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Abstract—Starting from the isospectral problem equipped
with a loop algebra Ã1, we first derive a new and more
general KN-like hierarchy with two coefficient functions α(x)
and β(t). We then establish a Hamiltonian structure of the
KN-like hierarchy under the condition that β(t) is a non-
zero constant by the use of Tu’s scheme. Finally, we obtain
some exact solutions of the first two equations of the KN-
like hierarchy and give an open problem. This paper shows
that the KN-like hierarchy is not only Lax integrable but also
conditional Liouville integrable.

Index Terms—KN-like hierarchy with variable coefficients,
isospectral problem, loop algebra, Hamiltonian structure, exact
solution.

I. INTRODUCTION

RECENTLY, the study of integrable systems is relatively
active because of searching for as many as integrable

systems and studying their properties are of both theoretical
and practical value [1]. Some meaningful integrable systems
have been obtained, such as the ones in [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], which include Ablowitz–
Kaup–Newell–Segur (AKNS) hierarchy, Kaup–Newell (KN)
hierarchy, Giachetti–Johnson (GJ) hierarchy, and so on. In
[2], Tu employed a subalgebra of the loop algebra Ã1 to
construct some integrable hierarchies and established their
corresponding Hamiltonian structures by the trace identity. It
is shown that Tu’s scheme [2] provides a powerful tool for
constructing the Hamiltonian structure of integrable systems.

Since the variable-coefficient systems could describe more
realistic physical phenomena than their constant-coefficient
counterparts when the inhomogeneities of media and nonuni-
formities of boundaries are taken into account [25], we
shall derive in this paper a KN-like hierarchy with variable
coefficients:

ut =

(
q
r

)
t

= JLn−1


β(t)

α(x)
ωr

β(t)

α(x)
ωq

− β′(t)

β(t)

(
q
r

)
,

(1)
where n = 1, 2, · · ·, α(x) and β(t) are two non-zero and
smooth functions of x and t respectively, ω is a non-zero
constant, the symmetric operator and the recursive operator
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are employed as:

J =
1

β(t)

(
0 ∂
∂ 0

)
, L =

1

2α(x)

(
l11 l12
l21 l22

)
(2)

with
l11 = −∂ − β2(t)r∂−1 q

α(x)
∂,

l12 = −β2(t)r∂−1 r

α(x)
∂, l21 = −β2(t)q∂−1 q

α(x)
∂,

l22 = ∂ − β2(t)q∂−1 r

α(x)
∂.

In particular, if we set α(x) = 1 and β(t) = 1, Eq. (1)
becomes the known constant-coefficient KN-like hierarchy
[7]. So, the KN-like hierarchy (1) to be constructed is
more general than the one in [7]. When n = 1, the KN-
like hierarchy (1) gives a system of new and more general
variable-coefficient linear equations:

qt =
ω

α(x)
qx − α′(x)

α2(x)
ωq − β′(t)

β(t)
q, (3)

rt =
ω

α(x)
rx − α′(x)

α2(x)
ωr − β′(t)

β(t)
r. (4)

When we set n = 2, the KN-like hierarchy (1) generates
the following new and more general variable-coefficient
nonlinear equations:

qt =
ω

2α4(x)
[α2(x)qxx − α(x)α′′(x)q − 3α′(x)α(x)qx

+ 3α′2(x)q − 2α(x)β2(t)qrqx − α(x)β2(t)q2rx

+3α′(x)β2(t)q2r]− β′(t)

β(t)
q, (5)

rt =
ω

2α4(x)
[−α2(x)rxx + α(x)α′′(x)r

+ 3α′(x)α(x)rx − 3α′2(x)r − 2α(x)β2(t)qrrx

− α(x)β2(t)r2qx + 3α′(x)β2(t)qr2]− β′(t)

β(t)
r. (6)

Since the soliton phenomena were first observed in 1834
and the Korteweg de–Vries (KdV) equation was solved by
the inverse scattering method [26], solving nonlinear partial
differential equations (PDEs) has gradually developed into a
significant direction in nonlinear science and many solutions
were obtained like those in [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41].
More recently, there are some interesting results in solv-
ing fractional differential equations and stochastic evolution
equations, for example the work in [42], [43], [44]. However,
to the best of our knowledge, there is no work on solving the
KN-like hierarchy [7] and Eqs. (3)–(6). In the present paper,
some exact solutions of Eqs. (3)–(6) are obtained.
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The rest of the paper is organized as follows. In Section
2, we derive the KN-like hierarchy (1) by introducing a new
and more general isospectral problem equipped with a loop
algebra Ã1. In Section 3, we use Tu’s scheme [2] to establish
a Hamiltonian structure of the KN-like hierarchy (1) in the
condition that β(t) is a non-zero constant. In Section 4, we
give some exact solutions of Eqs. (3)–(6). In Section 5, we
conclude this paper.

II. A KN-LIKE HIERARCHY WITH VARIABLE
COEFFICIENTS

Firstly, we select a set of bases of loop algebra Ã1 [7]:

h(n) =

(
λ2n 0
0 −λ2n

)
, (7)

e(n) =

(
0 λ2n+1

0 0

)
, f(n) =

(
0 0

λ2n+1 0

)
, (8)

[h(m), e(n)] = 2e(m+ n), (9)

[h(m), f(n)] = −2f(m+ n), (10)

[e(m), f(n)] = h(m+ n+ 1), (11)

deg h(n) = 2n, (12)

deg e(n) = deg f(n) = 2n+ 1, n ∈ Z. (13)

Secondly, with above preparation we consider the follow-
ing isospectral problem:

ϕx = Uϕ, λt = 0, (14)

U =

(
α(x)λ2 β(t)qλ
β(t)rλ −α(x)λ2

)
= α(x)h(1) + β(t)qe(0) + β(t)rf(0), (15)

where λ is the spectral parameter.
Setting

V =
∑
m≥0

[amh(−m) + bme(−m) + cmf(−m)], (16)

and solving the adjoint representation of Eqs. (15) and (16):

Vx = [U, V ], (17)

we obtain the following recursive relations:

amx = β(t)qcm+1 − β(t)rbm+1, (18)

bmx = 2α(x)bm+1 − 2β(t)qam, (19)

cmx = −2α(x)cm+1 + 2β(t)ram. (20)

To determine am, bm and cm of Eqs. (18)–(20), in this
paper we select the initial values

a0 = ω, b0 = 0, c0 = 0. (21)

For example, we have

a1 = − β2(t)

2α2(x)
ωqr, b1 =

β(t)

α(x)
qω, c1 =

β(t)

α(x)
rω.

(22)
Thirdly, we introduce the notations

V
(n)
+ = (λ2nV )+ =

n∑
m=0

[amh(n−m)

+bme(n−m) + cmf(n−m)], (23)

V
(n)
− = λ2nV − V

(n)
+ . (24)

Then Eq. (17) gives

−V
(n)
+x + [U, V

(n)
+ ] = V

(n)
−x − [U, V

(n)
− ]. (25)

Note that the terms in the left-hand side of (25) are of
degree ≥ 0, while the terms of the right-hand side are of
degree ≤ 1. Therefore, both sides of (25) are of degree 0
and 1. In other words, we have

−V
(n)
+x + [U, V

(n)
+ ] = 2α(x)cn+1f(0)− 2α(x)bn+1e(0)

+[β(t)rbn+1 − β(t)qcn+1]h(0). (26)

Letting V (n) = V
(n)
+ + ∆n, ∆n = −anh(0), and then

solving the zero curvature equation Ut−Vx(n)+[U, V (n)] =
0 yields a Lax integrable system:

ut =

(
q
r

)
t

=
1

β(t)

(
2α(x)bn+1 − 2β(t)qan
−2α(x)cn+1 + 2β(t)ran

)
− β′(t)

β(t)

(
q
r

)
= J

(
cn
bn

)
− β′(t)

β(t)

(
q
r

)
, (27)

where J is a symmetric operator determined in Eq. (2).
With the help of Eqs. (18)–(21), we have(

cn+1

bn+1

)
= L

(
cn
bn

)
, (28)

where L is the recursive operator defined in Eq. (2).
Using Eq. (28), we finally rewrite Eq. (27) as following:

ut =

(
q
r

)
t

= J

(
cn
bn

)
− β′(t)

β(t)

(
q
r

)

= JLn−1


β(t)

α(x)
ωr

β(t)

α(x)
ωq

− β′(t)

β(t)

(
q
r

)
, (29)

which is just the KN-like hierarchy (1).

III. HAMILTONIAN STRUCTURE
To establish a Hamiltonian structure of the KN-like hier-

archy (1), we rewrite Eq. (16) as

V = ah(0) + be(0) + cf(0) =

(
a bλ
cλ −a

)
, (30)

where

a =
∑
m≥0

amλ−2m, b =
∑
m≥0

bmλ−2m, (31)

c =
∑
m≥0

cmλ−2m. (32)

A direct computation gives

⟨V, ∂U
∂λ

⟩ = [4α(x)a+ β(t)rb+ β(t)qc]λ, (33)

⟨V, ∂U
∂q

⟩ = β(t)cλ2, ⟨V, ∂U
∂r

⟩ = β(t)bλ2. (34)

Substituting Eqs. (33) and (34) into the trace identity [2]:

δ

δu
⟨V, ∂U

∂λ
⟩ = λ−γ ∂

∂λ

λγ

 ⟨V, ∂U
∂q

⟩

⟨V, ∂U
∂r

⟩


 , (35)
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we have
δ

δu
{[4α(x)a+ β(t)rb+ β(t)qc]λ}

= λ−γ ∂

∂λ
λγ

(
β(t)cλ2

β(t)bλ2

)
. (36)

Comparing the coefficient of λ−2n+1 on both sides of Eq.
(36) yields

δ

δu
[4α(x)an + β(t)rbn + β(t)qcn]

= (−2n+ 2 + γ)β(t)

(
cn
bn

)
. (37)

Further setting n = 1 and β(t) = µ(here µ is a non-zero
constant), from Eq. (37) we have γ = 0 and hence obtain:

(
cn
bn

)
=

δHn

δu
=

 δ

δq
δ

δr

Hn, (38)

Hn =
4α(x)an + µrbn + µqcn

µ(−2n+ 2)
. (39)

Therefore, if β(t) = µ we can write the KN-like hierarchy
(1) in the Hamiltonian form:

ut =

(
q
r

)
t

= JLn−1


µ

α(x)
ωr

µ

α(x)
ωq


= JLn−1

(
c1
b1

)
= J

(
cn
bn

)
= J

δHn

δu
. (40)

On the other hand, it is easy to see that

JL = L∗J =
1

2β(t)

(
k11 k12
k21 k22

)
, (41)

where
k11 = −β2(t)∂

q

α(x)
∂−1 q

α(x)
∂,

k12 = ∂
1

α(x)
∂ − β2(t)∂

q

α(x)
∂−1 r

α(x)
∂,

k21 = −∂
1

α(x)
∂ − β2(t)∂

r

α(x)
∂−1 q

α(x)
∂,

k22 = −β2(x)∂
r

α(x)
∂−1 r

α(x)
∂.

Thus, the KN-like hierarchy (1) is also a Liouville inte-
grable system under the condition that β(t) is a non-zero
constant.

IV. SPECIAL SOLUTIONS
To give some special solutions of the KN-like hierarchy

(1), in this section we consider Eqs. (3)–(6). For Eqs. (3)
and (4), we obtain the following solutions:

q = r =
α(x)

β(t)
c[t+

1

ω

∫ x

α(s)ds], (42)

where c[t+ 1
ω

∫ x
α(s)ds] is an arbitrary differentiable func-

tion of the indicated variables.
In order to solve Eqs. (5) and (6), we suppose α(x) = 1

and β(t) = 1, then Eqs. (5) and (6) become

qt −
1

2
ω(qxx − 2qrqx − q2rx) = 0, (43)

rt −
1

2
ω(−rxx − 2qrrx − r2qx) = 0. (44)

By using the travelling wave transformation:

q = q(ξ), r = r(ξ), ξ = kx+ ct, k, c = consts.,
(45)

Eqs. (43) and (44) are converted into two ordinary differential
equations (ODEs). Integrating these two ODEs with respect
to ξ once and setting the integration constants as A and B
respectively, we have

cq − 1

2
ω(k2qξ − kq2r) +A = 0, (46)

cr − 1

2
ω(−k2rξ − kqr2) +B = 0. (47)

It follows from Eq. (46) that

r =
k2ωqξ − 2(A+ cq)

kωq2
. (48)

Substituting Eq. (48) into Eq. (47) we then have

k4ω2(qqξξ − q2ξ ) + 2Bkωq3 + 4A(cq +A)

2kωq3
= 0. (49)

From Eqs. (48) and (49) we finally obtain non-trivial exact
solutions of Eqs. (43) and (44) as follows:

Case 1. When A = 0 and B = 0

q = c1e
kx+ct, r =

k2ω − 2c

kc1ω
e−kx−ct, (50)

where c1 is a non-zero constant.
Case 2. When A = 0 and B ̸= 0

q = − 4Bk3ω

(2Bkx+ ak4ω2t+ 2bB)2
, (51)

r = (2Bkx+ ak4ω2t+ 2bB)

× (2aBk3ωx+ a2k6ω3t+ 2abBk2ω + 4B2)

4B2k2ω
, (52)

where a and b are arbitrary constants.
For the other cases, namely A ≠ 0 and B = 0, A ̸= 0

and B ̸= 0, we can obtain only constant solutions from Eqs.
(48) and (49). Such constant solutions are omitted here for
simplicity.

In Figs. 1 and 2, two local spatial structures of solutions
(51) and (52) are shown by selecting the parameters a = −1,
b = −2, B = 1, k = 2 and ω = 1.5. It can be seen from Fig.
1 that solution (51) possesses singularities. For the fixed x =
x0, there always exists a finite time t = −2a−1Bk−4ω−2(b+
kx0) at which solution (51) blow up. In view of the physical
significance, solution (51) does not exist after blow-up. In
the actual experimental physical system, there is no blow-up
but a sharp spike. Thus, the finite time blow-up can provide
an approximation to the physical phenomenon [45]. Fig. 2
shows that the amplitude of solution (52) decreases with the
growth of |t|.

If we keep the arbitrariness of α(x) and β(t), Eqs. (5) and
(6) have the following trivial solutions:

q =
c1
c2

α(x)β(t), r = c2α(x)β(t), c2 = const.. (53)

We note here that how to construct non-trivial solutions
of Eqs. (5) and (6) without α(x) and β(t) being constants is
an open problem.
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Fig. 1. Spatial structure of solution (51) with parameters a = −1, b = −2,
B = 1, k = 2 and ω = 1.5.

Fig. 2. Spatial structure of solution (52) with parameters a = −1, b = −2,
B = 1, k = 2 and ω = 1.5.

V. CONCLUSION

In summary, we have derived a new and more general
KN-like hierarchy (1) which includes the known constant-
coefficient KN-like hierarchy [7] as a special case. The KN-
like hierarchy (1) is a Lax integrable system, and under a
certain condition it is Liouville integrable. In special cases,
a Hamiltonian structure and some exact solutions of the KN-
like hierarchy (1) are obtained. To the best of our knowledge,
the KN-like hierarchy (1), the Hamiltonian form (40), and
exact solutions (42), (50)–(53) have not been reported in the
literature. More importantly, this paper presents a method
to derive integrable systems with coefficient functions of
spatial-time variables from the related spectral problems.
How to construct some other hierarchies with variable coef-
ficients and their Hamiltonian structures and exact solutions
are worthy of study. This is our task in the future.
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