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Abstract—The aim of this paper is to introduce a novel
study of obtaining an approximate solution to a generalized
time-fractional Drinfeld-Sokolov-Wilson system. An iterative
technique based on the generalized Taylor series residual power
series (RPS) is extended to handle such a system. Description
of the method is given and the obtained results reveal that RPS
is a new significant method for exploring nonlinear fractional
models.

Index Terms—Generalized Taylor series, Residual power
series, Time-fractional Drinfeld-Sokolov-Wilson system.

I. INTRODUCTION

FUNDAMENTAL works and developments on the
fractional derivative and fractional differential equations

have been done over the past four decades. Oldham and
Spanier-1974 [1], Miller and Ross-1993 [2], Samko et
al-1993 [3], Podlubny-1999 [4], Kilbas et al-2006 [5] and
others [6], [7] are the pioneer in this field; their works
form an introduction to the theory of fractional differential
equations and provide a systematic understanding of the
fractional calculus such as the existence and the uniqueness
of solutions. In [8], Hernandez et al-2010 published a paper
on recent developments in the theory of abstract differential
equations with fractional derivative. Application of financial
risk assessment model for predicting market behavior has
been used in [9] that uses a solution to a non-stationary
fractional diffusion equation. An application of telescoping
decomposition method is developed in [10] for ordinary
differential equations and is extended to derive approximate
analytical solutions of fractional differential equations. The
authors in [11], [12] discussed the nonexistence of weak
solutions and blow up solutions to nonlinear fractional
wave equations. Finally, interested various applications of
fractional calculus in the field of interdisciplinary sciences
such as image processing and control theory have been
studied by Magin et al [13] and Mainardi [14].

In general, there exists no method that produce an
exact solution for nonlinear fractional differential equations
defined in the Caputo fractional derivative and Riemann-
Liouville. Only approximate solutions can be derived using
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linearization or successive or perturbation methods. Such
methods are: Variational iteration method and multivariate
Pade approximations [15], Iterative Laplace transform
method [16], decomposition method [17], [18], [19],
[20], Homotopy analysis method [21], [22] and Sumudu
transform method [23]. In 2007, a very restricted modified
Riemann-Liouville derivative is defined by Jumarie [24]. He
suggested a simple transformation that converts fractional
nonlinear partial differential equations (PDEs) into classical
PDEs. Based on Jumarie definition, authors could use
different solitary wave methods to construct exact solutions.
For example, the well known (G′/G)-expansion method is
used in [25], [26], [27] to seek solitary wave solutions for
space-time fractional nonlinear PDEs.

The main objective of this paper is to present a new
generalization of Drinfeld-Sokolov-Wilson (DSW) system
by replacing the first order time derivative by a fractional
derivative of order α, and takes the form

Dα
t u = −avvx,

Dα
t v = −bvxxx − γuvx − ϵvux, (1)

where u = u(x, t), v = v(x, t) and a, b, γ, ϵ are nonzero
parameters and α is the fractional derivative with 0 ≤ α ≤ 1.
Note that for α = 1, Equation (1) is reduced to the standard
Drinfeld-Sokolov-Wilson system which was first proposed
by Drinfeld and Sokolov [28], [29] and Wilson [30] when
a = 1, b = γ = 2, ϵ = 1. To best of our knowledge the
system given in (1) is new and to be explored in this study
where the residual power series method is adopted [31],
[32], [33], [34].

The pattern of the current paper is as follows: In section 2,
some definitions and theorems regards Caputo’s derivative
and fractional power series are given. Detailed derivation
of the RPS solution of the fractional DSW system has
been discussed in section 3. Finally, the performance of the
RPS method has been tested in section 4 by considering a
specific example of the fractional DSW system.

II. PRELIMINARIES

Many definitions and studies of fractional calculus have
been proposed in the literature. These definitions include:
Grunwald-Letnikov, Riemann-Liouville, Weyl, Riesz and
Caputo sense. In the Caputo case, the derivative of a
constant is zero and one can define, properly, the initial
conditions for the fractional differential equations which can
be handled by using an analogy with the classical integer
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case. For these reasons, researchers prefer to use the Caputo
fractional derivative [35] which is defined as

Definition 1. For m to be the smallest integer that
exceeds α, the Caputo fractional derivatives of order α > 0
is defined as

Dα
t u(x, t) =



1
Γ(m−α)

∫ t

0
(t− τ)m−α−1 ∂mu(x,τ)

∂τm dτ,

m− 1 < α < m

∂mu(x,t)
∂tm , α = m ∈ N

(2)
Now, we survey some needed definitions and theorems
regards the fractional power series, where there is much
theory to be found in [36], [37].

Definition 2. A power series expansion of the form∑∞
m=0 cm(t−t0)

mα = c0+c1(t−t0)
α+c2(t−t0)

2α+... :
0 ≤ n− 1 < α ≤ n, t ≤ t0

is called fractional power series PS about t = t0

Theorem 1. Suppose that f has a fractional PS representation
at t = t0 of the form

f(t) =
∑∞

m=0 cm(t− t0)
mα, t0 ≤ t < t0 +R.

If Dmαf(t), m = 0, 1, 2, .. are continuous on (t0, t0 +R),
then cm = Dmαf(t0)

Γ(1+mα) .

Definition 3. A power series expansion of the form∑∞
m=0 fm(x)(t− t0)

mα

is called multiple fractional power series PS about
t = t0

Theorem 2. Suppose that u(x, t) has a multiple fractional
PS representation at t = t0 of the form

u(x, t) =
∑∞

m=0 fm(x)(t−t0)
mα, x ∈ I, t0 ≤ t < t0+R.

If Dmα
t u(x, t), m = 0, 1, 2, .. are continuous on

I × (t0, t0 +R), then fm(x) =
Dmα

t u(x,t0)
Γ(1+mα) .

From the last theorem, it is clear that if n + 1-dimensional
function has a multiple fractional PS representation at
t = t0, then it can be derived in the same manner. i.e.

Corollary 1. Suppose that u(x, y, t) has a multiple
fractional PS representation at t = t0 of the form

u(x, y, t) =
∑∞

m=0 gm(x, y)(t − t0)
mα, (x, y) ∈

I1 × I2, t0 ≤ t < t0 +R.

If Dmα
t u(x, y, t), m = 0, 1, 2, .. are continuous on

I1 × I2 × (t0, t0 +R), then gm(x, y) =
Dmα

t u(x,y,t0)
Γ(1+mα) .

Next, we present in details the derivation of the residual

power series solution to the generalized fractional DSW
system.

III. RESIDUAL POWER SERIES (RPS) FOR SOLVING
TIME-FRACTIONAL DSW SYSTEM

Consider the time-fractional DSW system

Dα
t u = −avvx,

Dα
t v = −bvxxx − γuvx − ϵvux, (3)

subject to the initial conditions:

u(x, 0) = f(x),

v(x, 0) = g(x). (4)

The RPS method propose the solution for Eqs. (3-4) as a
fractional PS about the initial point t = 0

u(x, t) =

∞∑
n=0

fn(x)
tnα

Γ(1 + nα)
,

v(x, t) =

∞∑
n=0

gn(x)
tnα

Γ(1 + nα)
, (5)

where 0 < α ≤ 1, x ∈ I, 0 ≤ t < R. Next, we
let uk(x, t), vk(x, t) to denote the k-th truncated series of
u(x, t), v(x, t), respectively, i.e.

uk(x, t) =
k∑

n=0

fn(x)
tnα

Γ(1 + nα)
,

vk(x, t) =
k∑

n=0

gn(x)
tnα

Γ(1 + nα)
. (6)

It is clear that by condition (4) the 0-th RPS approximate
solutions of u(x, t) and v(x, t) are

u0(x, t) = f0(x) = u(x, 0) = f(x)

v0(x, t) = g0(x) = v(x, 0) = g(x). (7)

Also, Eqs. (6) can be written as

uk(x, t) = f(x) +

k∑
n=1

fn(x)
tnα

Γ(1 + nα)
,

vk(x, t) = g(x) +

k∑
n=1

gn(x)
tnα

Γ(1 + nα)
, (8)

where 0 < α ≤ 1, x ∈ I, 0 ≤ t < R, k = 1, 2, 3, .... Now,
we define the residual functions, Resu, Resv, for Eqs. (3)

Resu = Dα
t u+ avvx,

Resv = Dα
t v + bvxxx + γuvx + ϵuxv, (9)

and therefore, the k-th residual functions, Resu,k, Resv,k,
are

Resu,k = Dα
t uk + avk

∂vk
∂x

,

Resv,k = Dα
t vk + b

∂3vk
∂x3

+ γuk
∂vk
∂x

+ ϵ
∂uk

∂x
vk.(10)

Authors in [38], [39] showed that Res(x, t) = 0 and
limk→∞ Resk(x, t) = Res(x, t) for all x ∈ I and t ≥ 0.
Therefore, Drα

t Res(x, t) = 0 since the fractional derivative
of a constant in the Caputo’s sense is 0. Also, the fractional
derivative Drα

t of Res(x, t) and Resk(x, t) are matching at
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t = 0 for each r = 0, 1, 2, ..., k.

To clarify the RPS technique, we substitute the k-
th truncated series of u(x, t), v(x, t) into Eqs. (10),
find the fractional derivative formula D

(k−1)α
t of both

Resu,k(x, t), Resv,k, k = 1, 2, 3, ..., and then, we solve
the obtained algebraic system

D
(k−1)α
t Resu,k(x, 0) = 0,

D
(k−1)α
t Resv,k(x, 0) = 0, (11)

to get the required coefficients fn(x), gn(x), n =
1, 2, 3, ..., k in Eqs. (8). Now, we follow the following steps.

Step 1. To determine f1(x), g1(x), we consider (k = 1) in
(10)

Resu,1(x, t) = Dα
t u1 + av1

∂v1
∂x

,

Resv,1(x, t) = Dα
t v1 + b

∂3v1
∂x3

+ γu1
∂v1
∂x

+ ϵ
∂u1

∂x
v1. (12)

But, u1(x, t) = f(x) + f1(x)
tα

Γ(1+α) and v1(x, t) = g(x) +

g1(x)
tα

Γ(1+α) . Therefore,

Resu,1(x, t) = f1(x) + a

(
g(x) + g1(x)

tα

Γ(1 + α)

)
×

(
g′(x) + g′1(x)

tα

Γ(1 + α)

)
,

Resv,1(x, t) = g1(x) + b

(
g′′′(x) + g′′′1 (x)

tα

Γ(1 + α)

)
+ γ

(
f(x) + f1(x)

tα

Γ(1 + α)

)
×

(
g′(x) + g′1(x)

tα

Γ(1 + α)

)
+ ϵ

(
f ′(x) + f ′

1(x)
tα

Γ(1 + α)

)
×

(
g(x) + g1(x)

tα

Γ(1 + α)

)
. (13)

From Eqs. (11) we deduce that Resu,1(x, 0) =
0, Resv,1(x, 0) = 0 and thus,

f1(x) = −ag(x)g′(x),

g1(x) = −bg′′′(x)− γf(x)g′(x)− ϵf ′(x)g(x). (14)

Therefore, the 1-st RPS approximate solutions are

u1(x, t) = f(x)− ag(x)g′(x)
tα

Γ(1 + α)

v1(x, t) = g(x)− (bg′′′(x) + γf(x)g′(x) + ϵf ′(x)g(x))

× tα

Γ(1 + α)
. (15)

Step 2. To obtain f2(x), g2(x), we substitute the 2-nd trun-
cated series u2(x, t) = f(x) + f1(x)

tα

Γ(1+α) + f2(x)
t2α

Γ(1+2α)

and v2(x, t) = g(x) + g1(x)
tα

Γ(1+α) + g2(x)
t2α

Γ(1+2α) into the

2-nd residual function Resu,2(x, t) and Resv,2(x, t), i.e.

Resu,2(x, t) = Dα
t u2 + av2

∂v2
∂x

= f1(x) +
f2(x)t

α

Γ(1 + α)

+ a

(
g(x) + ...+

g2(x)t
2α

Γ(1 + 2α)

)
×

(
g′(x) + ...+

g′2(x)t
2α

Γ(1 + 2α)

)
(16)

and

Resv,2(x, t) = Dα
t v2 + b

∂3v2
∂x3

+ γu2
∂v2
∂x

+ ϵ
∂u2

∂x
v2

= g1(x) + g2(x)
tα

Γ(1 + α)

+ b

(
g′′′(x) + ...+ g′′′2 (x)

t2α

Γ(1 + 2α)

)
+ γ

(
f(x) + ...+ f2(x)

t2α

Γ(1 + 2α)

)
×

(
g′(x) + ...+ g′2(x)

t2α

Γ(1 + 2α)

)
+ ϵ

(
f ′(x) + ...+ f ′

2(x)
t2α

Γ(1 + 2α)

)
×

(
g(x) + ...+ g2(x)

t2α

Γ(1 + 2α)

)
. (17)

Applying Dα
t on both sides of Eqs. (16) and (17) gives

Dα
t Resu,2(x, t) = f2(x) + a

(
g1(x) +

g2(x)t
α

Γ(1 + α)

)
×

(
g′(x) + ...+

g′2(x)t
2α

Γ(1 + 2α)

)
+ a

(
g(x) + ...+

g2(x)t
2α

Γ(1 + 2α)

)
×

(
g′1(x) +

g′2(x)t
α

Γ(1 + α)

)
(18)

and

Dα
t Resv,2(x, t) = g2(x) + b

(
g′′′1 (x) + g′′′2 (x)

tα

Γ(1 + α)

)
+ γ

(
f1(x) + f2(x)

tα

Γ(1 + α)

)
×

(
g′(x) + ...+ g′2(x)

t2α

Γ(1 + 2α)

)
+ γ

(
f(x) + ...+ f2(x)

t2α

Γ(1 + 2α)

)
×

(
g′1(x) + g′2(x)

tα

Γ(1 + α)

)
+ ϵ

(
f ′
1(x) + f ′

2(x)
tα

Γ(1 + α)

)
×

(
g(x) + ...+ g2(x)

t2α

Γ(1 + 2α)

)
+ ϵ

(
f ′(x) + ...+ f ′

2(x)
t2α

Γ(1 + 2α)

)
×

(
g1(x) + g2(x)

tα

Γ(1 + α)

)
. (19)
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By the fact that Dα
t Resu,2(x, 0) = 0 = Dα

t Resv,2(x, 0) and
solving the resulting system in (18) and (19) for the unknown
coefficient functions f2(x), g2(x), we get

f2(x) = −a(g(x)g′1(x) + g1(x)g
′(x)),

g2(x) = −bg′′′1 (x)− γ(f1(x)g
′(x) + f(x)g′1(x))

− ϵ(f ′(x)g1(x) + f ′
1(x)g(x)). (20)

Step 3. We can obtain the other coefficients fi(x), gi(x) by
expanding and differentiating once in accordance of having
D

(i−1)α
t Resu,i(x, 0) = D

(i−1)α
t Resv,i(x, 0) = 0. Therefore,

f3(x) = −a (g2(x)g
′(x) + 2g1(x)g

′
1(x) + g(x)g′2(x)) ,

g3(x) = −bg′′′2 (x)

− γ (f2(x)g
′(x) + 2f1(x)g

′
1(x) + f(x)g′2(x))

− ϵ (f ′(x)g2(x) + 2f ′
1(x)g1(x) + f ′(x)g2(x)) .

(21)

Step 4. Considering the results obtained in (21) and follow
the same process, then we reach at

f4(x) = −a{g3(x)g′(x) + 3g2(x)g
′
1(x) + 3g1(x)g

′
2(x)

+ g(x)g′3(x)},

g4(x) = −bg′′′3 (x)− γ{f3(x)g′(x) + 3f2(x)g
′
1(x)

+ 3f1(x)g
′
2(x) + f(x)g′3(x)}

− ϵ{f ′(x)g3(x) + 3f ′
1(x)g2(x)

+ 3f ′
2(x)g1(x) + f ′

3(x)g(x)}. (22)

Finally, we derive the equations given in (22) in a way that
obey the fact D4α

t Resu,5(x, 0) = D4α
t Resv,5(x, 0) = 0.

Thus

f5(x) = −a{g4(x)g′(x) + 4g3(x)g
′
1(x) + 6g2(x)g

′
2(x)

+ 4g1(x)g
′
3(x) + g(x)g′4(x)},

g5(x) = −bg′′′4 (x)− γ{f4(x)g′(x) + 4f3(x)g
′
1(x)

+ 6f2(x)g
′
2(x) + 4f1(x)g

′
3(x) + f(x)g′4(x)}

− ϵ{f ′(x)g4(x) + 4f ′
1(x)g3(x)

+ 6f ′
2(x)g2(x) + 4f ′

3(x)g1(x) + f ′
4(x)g(x)}.

(23)

It is to be noted here that the RPS method is a numerical tech-
nique based on the generalized Taylor series formula which
constructs an analytical solution in the form of a convergent
series. Therefore, one can achieve a good approximation with
the exact solution by using few terms only and thus, the
overall errors can be made smaller by adding more new terms
of the RPS approximations. So, by the above obtained 5-th
RPS approximate solution, we present some graphical results
regards the time-fractional DSW system.

IV. NUMERICAL EXAMPLE

The purpose of this section is to test the derivation of
residual power series solutions of DSW system.

Example If we set a = 3, b = 2, γ = 2, ϵ = 1,
the DSW is reduced to [40]

Dα
t u = −3vvx,

Dα
t v = −2vxxx − 2uvx − vux), (24)

subject to the initial conditions:

u(x, 0) = f(x) = −3c

2
sech 2

(√
c

2
(x− ct)

)
,

v(x, 0) = g(x) = c sech

(√
c

2
(x− ct)

)
. (25)

Figure 1, represents the 5-th RPS approximate solution of
the function u(x, t) for different values of the fractional
derivative α. Figure 2, represents the corresponding 5-th
RPS approximate solutions of the function v(x, t). It is clear
from these figures that when α is decreasing toward 0, the
solutions bifurcate and provide wave-like pattern. But, when
α is close to 1, there is no pattern. Also, as the fractional
order α being increasing the subfigures are nearly coinciding
and similar in their behavior. While on the other hand, for
special case α = 1 subfigures Figure 1-(d), (e) and Figure
2-(4), (5) are nearly identical and in excellent agreement to
each other in terms of the accuracy. Meanwhile, it is easy
to conclude that the wave solution is getting smooth around
the zero zone as α tends to 1.

V. CONCLUSIONS

In this paper, a new analytical iterative technique based
on the residual power series RPS is proposed to obtain an
approximate solution to a nonlinear time-fractional DSW
system. It has been found that the construction of this recent
RPS method possesses in general a very rapid convergent
series due to the embedded generalized Taylor series. The
RPS method is promising technique based on its simplicity
and accuracy and it is considered to be an additive tool for
the field of fractional theory and computations. As future
work, we will extend the RPS method to handle (2 + 1)-
dimensional linear and nonlinear space and time-fractional
physical models.
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