorem 39: If T is an ordered, complete transfield which
possess the extremal and absorptive properties then T con-
tains an ordered, complete transfield isomorphic to RT .

Proof: Let T be an ordered, complete transfield with
the extremal and absorptive properties. Let F ⊂ T be a field
and let P ⊂ T be the set of positive elements of T .

Denote P ′ = F ∩P and notice that F is ordered by the set
P ′. Indeed, given an arbitrary x ∈ F , since F ⊂ T , x ∈ T
and, by Definition 20 item (a), either x = Φ or x = 0 or
x ∈ P or −x ∈ P . Since Φ /∈ F we have that either x = 0
or x ∈ P or −x ∈ P . That is, either x = 0 or x ∈ P ′ or
−x ∈ P ′. Now, if x, y ∈ P ′ then x, y ∈ F and x, y ∈ P .
Since x, y ∈ P , by Definition 20 item (b), x + y, x × y ∈
P . Furthermore, since x, y ∈ F , x + y, x × y ∈ F . Thus
x+ y, x× y ∈ F ∩ P = P ′.

Let F be the completion of F . Notice that, since T is
complete, F ⊂ T . As F is an ordered, complete field, there
is an isomorphism of ordered fields h : R→ F .

Define f : RT → X := F ∪ {Φ,−oo, oo} ⊂ T as

f(x) =


h(x), if x ∈ R

Φ, if x = Φ
−oo, if x = −∞

oo, if x =∞

.

Since oo is the extremal element and Φ is the absorptive
element of T and h is an isomorphism of ordered fields, it is
not difficult to see that f(x+y) = f(x)+f(y), f(x×y) =
f(x)×f(y), f(−x) = −f(x) and f(x−1) = (f(x))−1 for
all x, y ∈ RT . Furthermore, from Definition 20, Definition
27, Definition 31 and Proposition 30, it follows that f(x) <
f(y) if and only if x < y for all x, y ∈ RT . Thus X is
an ordered, complete transfield and f is an isomorphism of
ordered transfields.

Observation 40: By the Theorem 39, every ordered, com-
plete transfield with extremal and absorptive properties con-
tains a copy of RT . Thus, unless isomorphism, RT is the
smallest, ordered, complete transfield which possess the
extremal and absorptive properties.

Example 41: Let a,−a be arbitrary, atomic elements and
let T41 := RT ∪{a,−a} with the operations +, ×, − and −1

defined as follows. For each x, y ∈ T41, if x, y ∈ RT then
x+ y, x× y, −x and, if x 6= 0, x−1 are defined in the usual
way. Further:
−(a) := −a, −(−a) := a,

a−1 := 0, (−a)−1 := 0,

a+ x := x+ a :=

 a , if x ∈ R ∪ {a}
Φ , if x ∈ {−a,Φ}
x , if x ∈ {−oo, oo}

and

−a+ x := x+ (−a) := −(a− x),

a× x := x× a :=


Φ , if x ∈ {0,Φ}
−a , if x ∈ {−a} ∪ R−
a , if x ∈ {a} ∪ R+

−oo , if x = −oo
oo , if x = oo

and

−a× x := x× (−a) := −(a× x).

Define P := R+ ∪ {a, oo}. Now notice that T41 is an
ordered, complete transfield with the extremal and absorptive
properties.

Observe that T41 is an example of an ordered, complete
transfield with extremal and absorptive properties strictly
“larger” than RT , since RT ( T41. It shows that the con-
dition “contains” cannot be replaced by “is” in Theorem 39
and the condition “smallest” cannot be replaced by “unique”
in Observation 40.

As is known, every ordered field has an ordered subfield
isomorphic to Q. This allows us to have the following.

Proposition 42: If T is an ordered transfield, which pos-
sess the extremal and absorptive properties, then T contains
an ordered transfield isomorphic to QT . (This means that, up
to isomorphism, QT is the smallest, ordered transfield which
possess the extremal and absorptive properties.)

Proof: The proof is analogous to the proof given for
Theorem 39.

V. OTHER EXAMPLES OF ALGEBRAIC STRUCTURES

Inspired by the transreal numbers, the algebraic structure
of a field has been extended to a transfield. Other structures
have already shown themselves to be very useful in the
development of transmathematics. In a forthcoming paper1

we establish the algebraic structures of trans-Boolean algebra
and transvector space. Here we just introduce their definitions
and give a few remarks about their applications.

Definition 43: A trans-Boolean algebra is a structure
(X,¬,∨,∧,⊥,>), where X is a set, ⊥,> ∈ X , ¬ is a
function from X to X and ∨ and ∧ are functions from
X×X to X such that the following properties are satisfied:
(i) existence of an identity element, (ii) commutativity, (iii)
associativity and (iv) distributivity. Thus, for all x, y, z ∈ X:

a) x ∨ ⊥= x and x ∧ > = x.
b) x ∨ y = y ∨ x and x ∧ y = y ∧ x.
c) x∨(y∨z) = (x∨y)∨z and x∧(y∧z) = (x∧y)∧z.
d) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Definition 44: A nonempty set, V , is called a transvec-
tor space on RT if and only if there are two operations
+ : V×V −→ V and · : RT×V −→ V (named, respectively,
addition and scalar multiplication), such that the following
properties are satisfied: additive commutativity, additive asso-
ciativity, scalar multiplicative associativity, additive identity
and scalar multiplicative identity. Which are, respectively, for
any w, u, v ∈ V and x, y ∈ RT :

a) w + u = u+ w.
b) w + (u+ v) = (w + u) + v.
c) x · (y · w) = (xy) · w.
d) There is o ∈ V such that o+ w = w.
e) 1 · w = w.

The elements of V are called transvectors. Further x · w is
customarily denoted as w · x, xw or wx and o as 0.

1W. Gomide, T. S. dos Reis and J. A. D. W. Anderson, “Transreal Proof
of the Existence of Universal Possible Worlds”. Submitted for review.
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In the submitted paper we show that there are universal
possible worlds which have the topological property that
they can access every world in sequences of worlds that
comes arbitrarily close to every possible world. Our method
of proof is to establish the space of all possible worlds
as a transvector space and to prove certain algebraic and
topological properties of that space. We begin by making RT
a trans-Boolean logic, by defining suitable functions ¬,∨ and
∧, and prove that the transreal numbers do model classical,
fuzzy and a particular paraconsistent logic by establishing
homomorphisms between these logics and trans-Boolean
logic. Negative infinity models the classical truth value False
and positive infinity models the classical truth value True.
The real numbers (in the range from zero to one) model fuzzy
values. Negative values are more False than True, positive
values are more True than False and zero is equally False and
True. Zero models the dialeathic value that has equal degrees
of both falsehood and truthfulness. Nullity models gap values
that are neither False nor True and which, more generally,
have no degree of falsehood or truthfulness. Thus we can
model the semantic values of many logics with algebraic
structures inspired by the transreals.

The idea of logical space is inspired by Wittgenstein’s
conception that the world’s logical form is given by a
picture that is a “configuration of objects.” See [30][31].
We assume that there is a countable infinitude of atomic
propositions. Hence the set of atomic propositions can be
written in the form {P1, P2, P3, . . . }, where Pi 6= Pj
whenever i 6= j. Intuitively a possible world is a binding of
propositions to semantic values. That is, at a given possible
world, each atomic proposition takes on a semantic value in
RT . Thus we can interpret a possible world as a function
from {P1, P2, P3, . . . } to RT . But this forms a sequence of
elements from RT . So, denoting the set of the sequences
of elements from RT by (RT )N, we call each element of
(RT )N a possible world. Hence (RT )N is the set of all
possible worlds. We notionally label each axis with a unique
atomic proposition so that a co-ordinate, on a labelled axis,
is the semantic value of that labeling proposition. Thus
points in this space are arrangements of semantic values of
atomic propositions. In other words, points in this space are
possible worlds. We make (RT )N a transvector space. We
give a distance metric so that we can talk about the distance
between any two possible worlds and can give the vector that
passes from one world to another. We define accessibility
between possible worlds and show that there is a possible
world w, which accesses a sequence of possible worlds that
converges to u, whatever the possible world u. This means
that w accesses any possible world by approximation.

Thus we obtain new results in logic by exploiting algebraic
structures inspired by the transreals.

VI. CONCLUSION

The transreal numbers have an arithmetic which is closed
over addition, subtraction, multiplication and division. The
transreals have proved controversial and have not been
widely accepted. In the past, constructive proofs have ended
controversies over the validity of new number systems so
we construct the set of transreal numbers from the set of
real numbers and construct transreal arithmetic from real
arithmetic. We show that the transreals contain the reals.

We define an algebraic structure, called a transfield, which
contains a field. We give some examples of transfields and
show that just as the rationals are the smallest, ordered
field and reals are the unique, ordered, complete field, so,
under established conditions, transrationals are the smallest,
ordered transfield and transreals are the smallest, ordered,
complete transfield. Thus we extend algebraic structures from
the real domain to the transreal domain.

We hope this does enough to end controversy about the
correctness of the transreals, leaving an assessment of their
usefulness to future experience.

APPENDIX A
PROOF OF THEOREM 11

Although somewhat tedious, it is necessary to prove The-
orem 11.

Note that if it is not the case that [x, y] = [w, z] = [−1, 0]
nor [x, y] = [w, z] = [1, 0] then [x, y] + [w, z] = [xz +
wy, yz], even though [x, y] = [w, z]. We recall that the real
sign function is defined by

sgn : R −→ R, sgn(x) =

 −1 , if x < 0
0 , if x = 0
1 , if x > 0

.

Notice that for all x, y ∈ R it is the case that sgn(x) ×
sgn(y) = sgn(xy). Moreover [x, 0] = [sgn(x), 0]. We use
these observations in what follows.

Proof: Let us denote x = [x1, x2], y = [y1, y2] and
z = [z1, z2].

a) If x = y then the result is immediate. Otherwise x+y =
[x1, x2] + [y1, y2] = [x1y2 + y1x2, x2y2] = [y1x2 +
x1y2, y2x2] = [y1, y2] + [x1, x2] = y + x.

b) if y = Φ then
x+ (Φ + z) = x+ Φ = Φ = Φ + z = (x+ Φ) + z.

If y = −∞ then
Φ + (−∞+ Φ) = (−∞+ Φ) + Φ = (Φ + (−∞)) + Φ.
Φ+(−∞+(−∞)) = Φ+(−∞) = (Φ+(−∞))+(−∞).
Φ + (−∞ +∞) = Φ + Φ = Φ = Φ +∞ = (Φ +
(−∞)) +∞.
Φ + (−∞ + z) = Φ + (−∞) = Φ = Φ + z = (Φ +
(−∞)) + z, for all z ∈ R.
−∞+ (−∞+ Φ) = −∞+ Φ = (−∞+ (−∞)) + Φ.
−∞+(−∞+(−∞)) = −∞ = (−∞+(−∞))+(−∞).
−∞ + (−∞ +∞) = −∞ + Φ = Φ = −∞ +∞ =
(−∞+ (−∞)) +∞.
−∞+ (−∞+ z) = −∞+ (−∞) = −∞ = −∞+ z =
(−∞+ (−∞)) + z, for all z ∈ R.
∞ + (−∞ + Φ) = ∞ + Φ = Φ = Φ + Φ = (∞ +
(−∞)) + Φ.
∞+(−∞+(−∞)) =∞+(−∞) = Φ = Φ+(−∞) =
(∞+ (−∞)) + (−∞).
∞+(−∞+∞) =∞+Φ = Φ+∞ = (∞+(−∞))+∞.
∞ + (−∞ + z) = ∞ + (−∞) = Φ = Φ + z = (∞ +
(−∞)) + z, for all z ∈ R.
x + (−∞ + Φ) = x + Φ = Φ = −∞ + Φ = (x +
(−∞)) + Φ, for all x ∈ R.
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x + (−∞ + (−∞)) = x + (−∞) = −∞ = −∞ +
(−∞) = (x+ (−∞)) + (−∞), for all x ∈ R.
x + (−∞ +∞) = x + Φ = Φ = −∞ +∞ = (x +
(−∞)) +∞, for all x ∈ R.
x + (−∞ + z) = x + (−∞) = −∞ = −∞ + z =
(x+ (−∞)) + z, for all z ∈ R and all x ∈ R.

If y =∞ the result holds analogously.

If y ∈ R then
Φ + (y + Φ) = (y + Φ) + Φ = (Φ + y) + Φ.
Φ + (y + (−∞)) = Φ + (−∞) = (Φ + y) + (−∞).
Φ + (y +∞) = Φ +∞ = (Φ + y) +∞.
Φ + (y+ z) = Φ = Φ + z = (Φ + y) + z, for all z ∈ R.
−∞+ (y + Φ) = −∞+ Φ = (−∞+ y) + Φ.
−∞+(y+(−∞)) = −∞+(−∞) = (−∞+y)+(−∞).
−∞+ (y +∞) = −∞+∞ = (−∞+ y) +∞.
−∞+ (y+ z) = −∞ = −∞+ z = (−∞+ y) + z, for
all z ∈ R.
∞+ (y + Φ) =∞+ Φ = (∞+ y) + Φ.
∞+ (y + (−∞)) =∞+ (−∞) = (∞+ y) + (−∞).
∞+ (y +∞) =∞+∞ = (∞+ y) +∞.
∞ + (y + z) = ∞ = ∞ + z = (∞ + y) + z, for all
z ∈ R.
x+(y+Φ) = x+Φ = Φ = (x+y)+Φ, for all x ∈ R.
x+(y+(−∞)) = x+(−∞) = −∞ = (x+y)+(−∞),
for all x ∈ R.
x + (y +∞) = x +∞ = ∞ = (x + y) +∞, for all
x ∈ R.
x + (y + z) = (x + y) + z, for all z ∈ R and for all
x ∈ R, from the additive associativity of real numbers.

c) x+ 0 = [x1, x2] + [0, 1] = [x1 × 1 + 0× x2, x2 × 1] =
[x1, x2] = x.

d) This case is immediate.

e) x × y = [x1, x2] × [y1, y2] = [x1y1, x2y2] =
[y1x1, y2x2] = [y1, y2]× [x1, x2] = y × x.

f) (x × y) × z = ([x1, x2] × [y1, y2]) × [z1, z2] =
([x1y1, x2y2]) × [z1, z2] = [(x1y1)z1, (x2y2)z2] =
[x1(y1z1), x2(y2z2)] = [x1, x2] × [y1z1, y2z2] =
[x1, x2]× ([y1, y2]× [z1, z2]) = x× (y × z).

g) x×1 = [x1, x2]×[1, 1] = [x1×1, x2×1] = [x1, x2] = x.

h) This case is immediate.

i) (I) x /∈ {−∞,∞}.
Suppose x = Φ. Then x × (y + z) = Φ × (y + z) =
Φ = Φ + Φ = (Φ× y) + (Φ× z) = (x× y) + (x× z).
Suppose x ∈ R. If y = z = ∞ or y = z = −∞
then x × (y + z) = x × y = y = y + y = (x ×
y) + (x × y) = (x × y) + (x × z). Otherwise x ×
(y+ z) = [x, 1]× ([y1, y2] + [z1, z2]) = [x, 1]× [y1z2 +
z1y2, y2z2] = [x×(y1z2+z1y2), 1×(y2z2)] = [xy1z2+
xz1y2, y2z2] = [xy1, y2]+[xz1, z2] = ([x, 1]×[y1, y2])+
([x, 1]× [z1, z2]) = (x× y) + (x× z).

(II) yz > 0. Note that sgn(y1) = sgn(z1).

If y = z = ∞ or y = z = −∞ then
x × (y + z) = [x1, x2] × ([y1, 0] + [z1, 0]) =
[x1, x2] × ([sgn(y1), 0] + [sgn(z1), 0]) = [x1, x2] ×
([sgn(y1), 0] + [sgn(y1), 0]) = [x1, x2]× [sgn(y1), 0] =
[x1sgn(y1), x2× 0] = [x1sgn(y1), 0] = [x1sgn(y1), 0] +
[x1sgn(y1), 0] = [x1sgn(y1), 0] + [x1sgn(z1), 0] =
[x1sgn(y1), x2 × 0] + [x1sgn(z1), x2 × 0] =
([x1, x2] × [sgn(y1), 0]) + ([x1, x2] × [sgn(z1), 0]) =
([x1, x2]×[y1, 0])+([x1, x2]×[z1, 0]) = (x×y)+(x×z).
Otherwise we have x2 = 0 or x2 > 0. If x2 = 0
then x × (y + z) = [x1, 0] × ([y1, y2] + [z1, z2]) =
[x1, 0] × [y1z2 + z1y2, y2z2] = [x1 × (y1z2 +
z1y2), 0 × (y2z2)] = [x1(y1z2 + z1y2), 0] =
[sgn(x1)sgn(y1z2 + z1y2), 0] = [sgn(x1)sgn(y1), 0]
and (x × y) + (x × z) = ([x1, 0] × [y1, y2]) +
([x1, 0] × [z1, z2]) = [x1y1, 0 × y2] + [x1z1, 0 × z2] =
[x1y1, 0] + [x1z1, 0] = [sgn(x1)sgn(y1), 0] +
[sgn(x1)sgn(z1), 0] = [sgn(x1)sgn(y1), 0] +
[sgn(x1)sgn(y1), 0] = [sgn(x1)sgn(y1), 0]. If x2 > 0
then x × (y + z) = [x1, x2] × ([y1, y2] + [z1, z2]) =
[x1, x2] × [y1z2 + z1y2, y2z2] = [x1 × (y1z2 +
z1y2), x2 × (y2z2)] = [x1(y1z2 + z1y2), x2y2z2] =
[x2x1(y1z2 + z1y2), x2(x2y2z2)] = [x1y1x2z2 +
x1z1x2y2, x2x2y2z2] = [x1y1, x2y2] + [x1z1, x2z2] =
([x1, x2] × [y1, y2]) + ([x1, x2] × [z1, z2]) =
(x× y) + (x× z).

(III) y + z = 0.
We have [y1z2+z1y2, y2z2] = [y1, y2]+[z1, z2] = [0, 1].
Thus y2 6= 0 and z2 6= 0, whence y, z ∈ R and z = −y.
Thus x × (y + z) = x × 0 = [x1, x2] × [0, 1] =
[x1×0, x2×1] = [0, x2] = [0×x2, x2x2] = [0, x2x2] =
[x1yx2 − x1yx2, x2x2] = [x1y, x2] + [−x1y, x2] =
[x1y, x2 × 1] + [x1(−y), x2 × 1] = ([x1, x2]× [y, 1]) +
([x1, x2] × [−y, 1]) = ([x1, x2] × [y, 1]) + ([x1, x2] ×
[z, 1]) = (x× y) + (x× z).

(IV) x, y, z ∈ {−∞,∞}.
If y 6= z we can suppose, without loss of generality, that
x =∞, y = −∞ and z =∞, whence x× (y + z) =
∞× (−∞+∞) =∞× Φ = Φ = −∞+∞ = (∞×
(−∞)) + (∞×∞) = (x× y) + (x× z). Otherwise we
can suppose, without loss of generality, that x = −∞,
y = ∞ and z = ∞, whence x × (y + z) = −∞ ×
(∞ + ∞) = −∞ × ∞ = −∞ = −∞ + (−∞) =
(−∞×∞) + (−∞×∞) = (x× y) + (x× z).

The equality (y + z) × x = (y × x) + (z × x) follows
from the preceding equality and from multiplicative
commutativity.

j) Suppose x ≤ y. Then


(a1) z = Φ or
(b1) z = −∞ or
(c1) z =∞ or
(d1) z ∈ R

and


(a2) x = Φ or
(b2) x = −∞ or
(c2) x =∞ or
(d2) x ∈ R

and


(a3) y = Φ or
(b3) y = −∞ or
(c3) y =∞ or
(d3) y ∈ R

.

Notice that the condition pairs (a2) and (b3), (a2) and
(c3), (a2) and (d3), (b2) and (a3), (c2) and (a3), (d2)
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and (a3) do not occur because if x = Φ or y = Φ then
x = y = Φ. The pairs (c2) and (b3), (c2) and (d3) do
not occur because if x =∞ then y =∞. Furthermore,
the pairs (d2) and (b3) do not occur because if y = −∞
then x = −∞.
If (a1) occurs then x+z = x+Φ = Φ = y+Φ = y+z.
If (b1) occurs then observe the following. If the pair (a2)
and (a3) occurs then x+ z = Φ + (−∞) = y+ z. If the
pair (b2) and (b3) occurs then x+ z = −∞+ (−∞) =
y + z. By hypothesis the pair (b2) and (c3) does not
occur. If the pair (b2) and (d3) occurs then x + z =
−∞+ (−∞) = −∞ = y + (−∞) = y + z. If the pair
(c2) and (c3) occurs then x+ z =∞+ (−∞) = y+ z.
By hypothesis the pair( d2) and (c3) does not occur. If
the pair (d2) and (d3) occurs then x+z = x+(−∞) =
−∞ = y + (−∞) = y + z.
If (c1) occurs then the result follows analogously to the
previous case.
If (d1) occurs then observe the following. If the pair (a2)
and (a3) occurs then x+ z = Φ + z = y+ z. If the pair
(b2) and (b3) occurs then x+z = −∞+z = y+z. If the
pair (b2) and (c3) occurs then x+z = −∞+z = −∞ <
∞ = ∞ + z = y + z. If the pair (b2) and (d3) occurs
then x+ z = −∞+ z = −∞ < y + z. If the pair (c2)
and (c3) occurs then x+z =∞+z = y+z. If the pair
(d2) and (c3) occurs then x+ z <∞ =∞+ z = y+ z.
If the pair (d2) and (d3) occurs then the result follows
from the real number order relation and real addition.

k) Suppose x ≤ y. Then

{
(a1) z =∞ or
(b1) z ∈ R with z ≥ 0

and


(a2) x = Φ or
(b2) x = −∞ or
(c2) x =∞ or
(d2) x ∈ R

and


(a3) y = Φ or
(b3) y = −∞ or
(c3) y =∞ or
(d3) y ∈ R

.

Condition pairs (a2) and (b3), (a2) and (c3), (a2) and
(d3), (b2) and (a3), (c2) and (a3), (d2) and (a3) do not
occur because if x = Φ or y = Φ then x = y = Φ. Also
pairs (c2) and (b3), (c2) and (d3) do not occur because
if x =∞ then y =∞. The pair (d2) and (b3) does not
occur because if y = −∞ then x = −∞.
If (a1) occurs then observe the following. If the pair (a2)
and (a3) occurs then x×z = Φ×∞ = y×z. If the pair
(b2) and (b3) occurs then x× z = −∞×∞ = y× z. If
the pair (b2) and (c3) occurs then x× z = −∞×∞ =
−∞ < ∞ = ∞ × ∞ = y × z. If the pair (b2) and
(d3) occurs then x × z = −∞ × ∞ = −∞ < ∞ =
y ×∞ = y × z. If the pair (c2) and (c3) occurs then
x×z =∞×∞ = y×z. If the pair (d2) and (c3) occurs
then x × z = x ×∞ = ∞ = ∞×∞ = y × z. If the
pair (d2) and (d3) occurs then x× z = x×∞ =∞ =
y ×∞ = y × z.
If (b1) occurs then observe the following. If the pair
(a2) and (a3) occurs then x× z = Φ× z = y× z. If the
pair (b2) and (b3) occurs then x×z = −∞×z = y×z.
If the pair (b2) and (c3) occurs then x×z = −∞×z ≤
∞× z = y × z. If the pair (b2) and (d3) occurs then,

by hypothesis, z 6= 0, whence x × z = −∞ × z =
−∞ < y × z. If the pair (c2) and (c3) occurs then
x × z = ∞ × z = y × z. If the pair (d2) and (c3)
occurs, notice that in this case, by hypothesis, z 6= 0,
whence x× z <∞ =∞× z = y × z. If the pair (d2)
and (d3) occurs then the result follows from the real
number order relation and real multiplication.

l) If ∞ /∈ A and A is bounded above, in the real sense,
then the result follows from the Supremum Axiom.
Otherwise ∞ is the unique upper bound of A, whence
∞ = supA.
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SP (Revista Educação Matemática Pesquisa PUC-SP), vol. 8, pp. 13–
43, 2006.

[15] W. Gomide and T. S. dos Reis, “Transreal numbers: on the concept of
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