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Abstract—The paper introduces a smoothing method to the
lower order penalty function for constrained optimization prob-
lems. It is shown that, under some mild conditions, an optimal
solution of the smoothed penalty problem is an approximate
optimal solution of the original problem. Based on the smoothed
penalty function, an algorithm is presented and its convergence
is proved under some mild assumptions. Numerical examples
show that the presented algorithm is effective.

Index Terms—constrained optimization problem, penalty
function method, exact penalty function, smoothing method.

I. INTRODUCTION

CONSIDER the constrained optimization problem:

(P) min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

x ∈ Rn,

where f, gi : Rn → R, i ∈ I = {1, 2, . . . ,m} are real
valued functions, and X0 = {x ∈ Rn | gi(x) ≤ 0, i ∈ I}
is the feasible set to (P). Constrained optimization problems
have been applied in many fields, such as including optimal
control, engineering, national defence, economy, and finance
etc. Up to now, the methods of solving the constrained
optimization problems have been well studied in the liter-
atures. The use of penalty functions to solve constrained
optimization problems is generally attributed to Courant.
The significant progress in solving many practical nonlinear
constrained optimization problems by using exact penalty
function methods have been introduced in literatures [1], [2],
[3], [4], [5], [6], [7]. Zangwill [7] proposed the classic l1
exact penalty function as follows:

Fσ(x) = f(x) + σ
m∑
i=1

g+i (x), (1)

where g+i (x) = max{0, gi(x)}, i ∈ I and σ > 0 is a
penalty parameter. It is known from the theory of ordinary
constrained optimization that the l1 exact penalty function
is a better candidate for penalization. However, it is not
a smooth function and causes some numerical instability
problems in its implementation when the value of the penalty
parameter σ becomes larger. Thus, smoothing methods for
smoothing the exact penalty function attract much attention,
see, e.g., [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. In recent years, the lower order penalty function

F k
σ (x) = f(x) + σ

m∑
i=1

[g+i (x)]
k, (2)
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where k ∈ (0, 1) and σ > 0 have been introduced in [12],
[13], [15]. Obviously, when k = 1, the lower order penalty
function (2) is reduced to the exact penalty function (1).
Meng et al. [12] discussed two smoothing approximations to
the lower order penalty function for inequality constrained
optimization. Meng et al. [13] discussed a smoothing method
of lower order penalty function and gave a robust SQP
method for (P) by integrating the smoothed penalty function
with the SQP method. Wu et al. [15] proposed the ϵ-
smoothing of (2), and got a modified exact penalty function
under some mild conditions. Error estimates of the optimal
value of the smoothed penalty problem and that of the
original penalty problem are obtained.

Based on the lower order penalty function, this paper
introduces a smoothing lower order penalty function method
which differs from the smoothing penalty function methods
in [12], [13], [15], and proposes a corresponding algorithm
for solving (P). Numerical results show that this algorithm
is of good convergence and is efficient in solving some
constrained optimization problems.

The rest of this paper is organized as follows. In Section II,
we propose a new smoothing function to the exact penalty
function (2), and discuss its some fundamental properties.
In Section III, an algorithm based on the smoothing lower
order penalty function is proposed and its global convergence
presented, with some numerical examples are given.

II. SMOOTHED LOWER ORDER METHOD

Consider pk(v) : R → R :

pk(v) =

{
0 if v < 0,

vk if v ≥ 0,

where k ∈ (0, 1). Then,

F k
σ (x) = f(x) + σ

m∑
i=1

pk(gi(x)). (3)

The corresponding penalty problem to (3) is defined as
follows,

(Pσ) min F k
σ (x)

s.t. x ∈ Rn.

For k ∈ (0, 1) and any ϵ > 0, we define function pkϵ,σ(v)
as

pkϵ,σ(v) =


0 if v < 0,

m2σ2v3k

6ϵ2
if 0 ≤ v <

(
ϵ

mσ

) 1
k ,

vk +
ϵ2v−k

2m2σ2
− 4ϵ

3mσ
if v ≥

(
ϵ

mσ

) 1
k ,

where ϵ is a smoothing parameter and σ > 0 is given.
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Fig. 1. The behavior of pk(v) and pkϵ,σ(v).

Remark 2.1. Obviously, pkϵ,σ(v) has the following attractive
properties:

(i) pkϵ,σ(v) is twice continuously differentiable for 2
3 <

k < 1 on R, where

[pkϵ,σ(v)]
′ =


0 if v < 0,

km2σ2v3k−1

2ϵ2
if 0 ≤ v <

(
ϵ

mσ

) 1
k ,

kvk−1 − kϵ2v−k−1

2m2σ2
if v ≥

(
ϵ

mσ

) 1
k ,

and
[pkϵ,σ(v)]

′′

=


0 if v < 0,

k(3k − 1)m2σ2v3k−2

2ϵ2
if 0 ≤ v <

( ϵ

mσ

) 1
k

,

k(k − 1)vk−2 +
k(k + 1)ϵ2v−k−2

2m2σ2
if v ≥

( ϵ

mσ

) 1
k

.

(ii) lim
ϵ→0

pkϵ,σ(v) = pk(v).

(iii) pk(v) ≥ pkϵ,σ(v), ∀v ∈ R.

Figure 1 shows the behavior of pk(v) and pkϵ,σ(v). Assume
that f, gi(i ∈ I) are continuously differentiable functions.

Let

F k
ϵ,σ(x) = f(x) + σ

m∑
i=1

pkϵ,σ (gi(x)) . (4)

Clearly, F k
ϵ,σ(x) is continuously differentiable at any x ∈ Rn.

Consider the following smoothed penalty problem:

(SPϵ,σ) min F k
ϵ,σ(x) s.t. x ∈ Rn.

Lemma 2.1. We have

0 ≤ F k
σ (x)− F k

ϵ,σ(x) ≤
4ϵ

3
(5)

for any given x ∈ Rn, ϵ > 0 and σ > 0, where F k
σ (x) and

F k
ϵ,σ(x) are given in (3) and (4) respectively.

Proof For any x ∈ Rn, ϵ > 0, σ > 0, we have

F k
σ (x)− F k

ϵ,σ(x) = σ
m∑
i=1

(
pk(gi(x))− pkϵ,σ(gi(x))

)
.

Note that

pk (gi(x))− pkϵ,σ (gi(x))

=



0 if gi(x) < 0,

0 ≤ (gi(x))
k − m2σ2(gi(x))

3k

6ϵ2
<

ϵ

mσ

if 0 ≤ gi(x) <
( ϵ

mσ

) 1
k

,

0 <
4ϵ

3mσ
− ϵ2(gi(x))

−k

2m2σ2
≤ 4ϵ

3mσ

if gi(x) ≥
( ϵ

mσ

) 1
k

.

for any i = 1, 2, . . . ,m. That is,

0 ≤ pk (gi(x))− pkϵ,σ (gi(x)) ≤
4ϵ

3mσ
.

Thus,

0 ≤
m∑
i=1

(pk(gi(x))− pkϵ,σ(gi(x))) ≤
4ϵ

3σ
,

which implies

0 ≤ σ

m∑
i=1

(pk(gi(x))− pkϵ,σ(gi(x))) ≤
4ϵ

3
.

Therefore,
0 ≤ F k

σ (x)− F k
ϵ,σ(x) ≤

4ϵ

3
.

The proof is completed.
Based on the Lemma 2.1, we have the following two

theorems.

Theorem 2.1. Let {ϵj} → 0, ∀ϵj > 0, and assume xj

is a solution to (SPϵj ,σ) for some σ > 0. Let x′ be an
accumulation point of the sequence {xj}. Then x′ is an
optimal solution to (Pσ).
Proof Since xj is a solution to problem (SPϵj ,σ), we have

F k
ϵj ,σ(xj) ≤ F k

ϵj ,σ(x).

By Lemma 2.1, we have

F k
σ (xj) ≤ F k

ϵj ,σ(xj) +
4ϵj
3

,

F k
ϵj ,σ(x) ≤ F k

σ (x).

It follows

F k
σ (xj) ≤ F k

ϵj ,σ(x) +
4ϵj
3

≤ F k
σ (x) +

4ϵj
3

.

Since {ϵj} → 0 and x′ be an accumulation point of the
sequence {xj}, we have

F k
σ (x

′) ≤ F k
σ (x).

The proof is completed.

Theorem 2.2. For some σ > 0 and ϵ > 0, let x∗
σ be an

optimal solution to (Pσ) and x∗
ϵ,σ be an optimal solution to

(SPϵ,σ). Then,

0 ≤ F k
σ (x

∗
σ)− F k

ϵ,σ(x
∗
ϵ,σ) ≤

4ϵ

3
. (6)

If both x∗
σ and x∗

ϵ,σ are feasible to (P), then

f(x∗
ϵ,σ) ≤ f(x∗

σ) ≤ f(x∗
ϵ,σ) +

4ϵ

3
. (7)
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Proof By Lemma 2.1, for σ > 0 and ϵ > 0, we have that

0 ≤ F k
σ (x

∗
σ)− F k

ϵ,σ(x
∗
σ)

≤ F k
σ (x

∗
σ)− F k

ϵ,σ(x
∗
ϵ,σ)

≤ F k
σ (x

∗
ϵ,σ)− F k

ϵ,σ(x
∗
ϵ,σ)

≤ 4ϵ

3
.

That is,

0 ≤ F k
σ (x

∗
σ)− F k

ϵ,σ(x
∗
ϵ,σ) ≤

4ϵ

3

and

0 ≤

{
f(x∗

σ) + σ

m∑
i=1

pk(gi(x
∗
σ))

}

−

{
f(x∗

ϵ,σ) + σ
m∑
i=1

pkϵ,σ(gi(x
∗
ϵ,σ))

}
≤ 4ϵ

3
.

Furthermore, if x∗
σ and x∗

ϵ,σ are feasible to (P), then

m∑
i=1

pk(gi(x
∗
σ)) =

m∑
i=1

pkϵ,σ(gi(x
∗
ϵ,σ)) = 0.

Therefore,

0 ≤ f(x∗
σ)− f(x∗

ϵ,σ) ≤
4ϵ

3
.

That is,

f(x∗
ϵ,σ) ≤ f(x∗

σ) ≤ f(x∗
ϵ,σ) +

4ϵ

3
.

The proof is completed.

Definition 2.1. A point x∗
ϵ ∈ Rn is called ϵ-feasible solution

to (P) if

gi(x
∗
ϵ ) ≤ ϵ, i = 1, 2, . . . ,m.

Definition 2.2. For x ∈ Rn, a point y ∈ Rm is called a
Lagrange multiplier vector corresponding to x if x and y
satisfy that

∇f(x) = −
m∑
i=1

yi∇gi(x), (8)

yigi(x) = 0, gi(x) ≤ 0, yi ≥ 0, i ∈ I. (9)

Theorem 2.3. Suppose that f, gi (i ∈ I) in (P) are convex.
Let x be an optimal solution to (P) and x∗

ϵ,σ be an optimal
solution to (SPϵ,σ). If x∗

ϵ,σ is feasible to (P), and y ∈ Rm

be a Lagrange multiplier vector corresponding to x∗
ϵ,σ, then

f(x) ≤ f(x∗
ϵ,σ) ≤ f(x) +

4ϵ

3
(10)

for any ϵ > 0.
Proof By the convexity of f, gi (i ∈ I), we have

f(x) ≥ f(x∗
ϵ,σ) +∇f(x∗

ϵ,σ)
T (x− x∗

ϵ,σ), (11)

gi(x) ≥ gi(x
∗
ϵ,σ) +∇gi(x

∗
ϵ,σ)

T (x− x∗
ϵ,σ). (12)

By (3), (8), (9), (11) and (12), we have

F k
σ (x) = f(x) + σ

m∑
i=1

pk(gi(x))

≥ f(x∗
ϵ,σ) +∇f(x∗

ϵ,σ)
T (x− x∗

ϵ,σ)

= f(x∗
ϵ,σ)−

m∑
i=1

yi∇gi(x
∗
ϵ,σ)

T (x− x∗
ϵ,σ)

≥ f(x∗
ϵ,σ)−

m∑
i=1

yi
[
gi(x)− gi(x

∗
ϵ,σ)
]

= f(x∗
ϵ,σ)−

m∑
i=1

yigi(x)

≥ f(x∗
ϵ,σ).

By Lemma 2.1, we have

F k
σ (x) ≤ F k

ϵ,σ(x) +
4ϵ

3
.

It follows

f(x∗
ϵ,σ) ≤ F k

ϵ,σ(x) +
4ϵ

3

= f(x) + σ
m∑
i=1

pkϵ,σ(gi(x)) +
4ϵ

3

= f(x) +
4ϵ

3
.

Since x∗
ϵ,σ is feasible to problem (P), that

f(x) ≤ f(x∗
ϵ,σ).

Thus,

f(x) ≤ f(x∗
ϵ,σ) ≤ f(x) +

4ϵ

3
.

The proof is completed.
Theorem 2.2 show that an approximate solution to (SPϵ,σ)

is also an approximate solution to (Pσ) when the error ϵ is
small enough. By Theorem 2.3, under some mild conditions,
an optimal solution to (SPϵ,σ) becomes an approximately
optimal solution to (P). Therefore, we may obtain an approx-
imately optimal solution to (P) by solving problem (SPϵ,σ).

III. ALGORITHM AND NUMERICAL EXAMPLES

In this section, we propose an algorithm to solve problem
(P) via solving the problem (SPϵ,σ), defined as Algorithm I.

Algorithm I
Step 1: Given a point x0

1 ∈ Rn. Choose ϵ1 > 0, σ1 >
0, 0 < γ < 1, β > 1 and ϵ > 0. Let j = 1, and go to Step
2.
Step 2: Solve the following problem:

(SPϵj ,σj ) min
x∈Rn

F k
ϵj ,σj

(x) = f(x) + σj

m∑
i=1

pkϵj ,σj
(gi(x))

starting from the point x0
j . Let x∗

ϵj ,σj
be an optimal solution

obtained (x∗
ϵj ,σj

is obtained by the BFGS method given in
[19]).
Step 3: If x∗

ϵj ,σj
is ϵ-feasible to (P), then stop. Otherwise,

let σj+1 = βσj , ϵj+1 = γϵj , x0
j+1 = x∗

ϵj ,σj
and j = j + 1,

then go to Step 2.
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Remark 3.1. In this Algorithm I, from 0 < γ < 1, β > 1,
the sequence {ϵj} → 0 and the sequence {σj} → +∞, as
j → +∞.

Under mild conditions, we now prove the convergence of
the Algorithm I.

Theorem 3.1. For 1
3 < k < 1, suppose that the set

arg min
x∈Rn

F k
ϵ,σ(x) ̸= ∅ (13)

for any ϵ ∈ (0, ϵ1], and σ ∈ [σ1,+∞). Let {x′
j} be a

sequence generated by Algorithm I. If {x′
j} has limit point,

then any limit point of {x′
j} is an optimal solution to (P).

Proof Let x′ be any limit point of {x′
j}, then there exists

a natural number set J ⊂ N , such that x′
j → x′, j ∈ J . It

is clear that, if we prove that (i) x′ ∈ X0, and (ii) f(x′) ≤
infx∈X0 f(x), then x′ is an optimal solution to (P).

(i) Suppose to the contrary that x′ /∈ X0, then there exists
θ0 > 0 and the subset J ′ ⊂ J , there exists some i′ ∈ I such
that

gi′(x
′
j) ≥ θ0

for any j ∈ J ′.

When
(

ϵj
mσj

) 1
k

> gi′(x
′
j) ≥ θ0, from the definition of

pkϵ,σ(v) and Step 2 in Algorithm I, we have

f(x′
j) +

mσ3
j θ

3k
0

6ϵ2j
≤ F k

ϵj ,σj
(x′

j)

≤ F k
ϵj ,σj

(x) = f(x)

for any x ∈ X0, which contradicts with σj → +∞, and
ϵj → 0.

When gi′(x
′
j) ≥ θ0 ≥

(
ϵj

mσj

) 1
k

or gi′(x
′
j) ≥

(
ϵj

mσj

) 1
k ≥

θ0, from the definition of pkϵ,σ(v) and Step 2 in Algorithm I,
we have

f(x′
j) + σjθ

k
0 +

ϵ2jθ
−k
0

2m2σj
− 4ϵj

3m
≤ F k

ϵj ,σj
(x′

j)

≤ F k
ϵj ,σj

(x) = f(x)

for any x ∈ X0, which contradicts with σj → +∞, and
ϵj → 0.

Thus, x′ ∈ X0.
(ii) For any x ∈ X0, from the definition of pkϵ,σ(v) and

Step 2 in Algorithm I, we have

f(x′
j) ≤ F k

ϵj ,σj
(x′

j) ≤ F k
ϵj ,σj

(x) = f(x),

thus, f(x′) ≤ infx∈X0 f(x) holds.
The proof is completed.

Theorem 3.2. For 1
3 < k < 1, let {x′

j} be a sequence gen-
erated by Algorithm I. Suppose that lim

∥x∥→+∞
f(x) = +∞

and the sequence {F k
ϵj ,σj

(x′
j)} is bounded. Then,

(i) the sequence {x′
j} is bounded,

(ii) any limit point x′ of {x′
j} is feasible to (P),

(iii) any limit point x′ of {x′
j}, and there exists κi ≥ 0 (i ∈

I), such that

∇f(x′) +
∑
i∈I

κi∇gi(x
′) = 0. (14)

Proof (i) First, we will prove that {x′
j} is bounded. Note

that

F k
ϵj ,σj

(x′
j) = f(x′

j)+σj

m∑
i=1

pkϵj ,σj
(gi(x

′
j)), j = 0, 1, 2, . . . ,

(15)
and by the definition of pkϵ,σ(v), we have

m∑
i=1

pkϵj ,σj
(gi(x

′
j)) ≥ 0. (16)

Suppose to the contrary that {x′
j} is unbounded and without

loss of generality, ∥x′
j∥ → +∞ as j → +∞. Then,

lim
j→+∞

f(x′
j) = +∞, and from (15) and (16), we have

F k
ϵj ,σj

(x′
j) ≥ f(x′

j) → +∞, σj > 0,

which contradicts with {F k
ϵj ,σj

(x′
j)} is bounded. Thus, {x′

j}
is bounded.

(ii) Next, we will prove that any limit point x′ of {x′
j}

is feasible to (P).
For x ∈ Rn, let

I−ϵ =

{
i | 0 ≤ gi(x) <

( ϵ

mσ

) 1
k

, i = 1, 2, . . . ,m

}
,

I+ϵ =

{
i | gi(x) ≥

( ϵ

mσ

) 1
k

, i = 1, 2, . . . ,m

}
.

Without loss of generality, assume that lim
j→+∞

x′
j = x′.

Suppose to the contrary that x′ /∈ X0, then there exist some
i ∈ I , such that gi(x′) ≥ α > 0. Note that

F k
ϵj ,σj

(x′
j) = f(x′

j) + σj

∑
i∈I−

ϵj

m2σ2
j (gi(x

′
j))

3k

6ϵ2j

+σj

∑
i∈I+

ϵj

(
(gi(x

′
j))

k +
ϵ2j (gi(x

′
j))

−k

2m2σ2
j

− 4ϵj
3mσj

)
. (17)

Since gi(x
′) ≥ α > 0, then for any sufficiently large j,

the set {i | gi(x′
j) ≥ α} is not empty. Then there exists

an i′ ∈ I that satisfies gi′(x
′
j) ≥ α. If j → +∞, σj →

+∞, ϵj → 0, it follows from (17) that F k
ϵj ,σj

(x′
j) → +∞,

which contradicts with {F k
ϵj ,σj

(x′
j)} is bounded. Therefore,

x′ is feasible to (P).
(iii) Finally, we prove that (14) holds. By Step 2 in

Algorithm I, we have ∇F k
ϵj ,σj

(x′
j) = 0, that is

∇f(x′
j) + σj

∑
i∈I−

ϵj

km2σ2
j (gi(x

′
j))

3k−1

2ϵ2j
∇gi(x

′
j)

+σj

∑
i∈I+

ϵj

(
k(gi(x

′
j))

k−1 −
kϵ2j (gi(x

′
j))

−k−1

2m2σ2
j

)
∇gi(x

′
j) = 0.

which implies

∇f(x′
j) + σj

∑
i∈I−

ϵj

km2σ2
j [p

k(gi(x
′
j))]

3k−1
k

2ϵ2j
∇gi(x

′
j)

+ σj

∑
i∈I+

ϵj

{k[pk(gi(x′
j))]

k−1
k

−
kϵ2j [p

k(gi(x
′
j))]

−k−1
k

2m2σ2
j

}∇gi(x
′
j) = 0. (18)
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Let

αj = 1 + σj

∑
i∈I−

ϵj

km2σ2
j [p

k(gi(x
′
j))]

3k−1
k

2ϵ2j

+σj

∑
i∈I+

ϵj

(
k[pk(gi(x

′
j))]

k−1
k −

kϵ2j [p
k(gi(x

′
j))]

−k−1
k

2m2σ2
j

)
,

j = 0, 1, 2, . . . , then αj > 1. From (18), we have

1

αj
∇f(x′

j) +
∑
i∈I−

ϵj

km2σ3
j [p

k(gi(x
′
j))]

3k−1
k

2ϵ2jαj
∇gi(x

′
j)

+
∑
i∈I+

ϵj

{
σjk[p

k(gi(x
′
j))]

k−1
k

αj

−
kϵ2j [p

k(gi(x
′
j))]

−k−1
k

2m2σjαj
}∇gi(x

′
j) = 0. (19)

Let

κj =
1

αj
,

νji =
km2σ3

j [p
k(gi(x

′
j))]

3k−1
k

2ϵ2jαj
, i ∈ I−ϵj ,

νji =
σjk[p

k(gi(x
′
j))]

k−1
k

αj
−

kϵ2j [p
k(gi(x

′
j))]

−k−1
k

2m2σjαj
, i ∈ I+ϵj ,

νji = 0, i ∈ I \
(
I+ϵj ∪ I−ϵj

)
.

Then,

κj +
∑
i∈I

νji = 1, j = 0, 1, 2, . . . , (20)

νji ≥ 0, i ∈ I, j = 0, 1, 2, . . . .

Clearly, as j → ∞, κj → κ > 0, νji → νi ≥ 0, ∀i ∈ I . By
(19) and (20), as j → +∞, we have

κ∇f(x′) +
∑
i∈I

νi∇gi(x
′) = 0,

which implies

∇f(x′) +
∑
i∈I

νi
κ
∇gi(x

′) = 0.

Let κi =
νi

κ , it follows

∇f(x′) +
∑
i∈I

κi∇gi(x
′) = 0, κi ≥ 0.

The proof is completed.
The rest of this paper we solve three numerical examples

to illustrate the efficiency of Algorithm I. In each example
we let k = 3

4 and ϵ = 10−6, then the numerical results with
Algorithm I on MATLAB are given as follows.

Example 3.1. Consider ([12], Example 4.2)

(P1) min f(x) =x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2

− 21x3 + 7x4

s.t. g1(x) =2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0

g2(x) =x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3

− x4 − 8 ≤ 0

g3(x) =x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0

Let x0
1 = (0, 0, 0, 0), σ1 = 10, β = 2, ϵ1 = 1.0, γ =

0.05. The results of Algorithm I for solving (P1) are given
in Table I.

As shown in Table I, it is found that Algorithm I yields
an approximate optimal solution

x∗
2 = (0.170446, 0.834248, 2.008753,−0.964559)

to (P1) at the 2’th iteration with objective function value
f(x∗

2) = −44.233627. It is easy to check that x∗
2 is a

feasible solution to (P1). From [12], we know that x∗ =
(0.169234, 0.835656, 2.008690,−0.964901) is an approxi-
mate optimal solution of (P1) with objective function value
f(x∗) = −44.233582. The solution we obtained is slightly
better than the solution obtained in the 4’th iteration by
method in [12].

Example 3.2. Consider ([20], Example 4.1)

(P2) min f(x) = x2
1 + x2

2 − cos(17x1)− cos(17x2) + 3

s.t. g1(x) = (x1 − 2)2 + x2
2 − 1.62 ≤ 0

g2(x) = x2
1 + (x2 − 3)2 − 2.72 ≤ 0

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

Let x0
1 = (0, 0), σ1 = 10, β = 2, ϵ1 = 0.01, γ = 0.01.

The results of Algorithm I for solving (P2) are given in Table
II.

As shown in Table II, it is found that Algorithm I yields
an approximate optimal solution x∗ = (0.725379, 0.399267)
to (P2) at the 2’th iteration with objective function val-
ue f(x∗) = 1.837574. From [20], we know that x∗ =
(0.7255, 0.3993) is a global solution of (P2) with global
optimal value f(x∗) = 1.8376. The solution we obtained
is slightly better than the solution obtained by method in
[20].

Example 3.3. Consider ([16], Example 3.3)

(P3) min f(x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2

s.t. g1(x) = x1 + x2 − 2 ≤ 0

g2(x) = −x1 + 2x2 − 2 ≤ 0

x1, x2 ≥ 0

Let x0
1 = (0, 0), σ1 = 10, β = 8, ϵ1 = 0.01, γ = 0.02.

The results of Algorithm I for solving (P3) are given in Table
III.

As shown in Table III, it is found that Algorithm I yields
an approximate optimal solution x∗ = (0.800003, 1.199997)
to (P3) at the 3’th iteration with objective function value
f(x∗) = −7.200000. From [16], we know that x∗ =
(0.8000, 1.2000) is a global solution of (P3) with global
optimal value f(x∗) = −7.2000. The solution we obtained
is similar with the solution obtained in the 4’th iteration by
method in [16].
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TABLE I
NUMERICAL RESULTS FOR EXAMPLE 3.1

j σj ϵj f(x∗
j ) g1(x∗

j ) g2(x∗
j ) g3(x∗

j ) x∗
j

1 10 1.0 -44.239897 0.001192 0.002604 -1.880268 (0.169634, 0.835563,
2.008941, -0.965199)

2 20 0.05 -44.233627 -0.000254 -0.000005 -1.889059 (0.170446, 0.834248,
2.008753, -0.964559)

TABLE II
NUMERICAL RESULTS FOR EXAMPLE 3.2

j σj ϵj f(x∗
j ) g1(x∗

j ) g2(x∗
j ) x∗

j

1 10 0.01 1.810439 -0.780258 0.016341 (0.726166, 0.396344)

2 20 0.0001 1.837574 -0.775927 -0.000015 (0.725379, 0.399267)

TABLE III
NUMERICAL RESULTS FOR EXAMPLE 3.3

j σj ϵj f(x∗
j ) g1(x∗

j ) g2(x∗
j ) x∗

j

1 10 0.01 -8.314990 0.410570 -0.277811 (1.032984, 1.377586)

2 80 0.0002 -7.766379 0.320111 0.410338 (0.743295, 1.576816)

3 640 0.000004 -7.200000 -0.000000 -0.400009 (0.800003, 1.199997)
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