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Abstract—In this paper, a Mackey-Glass equation with time-
varying delay is investigated. By applying Lyapunov functional
method and differential inequality techniques, a set of sufficient
conditions are obtained for the existence and exponential
stability of pseudo almost periodic solutions of the model.
Some numerical simulations are carried out to support the
theoretical findings. Our results improve and generalize those
of the previous studies.

Index Terms—Mackey-Glass equation, pseudo almost peri-
odic solution, exponential stability, time-varying delay.

I. INTRODUCTION

S INCE Mackey and Glass [1] proposed the following
Mackey-Glass equation with delay

x′(t) = −α(t)x(t) +
β(t)x(t− τ)

1 + γ(t)xp(t− τ)
, (1)

as a model of hematopoiesis(blood-cell formation) in 1977,
many works on the model (1) have been carried out. For
example, Alzabut et al. [2] considered the existence and
exponential stability of positive almost periodic solutions for
(1.1), Gopalsamy et al. [3] analyzed the global attractivity for
the model (1.1), Liz et al. [4] obtained the global stability
criterion for a family of delayed population models. In
details, one can see [5-9]. Recently, Myslo and Tkachenko
[10] investigated the permanence, existence of a positive,
asymptotically stable, piecewise-continuous, almost periodic
solution of model (1) with pulse action. We know that the
pseudo almost periodic functions are the natural generaliza-
tion of the concept of almost periodicity. So far, no attention
has been paid to the conditions for the global exponential
stability on positive pseudo almost periodic solution of model
(1) in terms of its coefficients. On the other hand, since
the exponential convergent rate can be unveiled, the global
exponential stability plays a key role in characterizing the
behavior of dynamical system (see [11-1330-31]). Thus,
it is worthwhile to continue to investigate the existence
and global exponential stability of positive pseudo almost
periodic solutions of (1).

Considering the variation of the environment in many
biological and ecological dynamical systems and for the sake
of simplicity(here we let p = 1 in model (1.1)), we are
concerned with the following system

x′(t) = −α(t)x(t) +
β(t)x(t− τ(t))

1 + γ(t)x(t− τ(t))
, (2)
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where x ≥ 0, τ(t) is positive function, the piecewise-
continuous functions α(t), β(t) and γ(t) are positive definite.

The main aim of this article is to establish some sufficient
conditions for the existence, uniqueness and exponential
stability of pseudo almost periodic solutions of (2). To the
best of our knowledge, it is the first time to focus on the
existence, uniqueness and exponential stability of pseudo
almost periodic solutions of (2). Our results obtained in this
paper improve and generalize those in the previous studies
[2-10]. Recently, there are few papers that deal with the
pseudo almost periodic solutions of differential equations
[14-24].

Throughout this paper, it will be assumed that α : R →
(0,+∞) is an almost function, τ : R → [0,+∞) and
β, γ : R→ (0,+∞) are uniformly continuous pseudo almost
periodic functions, and





α− = inft∈R α(t) > 0, α+ = supt∈R α(t),
β− = inft∈R β(t) > 0, β+ = supt∈R β(t),
γ− = inft∈R α(t) > 0, γ+ = supt∈R α(t),
τ = supt∈R τ(t) > 0.

(3)

Let R+ denote nonnegative real number space, let C =
C([−τ, 0],R) be the continuous function space equipped
with the usual supremum norm ||.||, and let C+ =
C([−τ, 0],R+). If x(t) is defined on [−τ + t0, σ) with
t0, σ ∈ R, then we define xt(θ) ∈ C where xt(θ) = x(t+θ)
for all θ ∈ [−τ, 0]. Due to the biological interpretation
of model (1), only positive solutions are meaningful and
therefore admissible. Thus we just consider admissible initial
condition.

xt0 = ϕ,ϕ ∈ C+, ϕ(0) > 0. (4)

We write xt(t0, ϕ)(x(t; t0, ϕ) for an admissible solution of
the admissible initial value problem (2) and (3). Also, let
[t0, η(ϕ)) be the maximal right interval of existence of
xt(t0, ϕ).

The remainder of the paper is organized as follows. In
Section 2, we introduce some lemmas and definitions, which
can be used to check the existence of almost periodic
solutions of system (2). In Section 3, we present some new
sufficient conditions for the existence of the continuously
differentiable pseudo almost periodic solution of (2). Some
sufficient conditions on the global exponential stability of
pseudo almost periodic solutions of (2) are established in
Section 4. An example and its numerical simulations are
given to illustrate the effectiveness of the obtained results
in Section 5.
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II. PRELIMINARY RESULTS

In this section, we would like to recall some basic def-
initions and lemmas which are used in what follows. In
this paper, BC(R,R) denotes the set of bounded continued
functions from R to R. Note that (BC(R,R)), ||.||∞) is a
Banach space where ||.|| denotes the sup norm ||.||∞ :=
supt∈R ||f(t)||.
Definition 2.1. (see [25-26]) Let u(t) ∈ BC(R,R), u(t) is
said to be almost periodic on R if, for any ε > 0, the set
T (u, ε) = {δ : ||u(t + δ) − u(t)|| < ε for all t ∈ R} is
relatively dense; that is, for any ε > 0, it is possible to find
a real number l = l(ε) > 0; for any interval with length
l(ε), there exists a number δ = δ(ε) in this interval such
that ||u(t + δ)− u(t)|| < ε, for all t ∈ R.

We denote by AP(R,R) the set of the almost periodic
functions from R to R. Besides, the concept of pseudo
almost periodicity (pap) was introduced by Zhang [25] in the
early nineties. It is a natural generalization of the classical
almost periodicity. Precisely, define the class of functions
PAP0(R,R) as follows:

{
f ∈ BC(R,R)| lim

t→+∞
1

2T

∫ T

−T

|f(t)|dt = 0

}
.

A function f ∈ BC(R,R) is called pseudo almost periodic
if it can be expressed as f = h + ϕ, where h ∈ AP(R,R)
and ϕ ∈ PAP0(R,R). The collection of such functions will
be denoted by PAP(R,R). The functions h and ϕ in the
above definition are, respectively, called the almost periodic
component and the ergodic perturbation of the pseudo almost
periodic function f . The decomposition given in definition
above is unique. Observe that (PAP(R,R), ||.||) is a Banach
space and AP(R,R) is a proper subspace of (PAP(R,R)
since the function φ(t) = sin2 t+sin2

√
5t+exp(−t2 sin2 t)

is pseudo almost periodic function but not almost periodic. It
should be mentioned that pseudo almost periodic functions
possess many interesting properties; we shall need only a
few of them and for the proofs we shall refer to [25].
Lemma 2.2. (see [15]) Let x1(.), σ(.) ∈ AP(R,R), σ

′
(.) ∈

BC(R,R) and x2(.) ∈ PAP0(R,R). Then (1) x1(t−σ(t)) ∈
AP(R,R); (2) x2(t− σ(t)) ∈ PAP0(R,R) if (1− σ

′
(t))− =

inft∈R(1− σ
′
(t)) > 0.

Remark 2.3. (see [15]) Set x(.) = x1(.)+x2(.) with x1(.) ∈
AP(R,R) and x2(.) ∈ PAP0(R,R). It follows from Lemma
2.2 that x(t − σ(t)) ∈ PAP(R,R) if (1 − σ

′
(t))− > 0 and

σ(.) ∈ AP(R,R), σ
′
(.) ∈ BC(R,R).

Lemma 2.4. (see [25, page 140]) Suppose that both func-
tions f and its derivative f

′
are in PAP(R,R). That is,

f = g + ϕ and f
′

= α + β, where g, α ∈ AP(R,R)
and ϕ, β ∈ PAP0(R,R). Then the functions g and ϕ are
continuous differentiable so that g

′
= α, ϕ

′
= β.

Definition 2.5. (see [27-28]) Let x ∈ Rp and Q(t) be a p×p
continuous matrix defined on R. The linear system

x
′
(t) = Q(t)x(t) (5)

is said to admit an exponential dichotomy on R if there exist
positive constants k, α and projection P and the fundamental
solution matrix X(t) of (5) satisfying

||X(t)PX−1(s)|| ≤ ke−α(t−s), for t ≥ s,

||X(t)(I − P )X−1(s)|| ≤ ke−α(S−T ), for t ≤ s.

Lemma 2.6. (see [27]) Assume that Q(t) is an almost
periodic matrix function and g(t) ∈ PAP(R,Rp). If the linear
system (5) admits an exponential dichotomy, then pseudo
almost periodic system

x
′
(t) = Q(t)x(t) + g(t) (6)

has a unique pseudo almost periodic solution x(t), and

x(t) =
∫ t

−∞
X(t)PX−1(s)g(s)ds

−
∫ +∞

t

X(t)(I − P )X−1(s)g(s)ds. (7)

Lemma 2.7. (see [27-28]) Let ai(t) be an almost periodic
function on R and

M [ci] = lim
T→+∞

1
T

∫ t+T

t

ci(s)ds > 0, i = 1, 2, · · · , p. (8)

Then the linear system

x
′
(t) = diag(−a1(t),−a2(t), · · · ,−ap(t))x(t) (9)

admits an exponential dichotomy on R.

Lemma 2.8 Every solution x(t; t0, ϕ) of (2) and (4) is
positive and bounded on [t0, η(ϕ)), and η(ϕ) = +∞.

The proof of Lemma 2.8 is similar as that in Zhang et al.
[6]. Here we omit it.

III. EXISTENCE OF PSEUDO ALMOST PERIODIC
SOLUTIONS

In this section, we will the establish sufficient conditions on
the existence of pseudo almost periodic solutions of (2).
Lemma 3.1. Suppose that there exist two constants m and
M such that




M > m, supt∈R

{
−α(t)M + β(t)

γ(t)

}
< 0,

inft∈R

{
−α(t)m + β(t)m

1+γ(t)M

}
> 0

(10)

Then there exists tϕ > t0 such that m < x(t; t0, ϕ) < M,
for all t ≥ tϕ.

Proof Let x(t) = x(t; t0, ϕ). We first claim that there exists
a t̄ ∈ [t0,+∞) such that

x(t̄) < M. (11)

Otherwise,

x(t) ≥ M, for all t ∈ [t0,+∞), (12)

which, together with (10), implies that

x
′
(t) = −α(t)x(t) +

β(t)x(t− τ(t))
1 + γ(t)x(t− τ(t))

,

≤ −α(t)x(t) +
β(t)
γ(t)

≤ −α(t)M +
β(t)
γ(t)

≤ sup
t∈R

{
−α(t)M +

β(t)
γ(t)

}
,

< 0, for all t ≥ t0 + τ. (13)
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Then

x(t) = x(t0 + τ) +
∫ t

t0+τ

x
′
(s)ds

≤ x(t0 + τ) + sup
t∈R

{
−α(t)M +

β(t)
γ(t)

}

×[t− (t0 + τ)], for all t ≥ t0 + τ. (14)

Thus
lim

t→+∞
x(t) = −∞. (15)

which contradicts the fact that x(t) is positive and bounded
on [t0,+∞). Hence, (11) holds. In the sequel, we prove that

x(t) < M, for all t ∈ [t̄,+∞). (16)

Suppose, for the sake of contradiction, there exists t∗ ∈
[t̄, +∞) such that

x(t∗) = M, x(t) < M, for all t ∈ [t̄, T ∗). (17)

Calculating the derivative of x(t), together with (10), (2),
and (17), implies that

x
′
(t∗) = −α(t∗)x(t∗) +

β(t)x(t∗ − τ(t∗))
1 + γ(t∗)x(t∗ − τ(t∗))

,

≤ −α(t∗)M +
β(t∗)
γ(t∗)

< 0, (18)

which is a contradiction and implies that (16) holds. We
finally show that s = lim inft→∞ x(t) > m. By way of
contradiction, we assume that 0 ≤ s ≤ m. By the fluctuation
lemma in [29, Lemma A.1.], there exists a sequence {tk}k≥1

such that{
tk → +∞, x(tk) → limt→+∞ inf x(t),
x
′
(tk) → 0 as k → +∞.

(19)

Since {xk} is bounded and equicontinuous, by the Ascoli-
Arzelá theorem, there exists a subsequence, still denoted by
itself for simplicity of notation, such that

xtk
→ ϕ∗(k → +∞) for some ϕ∗ ∈ C+. (20)

Moreover,

ϕ∗(0) = s ≤ ϕ∗(θ) ≤ M for θ ∈ [−τ, 0). (21)

Without loss of generality, we assume that β(t), β(t), γ(t)
and τ(t) are convergent to β∗, β∗, γ∗ and τ∗, respectively.
This assumptions are reasonable because β(t), β(t), γ(t) and
τ(t) are all almost periodic. It follows from

x′(tk) = −α(tk)x(tk) +
β(tk)x(tk − τ(tk))

1 + γ(tk)x(tk − τ(tk))
(22)

that(taking limits)

0 = −α∗s +
β∗ϕ∗(−τ)

1 + γ∗ϕ∗(−τ)

≥ −α∗s +
β∗s

1 + γ∗M

≥ inf
t∈R

{
−α(t)m +

β(t)m
1 + γ(t)M

}
> 0 (23)

which is a contradiction. This proves that l > m. Hence, from
(3.2), we can choose tϕ > t0 such that m < x(t; t0, ϕ) < M.
This proof of Lemma 3.1 is complete.

IV. EXPONENTIAL STABILITY OF PSEUDO ALMOST
PERIODIC SOLUTIONS

In this section, we will obtain the exponential stability of the
pseudo almost periodic solution of system (2).

Theorem 4.1. Suppose that
{

α, τ ∈ AP(R,R), τ
′
(.) ∈ (R,R),

β ∈ PAP(R,R), inft∈R(1− τ
′
(t)) > 0

(24)

and there exist two positive constants m and M satisfying
(10) and

sup
t∈R

{
−α(t) + β(t)

1
4m

}
< 0. (25)

Then there exists a unique positive pseudo almost periodic
solution of (2) in the region B∗ = {ϕ|ϕ ∈ PAP(R,R),m ≤
ϕ(t) ≤ M, for all t ∈ R}.

Proof Consider χ : [0, 1] → R defined by

χ(u) = sup
t∈R

{
−α(t) + β(t)

1
4m

eu

}
, u ∈ [0, 1]. (26)

Then

χ(0) = sup
t∈R

{
−α(t) + β(t)

1
4m

}
< 0, u ∈ [0, 1]. (27)

It follows from (26) that there exists a constat ξ ∈ (0, 1] such
that

χ(ξ) = sup
t∈R

{
−α(t) + β(t)

1
4m

eξ

}
< 0, u ∈ [0, 1]. (28)

For any φ ∈ PAP(R,R), In view of (24), Remark 2.3, and
the composition theorem of pseudo almost periodic functions
[25], we get

β(t)φ(t− τ(t))
1 + γ(t)φ(t− τ(t))

∈ PAP(R,R). (29)

Next we consider the auxiliary equation:

x′(t) = −α(t)x(t) +
β(t)φ(t− τ(t))

1 + γ(t)φ(t− τ(t))
. (30)

Since M [α] > 0, then by Lemma 2.7, we can conclude that
the line equation

x′(t) = −α(t)x(t) (31)

admits an exponential dichotomy on R. Thus, by Lemma 2.7,
we obtain that system (30) has exactly one pseudo almost
periodic solution:

xφ(t) =
∫ t

−∞
e−

∫ t
s

α(u)du

[
β(s)φ(s− τ(s))

1 + γ(s)φ(s− τ(s))

]
ds. (32)

Define a mapping T : PAP(R,R) → PAP(R,R) by setting

T (φ(t)) = xφ(t), for all φ ∈ PAP(R,R) (33)

By the definition of B∗, we can easily know that B∗ is a
closed subset of PAP(R,R). For any φ ∈ B∗, by (10), we
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have

xφ(t) ≤
∫ t

−∞
e−

∫ t
s

α(u)du

[
β(s)
γ(s)

]
ds

≤
∫ t

−∞
e−

∫ t
s

α(u)duα(s)Mds ≤ M, (34)

xφ(t) ≥
∫ t

−∞
e−

∫ t
s

α(u)du

[
β(s)m

1 + γ(s)M

]
ds

≥
∫ t

−∞
e−

∫ t
s

α(u)duα(s)mds ≥ m (35)

for all t ∈ R. Thus we can conclude that the mapping T
is a self-mapping from B∗ to B∗. Next we prove that the
mapping T is a contraction mapping on B∗. For ϕ,ψ ∈ B∗,
we have

||T (ϕ)− T (ψ)||∞ = sup
t∈R

|T (ϕ)− T (ψ)|

= sup
t∈R

∣∣∣∣∣
∫ t

−∞
e−

∫ t
s

α(u)duβ(s)

[
ϕ(t− τ(s))

1 + γ(s)ϕ(s− τ)

− ψ(t− τ(s))
1 + γ(s)ψ(s− τ)

]
ds

∣∣∣∣∣. (36)

Notice that∣∣∣∣∣
x

1 + γ(t)x
− y

1 + γ(t)y

∣∣∣∣∣ =
1

(1 + γ(t)θ)2
|x− y|

=
1

4γ(t)θ
|x− y| ≤ 1

4m
|x− y|, (37)

where x, y ∈ [m,M ] and θ lies between x and y, it follows
from (28), (34),(35) and (36) that

||T (ϕ)− T (ψ)||∞ ≤ sup
t∈R

∣∣∣∣∣
∫ t

−∞
e−

∫ t
s

α(u)duβ(s)

× 1
4m

|ϕ(s− τ(s))− ψ(s− τ(s)|ds

≤ sup
t∈R

∫ t

−∞
e−

∫ t
s

α(u)dua(s)e−ξ

×|ϕ(s− τ(s))− ψ(s− τ(s)|ds

≤ e−ξ||ϕ− ψ||∞. (38)

Since eξ < 1, we can easily know that the mapping T is
a contraction on B∗ Applying Theorem 0.3.1 in [8], we
obtain that the mapping T possesses a unique fixed point
ϕ∗ ∈ B∗, Tϕ∗ = ϕ∗. By (30), ϕ∗ satisfies (2). Thus ϕ∗ is
a positive pseudo almost periodic solution of (2) in B∗. The
proof of Theorem 4.1 is now complete.
Theorem 4.2. If the assumptions of Theorem 4.1, then (2) has
at least one positive pseudo almost periodic solution x∗(t).
Moreover, x∗(t) is globally exponentially stable, i.e., there
exist constants Cϕ,x∗ , tϕ,x∗ and λ > 0 such that

|x(t; t0, ϕ)− x∗(t)| < Cϕ,x∗e
−λt, for all t > tϕ,x∗ . (39)

Proof According to Theorem 4.1, we know that (2) has
a positive pseudo almost periodic solution x∗(t). It suffices
to show that x∗(t) is globally exponentially stable. Define a
continuous function Π(u) as follows

Π(u) = sup
t∈R

{
−[α(t)− u] + β(t)

1
4m

eτu

}
, u ∈ [0, 1].

(40)

Then
Π(0) = sup

t∈R

{
−α(t) + β(t)

1
4m

}
< 0, (41)

which implies that there exist two constants η > 0 and λ ∈
(0, 1] such that

Π(λ) = sup
t∈R

{
−[α(t)− λ] + β(t)

1
4m

eλτ

}
< −η < 0.

(42)
Let x(t) = x(t; t0, ϕ) and z(t) = x(t) − x∗(t), where t ∈
[t0 − τ, +∞). Then

z′(t) = −α(t)z(t) + β(t)
[

x(t− τ(t))
1 + γ(t)x(t− τ(t))

− x∗(t− τ(t))
1 + γ(t)x∗(t− τ(t))

]
. (43)

By Lemma 3.1, we know that there exists tϕ,x∗ > t0 such
that

m ≤ x(t), x∗(t) ≤ M, for all t ∈ [tϕ,x∗ − τ, +∞). (44)

Now we consider the Lyapunov functional

V (t) = |z(t)|eλt. (45)

Calculating the upper left derivative of V (t) along the
solution z(t) of (43), we obtain

D−(V (t)) ≤ −α(t)|z(t)|eλt + β(t)

∣∣∣∣∣
x(t− τ(t))

1 + γ(t)x(t− τ(t))

− x∗(t− τ(t))
1 + γ(t)x∗(t− τ(t))

∣∣∣∣∣e
λt + λ|z(t)|eλt

=

[
− (α(t)− λ)|z(t)|+ β(t)

∣∣∣∣∣
x(t− τ(t))

1 + γ(t)x(t− τ(t))

− x∗(t− τ(t))
1 + γ(t)x∗(t− τ(t))

∣∣∣∣∣

]
eλt, (46)

for all t > tϕ,x∗ . In the sequel, we claim that

V (t) = |z(t)|eλt < eλtϕ,x∗

×
(

max
t∈[t0−τ,tϕ,x∗ ]

|x(t)− x∗(t)|+ 1
)

:= Cϕ,x∗ ,(47)

for all t > tϕ,x∗ . Otherwise, there must exists t > tϕ,x∗ such
that

V (t) = Cϕ,x∗ , V (t) < Cϕ,x∗ , for all t ∈ [t0 − τ, t). (48)

In view of (37), (46) and (48), we get

D−(V (t)) ≤
[
− (α(t)− λ)|z(t)|+ β(t)

×
∣∣∣∣∣

x(t− τ(t))
1 + γ(t)x(t− τ(t))

− x∗(t− τ(t))
1 + γ(t)x∗(t− τ(t))

∣∣∣∣∣

]
eλt

≤ −(α(t)− λ)|z(t)|eλt + β(t)
1

4m
eλτ(t)eλ(t−τ(t))

×|z(t− τ(t))|
≤

[
−(α(t)− λ) + β(t)

1
4m

eλτ

]
Cϕ,x∗ . (49)

Thus −(α(t)−λ)+β(t) 1
4meλτ ≥ 0, which contradicts (42).

Hence, (47) holds. It follows that

z(t)| < Cϕ,x∗e
−λτ , for all t > tϕ,x∗ .

The proof of Theorem 4.2 is complete.
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Fig. 1. Time response of state variable x.

V. AN EXAMPLE

In this section, we will give an example to illustrate the
feasibility and effectiveness of our main results obtained in
previous sections. Considering the following Mackey-Glass
equation with delay

x′(t) = −3x(t) +
(

4.24 +
1
4
| sin

√
3t|+ 1

50
1

1 + t2

)

× x(t− e0.1 sin t)

1 +
(
4.24 + 1

4 | sin
√

3t|+ 1
50

1
1+t2

)
x(t− e0.1 sin t)

.

(50)

Hence α+ = α− = 3, β+ = 4.51, β− = 3.97, γ+ =
2.125, γ− = 1.865, τ = e0.1, 1 − τ

′
(t) = 1 −

0.1e0.1 sin t cos t > 0. Let m = 0.3,M = 1, then

−α−M +
β+

γ−
= −0.6 < 0,

and
−α−m +

β+m

1 + γ−M
= 0.03 > 0.

Then all the conditions in Theorem 4.2 are satisfied, There-
fore, (50) has a unique positive pseudo almost periodic
solution x∗(t), which is globally exponentially stable. The
results are verified by the numerical simulations in Fig.1.
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