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Abstract—The concepts ofp-affine and p-geominimal surface
areas were introduced by Lutwak. In this paper, we estab-
lish some Brunn-Minkowski type inequalities of p-geominimal
surface area combiningLp-polar curvature image with vari-
ous combinations of convex bodies. Moreover, we discuss the
equivalence of several inequalities, and also obtain some results
similar to p-geominimal surface area for thep-affine surface
area.

Index Terms—convex bodies, p-affine surface area, p-
geominimal surface area, Brunn-Minkowski type inequality.

I. I NTRODUCTION

L ET Kn denote the set of convex bodies (compact, con-
vex subsets with nonempty interiors) inn-dimensional

Euclidean spaceRn. For the set of convex bodies containing
the origin in their interiors, the set of convex bodies whose
centroids lie at the origin and the set of origin-symmetric
convex bodies inRn, we writeKn

o , Kn
e andKn

c , respectively.
Sn
o andSn

c respectively denote the set of star bodies (about
the origin) and the set of origin-symmetric star bodies inRn.
Let Sn−1 denote the unit sphere inRn, and letV (K) denote
then-dimensional volume of a bodyK. For the standard unit
ball Bn in Rn, we useωn = V (Bn) to denote its volume.

The study of affine surface area goes back to Blaschke
[1] and is about one hundred years old. It was generalized
to the p-affine surface area by Lutwak in [10]. Since then,
considerable attention has been paid to thep-affine surface
area, which is now at the core of the rapidly developingLp-
Brunn-Minkowski theory(see articles [4], [5], [6], [8], [11],
[12], [13], [14], [17], [19], [24], [28] or books [7], [22]).
In particular, affine isoperimetric inequalities related to the
p-affine surface area can be found in [10], [29].

Another fundamental concept in convex geometry is geo-
minimal surface area, introduced by Petty [19] more than
three decades ago. As Petty explained in [19], the geo-
minimal surface area connects the affine geometry, relative
geometry and Minkowski geometry. Hence it receives a lot
of attention (see [19], [20], [23]). The geominimal surface
area was extended top-geominimal surface area by Lutwak
in his seminal paper [10]. Thep-geominimal surface area
shares many properties with thep-affine surface area. For
instance, both are affine invariant and have the same degree
of homogeneity. However, thep-geominimal surface area is
different from thep-affine surface area. For instance, unlike
the p-affine surface area,p-geominimal surface area has no
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nice integral expression. This leads to a big obstacle on
extending thep-geominimal surface area. There are many
papers onp-affine andp-geominimal surface areas, see e.g.,
[16], [18], [25], [26], [27], [28], [29], [30], [32].

Based on the notion ofLp-mixed volume, Lutwak intro-
duced the concepts ofp-affine andp-geominimal surface
areas, respectively.

For p ≥ 1 andK ∈ Kn
o , thep-affine surface area,Ωp(K),

was defined in [10] by

n−
p

nΩp(K)
n+p

n = inf{nVp(K,Q∗)V (Q)
p

n : Q ∈ Sn
o }.

HereVp(K,Q∗) denotes theLp-mixed volume ofK andQ∗

(see Section II. A) andQ∗ denotes the polar of bodyQ (see
Section II. C).

For p ≥ 1, Lutwak in [10] defined thep-geominimal
surface area,Gp(K), of K ∈ Kn

o by

ω
p

n

n Gp(K) = inf{nVp(K,Q)V (Q∗)
p

n : Q ∈ Kn
o }. (1)

Further, Lutwak obtained the following inequalities for the
p-affine and thep-geominimal surface areas.
Lemma 1.1. (Theorem 4.8 in [10])LetK ∈ Kn

e andp ≥ 1.
Then

Ωp(K)n+p ≤ nn+pω2p
n V (K)n−p, (2)

with equality if and only ifK is an ellipsoid.
Lemma 1.2. (Theorem 3.12 in [10])LetK ∈ Kn

o andp ≥ 1.
Then

Gp(K)n ≤ nnωp
nV (K)n−p, (3)

with equality if and only if K is an ellipsoid.
Lemma 1.3. ([10] p. 250)Let K ∈ Fn

o and p ≥ 1. Then

Ωp(K)n+p ≤ (nωn)
pGp(K)n, (4)

with equality if and only if K is ofp-elliptic type.
A convex bodyK ∈ Kn

o is said to have aLp-curvature
function (see [10])fp(K, ·) : Sn−1 → R, if its Lp-surface
area measureSp(K, ·) is absolutely continuous with respect
to spherical Lebesgue measureS, and

dSp(K, ·)

dS
= fp(K, ·).

Let Fn
o ,F

n
c denote the set of all bodies inKn

o ,K
n
c respec-

tively, and both of them have a positive continuous curvature
function.

If K ∈ Sn
c , andp ≥ 1, then defineΛ◦

pK ∈ Fn
c , theLp-

polar curvature image ofK, by

fp(Λ
◦

pK, ·) =
ωn

V (K)
ρ(K, ·)n+p. (5)

Whenp = 1, we writeΛ◦

1K = ΛK, it is just the classical
curvature image (see [12], [14]); Whenp > 1, it was defined
by Yuan, Zhu, Lv and Leng (see [15], [30], [31]).
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The following theorems are our main results: Combining
Lp-polar curvature image withp-geominimal surface area,
we establish several Brunn-Minkowski type inequalities of
the p-geominimal surface area.
Theorem 1.4. If p ≥ 1, K, L ∈ Kn

c , andλ, µ ≥ 0 (not both
zero), then

Gp

(
Λ◦

p(λ ·K +p µ · L)
)
≥ λGp(Λ

◦

pK) + µGp(Λ
◦

pL), (6)

with equality for p = 1 if and only if K and L are
homothetic, and forp > 1 if and only ifK andL are dilates.

Here,λ ·K +p µ ·L denotes theLp-Firey combination of
K andL (see (10)).
Theorem 1.5. If 1 ≤ p ≤ n,K,L ∈ Kn

c , andλ, µ ≥ 0 (not
both zero), then

Gp

(
Λ◦

p(λ ◦K+̃pµ ◦ L)
)
≤ λGp(Λ

◦

pK) + µGp(Λ
◦

pL). (7)

The reverse inequality holds whenp > n. Equality holds in
every inequality whenp 6= n if and only ifK is a dilate of
L. Here,λ ◦K+̃pµ ◦ L denotes theLp-radial combination
of K andL (see (13)).
Theorem 1.6. If p ≥ 1, K, L ∈ Kn

c , andλ, µ ≥ 0 (not both
zero), then

Gp

(
Λ◦

p(λ∗K+̂−pµ∗L)
)
−1

≥ λGp(Λ
◦

pK)−1+µGp(Λ
◦

pL)
−1,
(8)

with equality if and only ifK andL are dilates.
Here, λ ∗ K+̂−pµ ∗ L denotes theLp-harmonic radial

combination ofK andL (see (16)).
Theorem 1.7. If n 6= p ≥ 1, K, L ∈ Fn

c , andλ, µ ≥ 0 (not
both zero), then

Gp

(
λK+̆pµL

)
≥ λGp(K) + µGp(L), (9)

with equality for p = 1 if and only if K and L are
homothetic, forp > 1 if and only ifK andL are dilates.

Here,λK+̆pµL denotes the BlaschkeLp-combination of
K andL (see (23)).

Please see the next section for above interrelated notations,
definitions and their background materials. The proofs of
Theorems 1.4-1.7 will be given in Section III of this paper.
Moreover, we derive the equivalence of several inequalities
in Section IV.

II. PRELIMINARIES

A. Lp-Firey Combination andLp-mixed Volume

If K ∈ Kn, then its support function,hK = h(K, ·) :
Rn → (−∞,∞), is defined by (see [22])h(K,x) = max{x·
y : y ∈ K}, x ∈ Rn, wherex ·y denotes the standard inner
product ofx andy.

For realp ≥ 1, K, L ∈ Kn
o , andα, β ≥ 0 (not both zero),

theLp-Firey combination,α ·K +p β ·L, is defined by (see
[2])

h(α ·K +p β · L, ·)p = αh(K, ·)p + βh(L, ·)p. (10)

For p ≥ 1, the Lp-mixed volume,Vp(K,L), of K,L ∈
Kn

o , was defined in [9] by

n

p
Vp(K,L) = lim

ε→0+

V (K +p ε · L)− V (L)

ε
.

It was shown in [9] that corresponding to eachK ∈ Kn
o there

is a positive Borel measureSp (K, ·) on Sn−1 such that

Vp(K,Q) =
1

n

∫

Sn−1

h(Q, u)pdSp(K,u)

for all Q ∈ Kn
o . It turns out that theLp-surface area measure

Sp(K, ·) on Sn−1 is absolutely continuous with respect to
S(K, ·), and has the Radon-Nikodym derivative

dSp(K, ·)

dS(K, ·)
= h1−p(K, ·).

TheLp-Brunn-Minkowski inequality was given by Lutwak
in [9]: If K,L ∈ Kn

o , λ, µ > 0, andp ≥ 1, then

V (λ ·K +p µ · L)p/n ≥ λV (K)p/n + µV (L)p/n, (11)

with equality for p = 1 if and only if K and L are
homothetic, and forp > 1 if and only if K andL are dilates.

Takingλ = µ = 1
2 andL = −K in (10), theLp-difference

body,∆pK, of K was given by (see [9])

∆pK =
1

2
·K +p

1

2
· (−K). (12)

B. Lp-radial Combination andLp-dual Mixed Volume

If K is a compact star-shaped (about the origin) set inRn,
then its radial function,ρK = ρ(K, ·) : Rn \ {0} → [0,∞),
is defined by (see [22])ρ(K,u) = max{λ ≥ 0 : λu ∈
K}, u ∈ Sn−1. If ρK is positive and continuous, thenK
will be called a star body (about the origin). Two star bodies
K andL are said to be dilated of one another ifρK(u)/ρL(u)
is independent ofu ∈ Sn−1.

If K,L ∈ Sn
o andλ, µ ≥ 0 (not both zero), then forp > 0,

the Lp-radial combination,λ ◦K+̃pµ ◦ L ∈ Sn
o , is defined

by (see [3])

ρ(λ ◦K+̃pµ ◦ L, ·)p = λρ(K, ·)p + µρ(L, ·)p. (13)

For p ≥ 1, andK,L ∈ Sn
o , the Lp-dual mixed volume,

Ṽp(K,L), was defined in [3] by

n

p
Ṽp(K,L) = lim

ε→0+

V (K+̃pε ◦ L)− V (K)

ε
.

The following integral representation for theLp-dual mixed
volume was obtained in [3]: Ifp ≥ 1, andK,L ∈ Sn

o , then

Ṽp(K,L) =
1

n

∫

Sn−1

ρ(K,u)n−pρ(L, u)pdS(u),

whereS is the spherical Lebesgue measure onSn−1 (i.e.,
the (n− 1)-dimensional Hausdorff measure).

We shall need the followingLp-dual Brunn-Minkowski
inequality (see [3]): IfK,L ∈ Sn

o and0 < p ≤ n, then

V (λ ◦K+̃pµ ◦ L)p/n ≤ λV (K)p/n + µV (L)p/n. (14)

The reverse inequality holds whenp > n. Equality holds
whenp 6= n if and only if K is a dilate ofL.

Taking λ = µ = 1
2 and L = −K in (13), theLp-radial

body,∆̃pK, of K is defined by

∆̃pK =
1

2
◦K+̃p

1

2
◦ (−K). (15)
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C. Lp-harmonic Radial Combination andLp-harmonic Mix-
ed Volume

For K,L ∈ Sn
o , p ≥ 1 andλ, µ ≥ 0 (not both zero), the

Lp-harmonic radial combination,λ ∗ K+̂−pµ ∗ L ∈ Sn
o , is

defined by(see [10])

ρ(λ ∗K+̂−pµ ∗ L, ·)−p = λρ(K, ·)−p + µρ(L, ·)−p. (16)

If K ∈ Kn
o , the polar set,K∗, of K is defined by

K∗ = {x ∈ Rn : x · y ≤ 1, for all y ∈ K}. (17)

From (17), we can easily have(K∗)∗ = K, and

hK∗ =
1

ρK
, ρK∗ =

1

hK
(18)

for K ∈ Kn
o .

By (10), (16) and (18), it follows that ifK,L ∈ Kn
o and

λ, µ ≥ 0 (not both zero), then

λ ∗K+̂−pµ ∗ L = (λ ·K∗ +p µ · L∗)∗.

Define the Santaló product ofK ∈ Kn
o by V (K)V (K∗).

The Blaschke-Santaló inequality (see [22]) is one of the
fundamental affine isoperimetric inequalities. It states that
if K ∈ Kn

c then

V (K)V (K∗) ≤ ω2
n,

with equality if and only ifK is an ellipsoid.
For p ≥ 1 and K,L ∈ Sn

o , the Lp-harmonic mixed
volume,Ṽ−p(K,L), is defined by (see [10])

−
n

p
Ṽ−p(K,L) = lim

ε→0+

V (K+̂−pε ∗ L)− V (K)

ε
.

From the polar coordinate formula, the following integral
representation was given in [10]: Ifp ≥ 1 andK,L ∈ Sn

o ,
then

Ṽ−p(K,L) =
1

n

∫

Sn−1

ρ(K,u)n+pρ(L, u)−pdS(u).

The Minkowski’s inequality for theLp-harmonic mixed
volume can be stated that (see [10]): Ifp ≥ 1 andK,L ∈ Sn

o ,
then

Ṽ−p(K,L)n ≥ V (K)n+pV (L)−p, (19)

with equality if and only ifK andL are dilates.
The Brunn-Minkowski inequality for theLp-harmonic

radial combination can be stated that (see [10]): Suppose
K,L ∈ Sn

o , p ≥ 1 andλ, µ > 0, then

V (λ∗K+̂−pµ∗L)
−p/n ≥ λV (K)−p/n+µV (L)−p/n, (20)

with equality if and only ifK andL are dilates each other.
Takingλ = µ = 1

2 andL = −K in (16), theLp-harmonic
radial body,∆̂pK, of K is defined by

∆̂pK =
1

2
∗K+̂−p

1

2
∗ (−K). (21)

D. Lp-affine Surface Area,Lp-curvature Image and Blasc-
hkeLp-combination

In [10], Lutwak defined theLp-affine surface area as
follows: ForK ∈ Fn

o andp ≥ 1, theLp-affine surface area,
Ωp(K), of K is defined by

Ωp(K) =

∫

Sn−1

fp(K,u)
n

n+pdS(u).

Further, Lutwak [10] showed the notion ofLp-curvature
image as follows: For anyK ∈ Fn

o andp ≥ 1, defineΛpK ∈
Sn
o , theLp-curvature image ofK, by

ρ(ΛpK, ·)n+p =
V (ΛpK)

ωn
fp(K, ·). (22)

Note that forp = 1, this definition is different from the
classical curvature image (see [14]).

The definition of BlaschkeLp-combination for convex
bodies may be stated that (see [9]) forK,L ∈ Kn

c , λ, µ ≥ 0
(not both zero) andn 6= p ≥ 1, the BlaschkeLp-
combination,λK+̆pµL ∈ Kn

c , of K andL is defined by

dSp(λK+̆pµL, ·) = λdSp(K, ·) + µdSp(L, ·). (23)

Taking λ = µ = 1
2 and L = −K in (23), the Blaschke

Lp-body,∇pK ∈ Kn
c , of K is defined by (see [9])

∇pK =
1

2
K+̆p

1

2
(−K). (24)

From (22) and (23), Wang and Leng [26] proved the follow-
ing Lp-Brunn-Minkowski inequality: IfK,L ∈ Fn

c , λ, µ > 0
andn 6= p ≥ 1, then

V (Λp(λK+̆pµL))
p/n ≥ λV (ΛpK)p/n + µV (ΛpL)

p/n,
(25)

with equality for p = 1 if and only if K and L are
homothetic, forp > 1 if and only if K andL are dilates.

III. PROOFS OFTHEOREMS

In this section, we prove Theorems 1.4-1.7. TakingL =
Q∗ in Proposition 3.4 of [31], we immediately give:
Lemma 3.1. If p ≥ 1 andK ∈ Kn

c , then for anyQ ∈ Kn
o ,

Vp(Λ
◦

pK,Q) = ωnṼ−p(K,Q∗)/V (K). (26)

Lemma 3.2. If p ≥ 1 andK ∈ Kn
c , then

Gp(Λ
◦

pK) = nω
n−p

n

n V (K)
p

n . (27)

Proof. By (1), (26) and (27), we have

Gp(Λ
◦

pK)

= ω
−

p

n

n inf{nVp(Λ
◦

pK,Q)V (Q∗)
p

n : Q ∈ Kn
o }

= ω
−

p

n

n inf{nωnṼ−p(K,Q∗)V (Q∗)
p

n /V (K) : Q ∈ Kn
o }

≥ nω
n−p

n

n inf{V (K)
n+p

n V (Q∗)−
p

nV (Q∗)
p

n /V (K)

: Q ∈ Kn
o }

= nω
n−p

n

n V (K)
p

n .

On the other hand, from (1) and (26), it follows that for
anyQ ∈ Kn

o

Gp(Λ
◦

pK) ≤ ω
−

p

n

n nVp(Λ
◦

pK,Q)V (Q∗)
p

n

= nω
n−p

n

n Ṽ−p(K,Q∗)V (Q∗)
p

n /V (K).
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SinceK ∈ Kn
c , and takingQ∗ = K, we obtian

Gp(Λ
◦

pK) ≤ nω
n−p

n

n V (K)
p

n .

Above all, we yield equality (27).
Proof of Theorem 1.4. From (27) and (11), it follows

that

Gp(Λ
◦

p(λ ·K +p µ · L))

= nω
n−p

n

n V (λ ·K +p µ · L))
p

n

≥ λnω
n−p

n

n V (K)
p

n + µnω
n−p

n

n V (L)
p

n

= λGp(Λ
◦

pK) + µGp(Λ
◦

pL).

From the equality condition of inequality (11), we know that
equality holds in (6) forp = 1 if and only if K andL are
homothetic, and forp > 1 if and only if K andL are dilates.

According to (6) and (12), we easily get that ifK ∈ Kn
c

andp ≥ 1, then

Gp(Λ
◦

p(∆pK)) = Gp(Λ
◦

pK).

Proof of Theorem 1.5. It follows from (27) and (14)
that for 1 ≤ p ≤ n,

Gp(Λ
◦

p(λ ◦K+̃pµ ◦ L))

= nω
n−p

n

n V (λ ◦K+̃pµ ◦ L))
p

n

≤ λnω
n−p

n

n V (K)
p

n + µnω
n−p

n

n V (L)
p

n

= λGp(Λ
◦

pK) + µGp(Λ
◦

pL).

The reverse inequality holds whenp > n. From the equality
condition of inequality (14), we know that equality holds in
(7) whenp 6= n if and only if K is a dilate ofL.

Together (7) with (15), we easily get that ifK ∈ Kn
c and

p 6= n, then

Gp(Λ
◦

p(∆̃pK)) = Gp(Λ
◦

pK).

Proof of Theorem 1.6. By (27) and (20), we have

Gp(Λ
◦

p(λ ∗K+̂pµ ∗ L))−1

=
(
nω

n−p

n

n

)
−1

V (λ ∗K+̂pµ ∗ L))−
p

n

≥ λ
(
nω

n−p

n

n

)
−1

V (K)−
p

n + µ
(
nω

n−p

n

n

)
−1

V (L)−
p

n

= λGp(Λ
◦

pK)−1 + µGp(Λ
◦

pL)
−1.

From the equality condition of inequality (20), we know that
equality holds in (8) if and only ifK andL are dilates.

An immediate consequence of Theorem 1.6 is:
Corollary 3.3. With the same assumptions of Theorem I, if
λ, µ > 0, then

4Gp(Λ
◦

p(λ ∗K+̂pµ ∗ L)) ≤
1

λ
Gp(Λ

◦

pK) +
1

µ
Gp(Λ

◦

pL), (28)

with equality if and only ifK andL are dilates each other.
Proof. Using Cauchy’s inequality and the arithmetic

mean-harmonic mean inequality in (8), we have

Gp(Λ
◦

p(λ ∗K+̂pµ ∗ L))

≤
1

λGp(Λ◦

pK)−1 + µGp(Λ◦

pL)
−1

≤
1

4λ
Gp(Λ

◦

pK) +
1

4λ
Gp(Λ

◦

pL).

This yields the desired inequality.
Combining (8) with (21), we easily get that ifK ∈ Kn

c

andp ≥ 1, then

Gp(Λ
◦

p(△̂pK)) = Gp(Λ
◦

pK).

Lemma 3.4. For n 6= p ≥ 1, the mappingΛp : Fn
c → Sn

c

is bijective.
Proof. For the casep = 1, sinceΛ = Λ◦

1 is the classical
curvature image andΛ : Sn

c → Fn
c is a bijection (see [14],

p.50),Λ◦

1 is a bijection. Forn 6= p > 1, Λ◦

p : Sn
c → Fn

c was
proved in Proposition 3.6 of [31] that it is also a bijection.
Thus forn 6= p ≥ 1, Λ◦

p : Sn
c → Fn

c is bijective. From the
definition of theLp-polar curvature imageΛ◦

p, we know that
it is the inverse of theLp-curvature imageΛp. This implies
thatΛp is a bijection on the class of origin-symmetric bodies
for n 6= p ≥ 1.

Proof of Theorem 1.7. It follows from (5) thatΛ◦

p = Λ−1
p

is the inverse image ofΛp. By Lemma 3.4, equation (27) and
inequality (25), we have

Gp(λK+̆pµL)

= Gp(Λ
◦

pΛp(λK+̆pµL)

= nω
n−p

n

n V (Λp(λK+̆pµL))
p

n

≥ λnω
n−p

n

n V (ΛpK)
p

n + µnω
n−p

n

n V (ΛpL)
p

n

= λGp(K) + µGp(L).

From the equality condition of (25), we know that equality
holds in (9) forp = 1 if and only if K andL are homothetic,
and forp > 1 if and only if K andL are dilates.

By (9) and (24), we easily get that ifK ∈ Fn
c andn 6=

p ≥ 1, then
Gp(∇pK) = Gp(K).

IV. T HE EQUIVALENCE OF SEVERAL INEQUALITIES

Define

Mn
p = {K ∈ Fn

o : there exists aQ ∈ Kn
o

with fp(K, ·) = h(Q, ·)−(n+p)},

and call it thep-elliptic type if K ∈ Mn
p (see [10]).

The following lemma is a direct consequence of Lemma
1.3.
Lemma 4.1. SupposeK ∈ Mn

p and p ≥ 1, then

Ωp(K)n+p = (nωn)
pGp(K)n. (29)

Let Fn
e denote the set of all bodies inKn

e which has a
positive continuous curvature function. Combining inequality
(2) with inequality (3), it follows from Lemma 4.1 that
Theorem 4.2. SupposeK ∈ Fn

e and p ≥ 1. If K ∈ Mn
p ,

then inequality (3) is equivalent to inequality (2).
Lutwak [10] proved the following Blaschke-Santaló type

inequality forp-affine surface area (Theorem 4.10 in [10]):
If p ≥ 1 andK ∈ Kn

e , then

Ωp(K)Ωp(K
∗) ≤ (nωn)

2, (30)

with equality if and only ifK is an ellipsoid.
From (29) and (30), we get the following Blaschke-Santaló

type inequality forp-geominimal surface area.
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Theorem 4.3. For p ≥ 1 andK ∈ Kn
e , if K ∈ Mn

p , then

Gp(K)Gp(K
∗) ≤ (nωn)

2, (31)

with equality if and only ifK is an ellipsoid.
If p ≥ 1 andK ∈ Kn

o , then there exists a unique body
TpK ∈ Kn

o such that(see see Proposition 3.3 in [10])

Gp(K) = nVp(K,TpK) and V (T ∗

pK) = ωn.

A body in Kn
o will be called p-selfminimal if TpK and K

are dilates of each other.
For K ∈ Kn

o , Lutwak [10] defined thep-geominimal area
ratio of K by (

Gp(K)n

nnV (K)n−p

)1/p

,

and proved that thep-geominimal area ratios are monotone
non-decreasing inp (see Theorem 6.3 in [10]): IfK ∈ Kn

o ,
and1 ≤ p ≤ q, then

(
Gp(K)n

nnV (K)n−p

)1/p

≤

(
Gq(K)n

nnV (K)n−q

)1/q

, (32)

with equality if and only ifK is p-selfminimal.
For K ∈ Kn

o , Lutwak [10] defined thep-affine area ratio
of K by (

Ωp(K)n+p

nn+pV (K)n−p

)1/p

,

and also obtained that thep-affine area ratios are monotone
non-decreasing inp (see Proposition 5.13 in [10]): IfK ∈
Fn

o , and1 ≤ p ≤ q, then
(

Ωp(K)n+p

nn+pV (K)n−p

)1/p

≤

(
Ωq(K)n+q

nn+qV (K)n−q

)1/q

, (33)

with equality if and only ifK∗ andΛpK are dilates .
The equation (29) implies that ifK ∈ Mn

p and p ≥ 1,
then

(
Ωp(K)n+p

nn+pV (K)n−p

)1/p

= ωn

(
Gp(K)n

nnV (K)n−p

)1/p

. (34)

It is clear from (34) that forK ∈ Mn
p inequality (32) and

inequality (33) are equivalent.
Lutwak proved the following inequalities (35) and (36) for

the p-affine area ratio ofK and thep-geominimal area ratio
of K. Obviously, they are also equivalent forK ∈ Mn

p .
If K ∈ Fn

o , andp ≥ 1, then (see Proposition 4.7 in [10])
(

Ωp(K)n+p

nn+pV (K)n−p

)1/p

≤ V (K)V (K∗), (35)

with equality if and only ifK∗ andΛpK are dilates .
If K ∈ Kn

o , andp ≥ 1, then (see Proposition 6.2 in [10])
(

Gp(K)n

nnV (K)n−p

)1/p

≤ V (K)V (K∗)/ωn, (36)

with equality if and only ifK is p-selfminimal.
We note that due to equality (29), Theorems 1.4-1.7 have

obvious analogs for thep-affine surface area.
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