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Abstract—This paper focuses on peaking and splitting phe-
nomena of waves, in order to support hydrodynamic laboratory
activities for generating waves which have large amplitude and
are very steep but do not break during their propagation in the
wave tank. Such waves, called extreme waves or giant waves,
will be used to test oceanic objects, like ships and marine
structures, before they operate in real condition. The previous
study shows that nonlinear effects will deform the initial wave
and may lead to large waves with height larger than twice
as high as the original input; the deformation is followed by
peaking and splitting phenomena. It is interesting to understand
and quantify the nonlinear effects; it is also interesting to know
at which location in the wave tank, the extreme position, the
waves will achieve their maximum amplitude and how high the
magnitude of the amplitude at this position. As in the previous
research, a quantity that can be used to investigate these
phenomena is Maximal Temporal Amplitude (MTA). MTA can
be used to measure the maximum amplitude amplification of
the wave elevation at each location during the observation time.
It is known that an explicit expression of the MTA can not be
found in the general form of the governing equations (the full
Euler equations with the exact kinematic and dynamic free
surface conditions) and generating signals. Simplified models,
like Boussinesq, Korteweg de Vries (KdV) and Non Linear
Schrodinger (NLS) type of equations which have in common
that the fluid motion in the layer is approximated to arrive at
equations at the free surface alone are considered. By using the
third order approximation of KdV (TOA-KdV) or Boussinesq
(TOA-Bouss) and MTA, it is obtained a formula that can be
used to predict the extreme position. Furthermore, the fifth
order approximation of KdV (FOA-KdV) and MTA is used
to investigate the amplitude amplification, and the order of
amplitude amplification factor (AAF ) is obtained. The AAF
here is the ratio of the amplitude at maximum location to the
initial amplitude. However, the AAF which is calculated using
FOA-KdV does not match the experimental results. Therefore,
in this paper we use Boussinesq model with full dispersion and
the same method and procedure with the previous research.
Furthermore, we verify our theoretical results using analytical
and numerical as well as experimental results.

Index Terms—Boussinesq equation, MTA, bi-chromatic
waves, wave propagation, asymptotic expansion, amplitude
amplification factor.

I. INTRODUCTION

THIS paper concerns on peaking and splitting phenom-
ena of waves during their propagation in hydrodynamic

laboratory. It is directly motivated by the need to generate
waves with high and steep amplitude, called extreme waves,
but not break during their propagation in the wave basin in
hydrodynamic laboratory. Such waves will be used to test a
floating body before it operates in real situation. The extreme
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wave is a wave whose height exceeds the significant wave
height of measured wave train by factor more than 2.2 [1]
and [2]. Occurrences (where and when) of this wave are
not easy to predict, but its impact can cause damage to
oceanic objects, i.e. ships and marine structures, that are
around this wave (see Earle [3], Mori et al [4], Divinsky
and Levin [5], Truslen and Dysthe [6], Smith [7], Toffoli
and Bitner [8] and Waseda et al. [9]). Therefore, information
about the presence of freak waves is important for offshore
activities. The presence has been often reported in media.
Nikolkina and Didenkulova [10] collected and analysed freak
waves reported in media in 2006-2010. To understand the
occurrence, propagation and generation of the extreme wave,
various studies have been conducted by many researchers.
Waseda et al. [11] conducted deep water observation of
freak waves in the North West Pacific Ocean. Hu et al.
[12] studied numerically rogue wave based on nonlinear
Schrodinger breather solutions under finite water depth. Islas
and Schober [13] investigated the effects of dissipation on the
development of rogue waves and down shifting by adding
nonlinear and linear damping terms to the one-dimensional
Dysthe equation. Xu et al. [14] proposed (2 + 1)- dimensional
Kadomtsev–Petviashvili equation, homoclinic (heteroclinic)
breather limit method (HBLM), for seeking rogue wave solu-
tion to nonlinear evolution equation (NEE). The wave ampli-
fication in the framework of forced non linear Schrodinger
equation is observed by Slunyaev et al. [15]. Cahyono et
al. [16] discussed multi-parameters perturbation method for
dispersive and nonlinear partial differential equations. Ramli
[17] investigated nonlinear evolution of wave group with
three frequencies using third order approximation of Ko-
rteweg de Vries equation and Maximal Temporal Amplitude.
Wabnitz et al. [18] observed extreme wave events which
are generated in the modulationally stable normal dispersion
regime. Peric et al. [19] regarded a prototype for spatio-
temporally localizing rogue waves on the ocean caused
by nonlinear focusing and analyzed by direct numerical
simulations based on two phase Navier–Stokes equations.
Blackledge [20] found the explicit freak waves can not be
obtained by pure intuition or by elementary calculations
because of their complications. Onorato et al. [21] discussed
rogue waves occurring in different physical contexts and
related anomalous statistics of the wave amplitude, which
deviates from the Gaussian behavior that were expected
for random waves. Extreme wave generation using self-
correcting method was studied by Fernandez et al. [22]. Xi-
eng et al. [23] simulated the extreme wave generation are
carried out by using the volume of fluid (VOF) method.

In wave generation process in the wave tank, a time signal
is given to a wave maker that determines the motion of
flaps that push the water. The waves which are produced
then propagate down stream over initially still water along
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the wave tank. As effects of non-linearity the original signal
will deform during its propagation, (see[24], [25], [26] and
[27]). The deformation, which is followed by peaking and
splitting phenomena, may lead to amplitude amplification of
the waves so that waves can occur with wave height that can
not be generated in a direct way by wave-maker motions
[28]. Due to physical limitations of the wave generator, the
nonlinear effects are very difficult to study over the long
distance and time that are relevant for the laboratory [29].

In order to support the extreme wave generation activity
in hydrodynamic laboratory, Marwan et al. [30], [31] and
[32] found the formula to predict the position at which bi-
chromatic and Benjamin-Feir waves will reach maximum
during their propagation. Such formula is derived based
on the third order approximation of KdV equation (TOA-
KdV). Based on the formula the position where bi-chromatic
waves reach highest peaking of order ( 1

a2 ,
1
ν2 ), with a and

ν are the initial amplitude and the envelope frequency,
respectively. Obtained results with that approximation in
accordance with the results of Stansbergs experiment [25]
and Westhuis numerical study [26] and [27], are described in
Marwan [31]. However, although it can predict the position,
the third-order approximation of KdV equation is not able
to be used to predict an increase of either bi-chromatic or
Benjamin-Feir wave amplitude (see Marwan [31], [32] and
[33]). In the other word, obtained results do not appropriate
with the Stansbergs experimental results [25] and Westhuis
numerical study [26] to predict an increase of bi-chromatic
wave amplitude. However, this incompatibility was expected
in the first place because the calculation is done up to the
third-order only. Therefore, different from [21], [22] and
[23], Ramli et al. [34] studied bi-chromatic wave propagation
with fifth-order of KdV equation (FOA-KdV) and MTA.
Obtained results show that there is an increase in the related
bi-chromatic wave amplitude as high order influence, and
the increasing of the amplitude is of order (aν )2. Never-
theless, the increasing is still not suitable with Stansberg’s
experimental result [25] and Westhuis’s numerical study [26].
It should be stated that the KdV equation in conducted
study is KdV equation with exact dispersion relation found
by Groesen [35]. For this fact, in this paper we will use
Boussinesq model with full dispersion and MTA by using
the same procedure as in [36] to investigate the amplitude
amplification factor (AAF ) for increasing amplitude of bi-
chromatic waves in their propagation. It is known that from
this model, it can be derived KdV equation through uni-
directionalization process (see [37], [38] and [39]). As it is
what has been shown in previous work, see also [40], for
narrow banded spectra, the third order effects can dominate
the second order effects and are responsible for the large
amplification factor. For that reason we also use third order
theory for our analysis.

The organization of the paper is as follows. In the next
section we present the mathematical model to be used,
the third order side band solution for this model and the
approximation of the amplitude amplification factor by an
explicit expression obtained from third order side band. Some
graphical results and the comparison with the previous results
of the amplitude amplification factor are presented in Section
3. Finally in Section 4, we make some concluding remarks.

II. AMPLITUDE AMPLIFICATION FACTOR

As mentioned above, as an effect of non-linearity the
surface waves deform. This deformation is followed by
splitting and peaking phenomena, during their propagation
in hydrodynamic laboratory. To investigate this directly
through the full Euler equations with the exact kinematic
and dynamic free surface conditions is not easy. Simplified
models, like Boussinesq, Korteweg de Vries (KdV) and Non
Linear Schrodinger (NLS) type of equations which have in
common that the fluid motion in the layer is approximated to
arrive at equations at the free surface alone are considered.
In this article we use Boussinesq equation as a model.
The Boussinesq equation is known as an asymptotic model
for two opposite directional rather long and small wave
that propagates on the surface. In normalized variables, the
Boussinesq equation with full dispersion [35] has the form

∂tu+ ∂xη + u∂xu = 0
∂tη + ∂x(Lu) + ∂x(uη) = 0,

(1)

with u and η are velocity and elevation of the wave in
normalized coordinate, respectively. Here, L is pseudo-
differential operator with Fourier symbol

L̂(k) =
tanh k

k
.

The laboratory variables for the wave elevation, velocity,
horizontal space and time ηlab, ulab, xlab and tlab are related
to the normalized variables by ηlab = hη, ulab = u

√
gh,

xlab = hx and tlab = t
√
h/g, where h is the uniform

water depth and g is the gravity acceleration. Consequently,
corresponding transformed wave parameters such as wave
length, wave number and angular frequency, are given by
λlab = hλ, klab = k/h, ωlab = ω

√
g/h.

As it is in [16], [36] and different from Huang [41], in
this paper the solution of (1) is obtained by using a direct
expansion up to third order in the power series of the wave
elevation and velocity. Here, we write

η = ε η(1) + ε2 η(2) + ε3 η(3) +O(ε4)
u = ε u(1) + ε2 u(2) + ε3 u(3) +O(ε4),

(2)

where ε is a positive small number representing the order of
magnitude of the wave amplitude. The terms η(j) and u(j)

describe the solution of elevation and velocity at jth order,
j = 1, 2, 3, respectively. It is known that this direct expansion
leads to resonance in the third order, see [39], [40], [42].
To avoid this resonance, a modification is introduced. The
modification used is the development of Linstead-Poincare
technique [43] which produces nonlinear dispersion relation
[39]

k± ≈ k(0)
± + εk

(1)
± + ε2k

(2)
± (3)

with
ω± = k

(0)
±

√
L̂(k

(0)
± ). (4)

Since this paper focuses on bi-chromatic waves, here η(1)

is chosen as
η(1) = 4a cos(θ) cos(∆θ), (5)

with
θ =

θ+ + θ−
2
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and
∆θ =

θ+ − θ−
2

,

θ± = k±x−ω±t, (k±, ω±) satisfies the nonlinear dispersion
relation. As reported in [36], at the second order it is obtained
the following forms

k
(1)
± = 0,

η(2)(x, t) = s+ cos 2θ++s− cos 2θ−+s cos 2θ+sm cos 2∆θ,
(6)

and

η
(2)
fw(x, t) = s+ cosϑ(2ω+) + s− cosϑ(2ω−)

+s cosϑ(2ω) + sm cosϑ(2ν), (7)

with ϑ(ω) = Ω−1(ω)x− ωt. The coefficients s±, s and sm
in equation (6) are given by

s± =
2k

(0)
± (2ω2

± + L(2k
(0)
± ))

ω2
±(2ω± + 2k

(0)
± L(2k

(0)
± ))

a2k
(0)
±

2ω± − 2k
(0)
± L(2k

(0)
± )

,

s =
klin

2

(
a(b− + b+)ω + b+b−klinL(2klin)

(ω)2 − (klin)2L(2klin)

)
,

sm =
κlin

2

(
a(b− + b+)ν + b+b−κlinL(2κlin)

ν2 − (κlin)2L(2κlin)

)
,

with b± =
ak

(0)
±
ω±

, klin = 1
2 (k

(0)
+ + k

(0)
− ) and κlin = 1

2 (k
(0)
+ −

k
(0)
− ).

Then, at the third order, it successively produces [36]

k
(2)
± = −ω±(b±s± + b∓s + b∓sm + aB± + aB + aBm)

a(2L(k
(0)
± ) + k

(0)
± L′(k

(0)
± ))

−
k

(0)
± L(k

(0)
± )(b±B± + b∓B + b∓Bm)

a(2L(k
(0)
± ) + k

(0)
± L′(k

(0)
± ))

, (8)

η
(3)
sb (x, t) = A+3 cos(θ + 3∆θ) + A−3 cos(θ − 3∆θ), (9)

and

η
(3)
sb,fw(x, t) = A+3 cosϑ(ω + 3ν) + A−3 cosϑ(ω − 3ν),

(10)

with B± =
k
(0)
±

2ω±
(b2± + 2s±), B = klin

ω (s + b+b−), Bm =
κlin

ν (sm + b+b−).
For ν → 0 implies κlin → 0 gives sm → σ0, Bm →

1
Ω′(K(ω)) σ0, s, s± → σ2 and B, B± → K(ω)

ω σ2 (see [35]),
with

σ0 =
1

Ω′(K(ω))− 1
, σ2 =

K(ω)

2ω − Ω(2K(ω))
,

K = Ω−1(ω),Ω(k) = k

√
tanh k

k
.

The coefficients A±3 in (9) and (10) are given by

A±3 =

[
(klin ± 3κlin)L(klin ± 3κlin)(b∓B± + b±Bm)

+(ω ± 3ν)(b∓s± + b±sm + a(B± + Bm))

]
klin ± 3κlin

(ω ± 3ν)2 − (klin ± 3κlin)2L(klin ± 3κlin)
.

Observe that for ν → 0, these coefficients can be expressed
as

A±3 ≈
a3(σ0 + σ2)

2κ2
linΩ′′(k

(0)
± )± 4

3κ
3
linΩ′′′(k

(0)
± )

.

It implies the equation (9) and (10) can also be written as

η
(3)
sb (x, t) = a

(
a

κlin

)2

[m+ cos θ cos 3∆θ−m− sin θ sin 3∆θ]

(11)

η
(3)
sb,fw(x, t) = a

(
a

κlin

)2

[m+ cosK cos K̃−m−3 sinK sin K̃],

(12)
with

m+ ≈ −
σ0 + σ2

Ω′′(k
(0)
± )

, m− ≈
(σ0 + σ2)Ω′′′(k

(0)
± )

(Ω′′(k
(0)
± ))2

κlin,

K =
K(ω + 3ν) +K(ω − 3ν)

2

and
K̃ =

K(ω + 3ν)−K(ω − 3ν)

2
.

As reported in [24], [25], [26] and [27], it was found ex-
perimentally, numerically, and theoretically that bi-chromatic
waves deform during their propagation. The deformation is
followed by peaking and splitting phenomena. It is known
that the peaking phenomena does not only depend on the
wave amplitude, but also depend on the frequency difference
of monochromatic components of the bi-chromatic waves.
Marwan and Andonowati [42] introduced a quantity called
the MTA which has been used also for optical problems [40]
to observe the phenomena. The scale used to measure the
height of the wave at each position is defined as [42]

m(x) = max
t
η(x, t), t > 0. (13)

The MTA (13) can be used to predict the position at
which the waves will reach the highest peaking during
their propagation in the wave tank [31]. To know the wave
elevation changes, the ratio of the highest value of MTA to
the value of MTA at the wave maker is observed and called as
the amplitude amplification factor (AAF ), which is defined
as [32]

AAF =
m(xmax)

m(0)
, (14)

where xmax is the first position where m(xmax) =
maxxm(x), for 0 < x < L̂ and L̂ is the length of the
wave tank.

As mentioned above, this paper focuses only on the term
that have the greatest contribution in each order, then the
solution of equation (1) that satisfies the boundary conditions
in a bi-chromatic signals at wave maker can be written as

η = η(1) + η(2) − η(2)
fw + η

(3)
sb − η

(3)
sb,fw, (15)

namely the third order approximation of Boussinesq equation
(TOA-Bouss). Substituting the expressions of (5), (11) and
(12) into (15), and using the assumption that contribution of
the second order smaller than the other order, give

η(−2) = 4a cos(θ) cos(∆θ) + 4a

(
a

κlin

)2

m+ cos θ

cos 3∆θ − 4a

(
a

κlin

)2

m+ cosK cos K̃. (16)

From (16), it can be shown that the amplitude amplification
factor of the bi-chromatic waves can be written as AAF of
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order O
(

1 +
(

a
κlin

)2
)

as reported in [34] for bi-chormatic

waves which are calculated using FOA-KdV equation.

III. RESULT AND DISCUSSION

In this section some graphical results are presented. All
values in this calculations are given in the laboratory coor-
dinate systems [m,kg,s]. Here we use the same example for
bi-chromatic case as in Ramli et al [34].

The MTA of the waves as a function of the spatial
variable x, 0 ≤ x ≤ 180 m, is plotted in Figure 1. In
fact, in this figure, there are four plots : the MTA of
experimental result as well as HUBRIS software (A), the
third order approximation of Boussinesq equation (TOA-
Bouss)(m(−2)(x) = maxt η(−2)(x, t))(B), the fifth order
approximation of KdV equation (FOA-KdV)(C) and the third
order approximation of KdV equation (TOA-KdV) (D). It can
be seen that the location of MTA reaching the maximum from
all of the four approximations are quite similar. Furthermore
it can also be seen that the maximum value of MTA which
was calculated using TOA-Bouss equation (B) matches the
numerical software HUBRIS result (A).

Fig. 1. Plot of MTA as a function of x, 0 ≤ x ≤ 180 m, with a = 0.04
m, ω = 3, 145 rad/s and ν = 0, 155 rad/s. Computation using numerical
software HUBRIS (A)[27], calculations using TOA-Bouss(m(−2)(x) =
maxt η(−2)(x, t)) (B) [36], calculation using FOA-KdV (C) [34] and
calculation using TOA-KdV (D) [31], [32]. It shows the conformity of
location MTA reaching the maximum from all of the four approaches. Beside
that, it can be seen that the maximum value of MTA which is calculated
using TOA-Bouss is suitable with the maximum value of MTA which is
calculated using numerical software HUBRIS.

In Figure 2 we plot the AAF of the bi-chromatic waves
as a function of wave amplitude (a) for ω = 3, 145 rad/s and
ν = 0, 155 rad/s. It shows that increasing value of a has an
effect on increasing value of AAF . This is in accordance
with the formula derived in Section 3 that the AAF is
of order O(

(
1 + a2

)
) for constant ν. From this figure, it

can also be seen that AAF s which are calculated using all
of the four approximations have the same dependence on
a. Furthermore, from the figure it can be seen that AAF
which is calculated using TOA-Bouss (B) agrees the AAF
which is calculated using numerical software HUBRIS (A).
Meanwhile, the AAF s which are calculated using FOA-KdV
(C) and TOA-KdV (D) are smaller than the AAF which
is calculated using numerical software HUBRIS (A). The

Fig. 2. Plot of AAF (14) as a function of wave amplitude (a), 0.005 ≤
a ≤ 0.045 m, with ω = 3, 145 rad/s and ν = 0, 155 rad/s. Computation
using numerical Software HUBRIS (A) [27], calculation using TOA-Bouss
(B) [36], calculation using FOA-KdV (C) [34] and calculations using TOA-
KdV (D) [31], [32]. It is shows that the AAF s of bi-chromatic waves
which are calculated using all these the four approximations have the same
dependence on a.

Fig. 3. Plot of AAF (14) as a function of envelope frequency (ν), 0.075 ≤
ν ≤ 0.6 rad/s, with ω = 3, 145 rad/s and a = 0, 035 m. Computation
using numerical Software HUBRIS (A)[27], calculation using TOA-Bouss
(B) [36], calculation using FOA-KdV (C) [34] and calculations using TOA-
KdV (D) [31], [32]. It is shows that the AAF s of bi-chromatic waves
which are calculated using all these the four approximations have the same
dependence on ν.

similar thing can also be seen in Figure 3. Figure 3 presents
the plot of AAF as a function of envelope frequency(ν) for
ω = 3, 145 rad/s and a = 0, 035 m. In this figure we can
see that increasing value of ν affects on decreasing of AAF .
From this figure, it can also be seen that AAF s which are
calculated using all of the four approximations have the same
dependence on ν.

In Figure 4 and Figure 5, we present signals at some
locations in the wave tank which are calculated using TOA-
Bouss and numerical software HUBRIS, respectively, for an
input bi-chromatics signals with a = 0.04 m, ω = 3, 145
rad/s and ν = 0.155 rad/s. For this case, experiments have
been conducted independently in [25] and [27] where in
both experiments the largest signal appears at a distance
of approximately 120m away from the wave-maker. This
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distance is the extreme position. From both figures, it can be
seen that the bi-chromatic signals at given location which are
calculated using TOA-Bouss have quite similar shape with
the bi-chromatic signals which are computed using numerical
software HUBRIS [27] as well as experimental result [25].

Fig. 4. Bi-chromatic signals at some positions (15) for a = 0.04 m,
ω = 3.145 rad/s and ν = 0.155 rad/s which are calculated using TOA-
Bouss. Bi-chromatic signals at position : a) x = 0, b) x = 53 m, c) x = 93
m, d) x = 120 m, e) x = 153 m, f) x = 173 m, g) x = 193 m, h) x = 213
m, i) x = 233 m

Fig. 5. Bi-chromatic signals at some positions for a = 0.04 m, ω = 3.145
rad/s and ν = 0.155 rad/s which are computed using numerical software
HUBRIS. Bi-chromatic signals at position : a) x = 0, b) x = 53 m, c)
x = 93 m, d) x = 120 m, e) x = 153 m, f) x = 173 m, g) x = 193 m,
h) x = 213 m, i) x = 233 m.

IV. CONCLUDING REMARKS

Bi-chromatic waves propagation in hydrodynamic labora-
tory are considered. The waves contain signals which have
two mono-chromatic components with the same amplitudes
but slightly different of frequencies. During their propagation
in the wave tank, the waves deform and it is followed
by splitting and peaking phenomena (amplitude increasing).
To find the amplitude amplification factor (AAF ) of the
waves in the tank, the concept of MTA for third order
approximation of Boussinesq equation has been used. MTA

gives at each location in the wave tank the maximum value
of the surface elevation over time and AAF .

We have verified the calculated formula for AAF with the
published numerical result. This comparisons show reason-
ably close values of the predicted amplitude amplification
factor of the waves to the known results.
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