Some Inequalities for p-Geominimal Surface Area and Related Results

Tongyi Ma*, Yibin Feng

Abstract—The concepts of p-affine and p-geominimal surface areas were introduced by Lutwak. In this paper, we establish some Brunn-Minkowski type inequalities of p-geominimal surface area combining L_p-polar curvature image with various combinations of convex bodies. Moreover, we discuss the equivalence of several inequalities, and also obtain some results similar to p-geominimal surface area for the p-affine surface area.

Index Terms—convex bodies, p-affine surface area, p-geominimal surface area, Brunn-Minkowski type inequality.

I. INTRODUCTION

Let K^n denote the set of convex bodies (compact, convex subsets with nonempty interiors) in n-dimensional Euclidean space \mathbb{R}^n. For the set of convex bodies containing the origin in their interiors, the set of convex bodies whose centroids lie at the origin and the set of origin-symmetric convex bodies in \mathbb{R}^n, we write K^n_0, K^n_e and K^n_o respectively. S^{n-1}_o and S^n_o respectively denote the set of star bodies (about the origin) and the set of origin-symmetric star bodies in \mathbb{R}^n. Let S^{n-1} denote the unit sphere in \mathbb{R}^n, and let $V(K)$ denote the n-dimensional volume of a body K. For the standard unit ball B_n in \mathbb{R}^n, we use $\omega_n = V(B_n)$ to denote its volume.

The study of affine surface area goes back to Blaschke [1] and is about one hundred years old. It was generalized to the p-affine surface area by Lutwak in [10]. Since then, considerable attention has been paid to the p-affine surface area, which is now at the core of the rapidly developing L_p-Brunn-Minkowski theory (see articles [4], [5], [6], [8], [11], [12], [13], [14], [17], [19], [24], [28] or books [7], [22]). In particular, affine isoperimetric inequalities related to the p-affine surface area can be found in [10], [29].

Another fundamental concept in convex geometry is geominimal surface area, introduced by Petty [19] more than three decades ago. As Petty explained in [19], the geominimal surface area connects the affine geometry, relative geometry and Minkowski geometry. Hence it receives a lot of attention (see [19], [20], [23]). The geominimal surface area was extended to p-geominimal surface area by Lutwak in his seminal paper [10]. The p-geominimal surface area shares many properties with the p-affine surface area. For instance, both are affine invariant and have the same degree of homogeneity. However, the p-geominimal surface area is different from the p-affine surface area. For instance, unlike the p-affine surface area, p-geominimal surface area has no nice integral expression. This leads to a big obstacle on extending the p-geominimal surface area. There are many papers on p-affine and p-geominimal surface areas, see e.g., [16], [18], [25], [26], [27], [28], [29], [30], [32].

Based on the notion of L_p-mixed volume, Lutwak introduced the concepts of p-affine and p-geominimal surface areas, respectively.

For $p \geq 1$ and $K \in K^n_o$, the p-affine surface area, $\Omega_p(K)$, was defined in [10] by

$$n \omega_n^p \Omega_p(K) := \inf \{ n V_p(K, Q^n) V(Q^n) : Q \in S^n_o \}.$$

Here $V_p(K, Q^n)$ denotes the L_p-mixed volume of K and Q^n (see Section II. A) and Q^n denotes the polar of body Q (see Section II. C).

For $p \geq 1$, Lutwak in [10] defined the p-geominimal surface area, $G_p(K)$, of $K \in K^n_o$ by

$$\omega_n^p G_p(K) = \inf \{ n V_p(K, Q^n) V(Q^n) : Q \in S^n_o \}. \quad (1)$$

Further, Lutwak obtained the following inequalities for the p-affine and the p-geominimal surface areas.

Lemma 1.1. (Theorem 4.8 in [10]) Let $K \in K^n_o$ and $p \geq 1$. Then

$$\Omega_p(K)^{n+p} \leq n^{n+p} \omega_n^{n+p} V(K)^{n-p}, \quad (2)$$

with equality if and only if K is an ellipsoid.

Lemma 1.2. (Theorem 3.12 in [10]) Let $K \in K^n_o$ and $p \geq 1$. Then

$$G_p(K)^n \leq n^n \omega_n^n V(K)^{n-p}, \quad (3)$$

with equality if and only if K is an ellipsoid.

Lemma 1.3. (p. 250) Let $K \in F^n_o$ and $p \geq 1$. Then

$$\Omega_p(K)^{n+p} \leq (\omega_n)^p G_p(K)^n, \quad (4)$$

with equality if and only if K is of p-elliptic type.

A convex body $K \in K^n_0$ is said to have a L_p-curvature function (see [10]) $f_p(K, \cdot) : S^{n-1} \rightarrow \mathbb{R}$, if its L_p-surface area measure $S_p(K, \cdot)$ is absolutely continuous with respect to spherical Lebesgue measure S, and

$$\frac{dS_p(K, \cdot)}{dS} = f_p(K, \cdot).$$

Let F^n_o, F^n_c denote the set of all bodies in K^n_o, K^n_c respectively, and both of them have a positive continuous curvature function.

If $K \in S^n_o$, and $p \geq 1$, then define $\Lambda_p^o K \in F^n_o$, the L_p-polar curvature image of K, by

$$f_p(\Lambda_p^o K, \cdot) = \frac{\omega_n}{V(K)} p(K, \cdot)^{n+p}. \quad (5)$$

When $p = 1$, we write $\Lambda_1^o K = K$, it is just the classical curvature image (see [12], [14]). When $p > 1$, it was defined by Yuan, Zhu, Lv and Leng (see [15], [30], [31]).
The following theorems are our main results: Combining L_p-polar curvature image with p-geominimal surface area, we establish several Brunn-Minkowski type inequalities of the p-geominimal surface area.

Theorem 1.4. If $p \geq 1, K, L \in \mathbb{K}^n_p$, and $\lambda, \mu \geq 0$ (not both zero), then

$$G_p(\Lambda^\alpha_p(\lambda \cdot K + \mu \cdot L)) \geq \lambda G_p(\Lambda^\alpha_p(K)) + \mu G_p(\Lambda^\alpha_p(L)),$$

(6)

with equality for $p = 1$ if and only if K and L are homothetic, and for $p > 1$ if and only if K and L are dilates.

Here, $\lambda \cdot K + \mu \cdot L$ denotes the L_p-Firey combination of K and L (see (10)).

Theorem 1.5. If $1 \leq p \leq n, K, L \in \mathbb{K}^n_p$, and $\lambda, \mu \geq 0$ (not both zero), then

$$G_p(\Lambda^\alpha_p(\lambda \circ K + \mu \circ L)) \leq \lambda G_p(\Lambda^\alpha_p(K)) + \mu G_p(\Lambda^\alpha_p(L)).$$

(7)

The reverse inequality holds when $p > n$. Equality holds in every inequality when $p \neq n$ if and only if K is a dilate of L. Here, $\lambda \circ K + \mu \circ L$ denotes the L_p-radial combination of K and L (see (13)).

Theorem 1.6. If $p \geq 1, K, L \in \mathbb{K}^n_p$, and $\lambda, \mu \geq 0$ (not both zero), then

$$G_p(\Lambda^\alpha_p(\lambda \cdot K + \mu \cdot L)) \geq \lambda G_p(\lambda \cdot L) + \mu G_p(\mu \cdot L),$$

(8)

with equality if and only if K and L are dilates.

Here, $\lambda \cdot K + \mu \cdot L$ denotes the L_p-harmonic radial combination of K and L (see (16)).

Theorem 1.7. If $n \neq p \geq 1, K, L \in \mathbb{F}^n_p$, and $\lambda, \mu \geq 0$ (not both zero), then

$$G_p(\lambda \cdot K \geq \lambda \cdot L) + G_p(\mu \cdot L) \geq \lambda G_p(\lambda \cdot K) + \mu G_p(\mu \cdot L),$$

(9)

with equality for $p = 1$ if and only if K and L are homothetic, for $p > 1$ if and only if K and L are dilates.

Here, $\lambda \cdot K \geq \lambda \cdot L$ denotes the Blaschke L_p-combination of K and L (see (23)).

Please see the next section for above interrelated notations, definitions and their background materials. The proofs of Theorems 1.4-1.7 will be given in Section III of this paper. Moreover, we derive the equivalence of several inequalities in Section IV.

II. PRELIMINARIES

A. L_p-Firey Combination and L_p-mixed Volume

If $K \in \mathbb{K}^n_p$, then its support function, $h_K = h(K, \cdot) : \mathbb{R}^n \to (-\infty, \infty)$, is defined by (see [22]) $h(K, x) = \max \{x \cdot y : y \in K\}$, $x \in \mathbb{R}^n$, where $x \cdot y$ denotes the standard inner product of x and y.

For real $p \geq 1, K, L \in \mathbb{K}^n_p$, and $\alpha, \beta \geq 0$ (not both zero), the L_p-Firey combination, $\alpha \cdot K + \beta \cdot L$, is defined by (see [2])

$$h(\alpha \cdot K + \beta \cdot L, \cdot)^p = ah(K, \cdot)^p + bh(L, \cdot)^p.$$

(10)

For $p \geq 1$, the L_p-mixed volume, $V_p(K, L)$, of $K, L \in \mathbb{K}^n_p$, was defined in [9] by

$$n_\cdot V_p(K, L) = \lim_{\varepsilon \to 0^+} \frac{V(K + \varepsilon \cdot L) - V(L)}{\varepsilon}.$$

It was shown in [9] that corresponding to each $K \in \mathbb{K}^n_p$ there is a positive Borel measure $S_p(K, \cdot)$ on S^{n-1} such that

$$V_p(K, Q) = \frac{1}{n} \int_{S^{n-1}} h(Q, u)^p dS_p(K, u)$$

for all $Q \in \mathbb{K}^n_p$. It turns out that the L_p-surface area measure $S_p(K, \cdot)$ on S^{n-1} is absolutely continuous with respect to $S(K, \cdot)$, and has the Radon-Nikodym derivative

$$\frac{dS_p(K, \cdot)}{dS(K, \cdot)} = h^{1-p}(K, \cdot).$$

The L_p-Brunn-Minkowski inequality was given by Lutwak in [9]: If $K, L \in \mathbb{K}^n_p$, $\lambda, \mu > 0$, and $p \geq 1$, then

$$V(\lambda \cdot K + \mu \cdot L, \cdot)^{\gamma^p} \geq \lambda V(K, \cdot)^{\gamma^p} + \mu V(L, \cdot)^{\gamma^p},$$

(11)

with equality for $p = 1$ if and only if K and L are homothetic, and for $p > 1$ if and only if K and L are dilates.

Taking $\lambda = \mu = \frac{1}{2}$ and $L = -K$ in (10), the L_p-difference body, $\Delta_p K$, of K was given by (see [9])

$$\Delta_p K = \frac{1}{2} \cdot K + \frac{1}{2} \cdot (-K).$$

(12)

B. L_p-radial Combination and L_p-mixed Volume

If K is a compact star-shaped (about the origin) set in \mathbb{R}^n, then its radial function, $\rho_K = (\rho_K, \cdot) : \mathbb{R}^n \to [0, \infty)$, is defined by (see [22]) $\rho_K(u) = \max \{\lambda \geq 0 : \lambda u \in K\}$, $u \in S^{n-1}$. If ρ_K is positive and continuous, then K will be called a star body (about the origin). Two star bodies K and L are said to be dilated of one another if $\rho_K(u)/\rho_L(u)$ is independent of $u \in S^{n-1}$.

If $K, L \in S^{n-1}_o$ and $\lambda, \mu \geq 0$ (not both zero), then for $p > 0$, the L_p-radial combination, $\lambda \cdot K + \mu \cdot L \in S^{n-1}_o$, is defined by (see [3])

$$\rho(\lambda \cdot K + \mu \cdot L, \cdot)^p = \lambda \rho(K, \cdot)^p + \mu \rho(L, \cdot)^p.$$

(13)

For $p \geq 1$, and $K, L \in S^{n-1}_o$, the L_p-dual mixed volume, $V_p(K, L)$, was defined in [3] by

$$\frac{n}{p} V_p(K, L) = \lim_{\varepsilon \to 0^+} \frac{V(K + \varepsilon \cdot L) - V(L)}{\varepsilon}.$$

The following integral representation for the L_p-dual mixed volume was obtained in [3]: If $p \geq 1$, and $K, L \in S^{n-1}_o$, then

$$\frac{n}{p} V_p(K, L) = \frac{1}{n} \int_{S^{n-1}} \rho_K(u)^{n-p} \rho_L(u)^p dS(u),$$

where S is the spherical Lebesgue measure on S^{n-1} (i.e., the $(n-1)$-dimensional Hausdorff measure).

We shall need the following L_p-dual Brunn-Minkowski inequality (see [3]): If $K, L \in S^{n-1}_o$ and $0 < p \leq n$, then

$$V(\lambda \cdot K + \mu \cdot L, \cdot)^{\gamma^p} \geq \lambda V(K, \cdot)^{\gamma^p} + \mu V(L, \cdot)^{\gamma^p}.$$

(14)

The reverse inequality holds when $p \geq n$. Equality holds when $p \neq n$ and only if K is a dilate of L.

Taking $\lambda = \mu = \frac{1}{2}$ and $L = -K$ in (13), the L_p-radial body, $\Delta_p K$, of K is defined by

$$\Delta_p K = \frac{1}{2} \cdot K + \frac{1}{2} \cdot (-K).$$

(15)

(Advance online publication: 15 February 2016)
C. L_p-harmonic Radial Combination and L_p-harmonic Mixed Volume

For $K, L \in S^n_0$, $p \geq 1$ and $\lambda, \mu \geq 0$ (not both zero), the L_p-harmonic radial combination, $\lambda * K + \mu * L \in S^n_0$, is defined by (see [10])

$$\rho(\lambda * K + \mu * L, \nu) = \lambda \rho(K, \nu)^p + \mu \rho(L, \nu)^p. \quad (16)$$

If $K \in K^n_0$, the polar set, K^*, of K is defined by

$$K^* = \{ x \in \mathbb{R}^n : x \cdot y \leq 1, \text{ for all } y \in K \}. \quad (17)$$

From (17), we can easily have $(K^*)^* = K$, and

$$h_{K^*} = \frac{1}{\rho_K}, \quad \rho_{K^*} = \frac{1}{h_K}, \quad (18)$$

for $K \in K^n_0$.

By (10), (16) and (18), it follows that if $K, L \in K^n_0$ and $\lambda, \mu \geq 0$ (not both zero), then

$$\lambda * K + \mu * L = (\lambda \cdot K^* + \mu \cdot L^*)^*.$$

Define the Santaló product of $K \in K^n_0$ by $V(K)V(K^*)$. The Blaschke-Santaló inequality (see [22]) is one of the fundamental affine isoperimetric inequalities. It states that if $K \in K^n_0$ then

$$V(K)V(K^*) \leq \omega^n_n,$$

with equality if and only if K is an ellipsoid.

For $p \geq 1$ and $K, L \in S^n_0$, the L_p-harmonic mixed volume, $V_p(K, L)$, is defined by (see [10])

$$\frac{n}{p} \bar{V}_p(K, L) = \lim_{\varepsilon \to 0^+} \frac{V(K + \varepsilon * L) - V(K)}{\varepsilon}.$$

From the polar coordinate formula, the following integral representation was given in [10]: If $p \geq 1$ and $K, L \in S^n_0$, then

$$\bar{V}_p(K, L) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n+p} \rho(L, u)^{-p} dS(u).$$

The Minkowski’s inequality for the L_p-harmonic mixed volume can be stated that (see [10]): If $p \geq 1$ and $K, L \in S^n_0$, then

$$\bar{V}_p(K, L)^n \geq V(K)^{n+p}V(L)^{-p}, \quad (19)$$

with equality if and only if K and L are dilates.

The Brunn-Minkowski inequality for the L_p-harmonic radial combination can be stated that (see [10]): Suppose $K, L \in S^n_0$, $p \geq 1$ and $\lambda, \mu > 0$, then

$$V(\lambda * K + \mu * L)^{-p/n} \geq \lambda V(K)^{-p/n} + \mu V(L)^{-p/n}, \quad (20)$$

with equality if and only if K and L are dilates each other.

Taking $\lambda = \mu = \frac{1}{2}$ and $L = -K$ in (16), the L_p-harmonic radial body, $\hat{\Delta}_p K$, of K is defined by

$$\hat{\Delta}_p K = \frac{1}{2} * K + \frac{1}{2} * (-K). \quad (21)$$

D. L_p-affine Surface Area, L_p-curvature Image and Blaschke L_p-combination

In [10], Lutwak defined the L_p-affine surface area as follows: For $K \in F^n_0$ and $p \geq 1$, the L_p-affine surface area, $\Omega_p(K)$, of K is defined by

$$\Omega_p(K) = \int_{S^{n-1}} f_p(K, u) \frac{dS(u)}{\omega_n}. \quad (22)$$

Further, Lutwak [10] showed the notion of L_p-curvature image as follows: For any $K \in F^n_0$ and $p \geq 1$, define $\lambda_p K \in S^n_0$, the L_p-curvature image of K, by

$$\rho(\lambda_p K, \nu)^p = \frac{V(\lambda_p K)}{\omega_n} f_p(K, \nu). \quad (23)$$

Note that for $p = 1$, this definition is different from the classical curvature image (see [14]).

The definition of Blaschke L_p-combination for convex bodies may be stated that (see [9]) for $K, L \in K^n_0$, $\lambda, \mu \geq 0$ (not both zero) and $n \neq p \geq 1$, the Blaschke L_p-combination, $\lambda K + \mu L \in K^n_0$, of K and L is defined by

$$\frac{dS_p(\lambda K + \mu L, \nu)}{\omega_n} = \lambda dS_p(K, \nu) + \mu dS_p(L, \nu). \quad (24)$$

From (22) and (23), Wang and Leng [26] proved the following L_p-Brunn-Minkowski inequality: If $K, L \in F^n_0$, $\lambda, \mu > 0$ and $n \neq p \geq 1$, then

$$V(\lambda_p(\lambda K + \mu L)) \geq \lambda V(\lambda_p K) + \mu V(\lambda_p L), \quad (25)$$

with equality for $p = 1$ if and only if K and L are homothetic, for $p > 1$ if and only if K and L are dilates.

III. PROOFS OF THEOREMS

In this section, we prove Theorems 1.4.1-1.7. Taking $L = Q^*$ in Proposition 3.4 of [31], we immediately give:

Lemma 3.1. If $p \geq 1$ and $K \in K^n_0$, then for any $Q \in K^n_0$,

$$V_p(\lambda^n Q, K) = \omega_n \bar{V}_p(K, Q^*)/V(K). \quad (26)$$

Lemma 3.2. If $p \geq 1$ and $K \in K^n_0$, then

$$G_p(\lambda^n Q, K) = \omega_n \bar{V}_p(K, Q^*)/V(K). \quad (27)$$

Proof. By (1), (26) and (27), we have

$$G_p(\lambda^n Q, K) = \omega_n \bar{V}_p(K, Q^*)/V(K). \quad (28)$$

From (1) and (26), it follows that for any $Q \in K^n_0$

$$G_p(\lambda^n Q, K) \leq \omega_n \bar{V}_p(K, Q^*)/V(K). \quad (29)$$

(Advance online publication: 15 February 2016)
Since $K \in \mathcal{K}_c^n$, and taking $Q^* = K$, we obtain
\[
G_p(\Lambda_p^c K) \leq n \omega_n \frac{\alpha_p}{\lambda} V(K)^\frac{p}{n}.
\]
Above all, we yield equality (27).

Proof of Theorem 1.4. From (27) and (11), it follows that
\[
G_p(\Lambda_p^c K(\lambda \cdot K + \mu \cdot L)) = n \omega_n \frac{\alpha_p}{\lambda} V((\lambda \cdot K + \mu \cdot L))^\frac{p}{n},
\]
\[
\geq \lambda n \omega_n \frac{\alpha_p}{\lambda} V(K)^\frac{p}{n} + \mu n \omega_n \frac{\alpha_p}{\lambda} V(L)^\frac{p}{n} = \lambda G_p(\Lambda_p^c K) + \mu G_p(\Lambda_p^c L).
\]
From the equality condition of inequality (11), we know that equality holds in (6) for $p = 1$ if and only if K and L are homothetic, and for $p > 1$ if and only if K and L are dilates.

According to (6) and (12), we easily get that if $K \in \mathcal{K}_c^n$ and $p \geq 1$, then
\[
G_p(\Lambda_p^c (\Lambda_p^c p K)) = G_p(\Lambda_p^c K).
\]

Proof of Theorem 1.5. It follows from (27) and (14) that for $1 \leq p \leq n$,
\[
G_p(\Lambda_p^c(\lambda \circ K + \mu L) = n \omega_n \frac{\alpha_p}{\lambda} V(\lambda \circ K + \mu L))^\frac{p}{n},
\]
\[
\leq \lambda n \omega_n \frac{\alpha_p}{\lambda} V(K)^\frac{p}{n} + \mu n \omega_n \frac{\alpha_p}{\lambda} V(L)^\frac{p}{n} = \lambda G_p(\Lambda_p^c K) + \mu G_p(\Lambda_p^c L).
\]
The reverse inequality holds when $p > n$. From the equality condition of inequality (14), we know that equality holds in (7) when $p \neq n$ if and only if K is a dilate of L.

Together (7) with (15), we easily get that if $K \in \mathcal{K}_c^n$ and $p \neq n$, then
\[
G_p(\Lambda_p^c(\Lambda_p^c K)) = G_p(\Lambda_p^c K).
\]

Proof of Theorem 1.6. By (27) and (20), we have
\[
G_p(\Lambda_p^c(\lambda \cdot K + \mu \cdot L))^{-1} = (n \omega_n \frac{\alpha_p}{\lambda} V(\lambda \cdot K + \mu \cdot L))^\frac{1}{p},
\]
\[
\geq \lambda(n \omega_n \frac{\alpha_p}{\lambda} V(K))^{-\frac{1}{p}} + \mu(n \omega_n \frac{\alpha_p}{\lambda} V(L))^{-\frac{1}{p}} = \lambda G_p(\Lambda_p^c K)^{-1} + \mu G_p(\Lambda_p^c L)^{-1}.
\]
From the equality condition of inequality (20), we know that equality holds in (8) if and only if K and L are dilates.

An immediate consequence of Theorem 1.6 is:

Corollary 3.3. With the same assumptions of Theorem 1, if $\lambda, \mu > 0$, then
\[
4G_p(\Lambda_p^c(\lambda \cdot K + \mu \cdot L)) \leq \frac{1}{\lambda} G_p(\Lambda_p^c K) + \frac{1}{\mu} G_p(\Lambda_p^c L),
\]
with equality if and only if K and L are dilates each other.

Proof. Using Cauchy’s inequality and the arithmetic-mean-harmonic-mean inequality in (8), we have
\[
G_p(\Lambda_p^c(\lambda \cdot K + \mu \cdot L)) \leq \frac{1}{\lambda} G_p(\Lambda_p^c K) + \frac{1}{\mu} G_p(\Lambda_p^c L),
\]
\[
\leq \frac{1}{4\lambda} G_p(\Lambda_p^c K) + \frac{1}{4\mu} G_p(\Lambda_p^c L).
\]
This yields the desired inequality.

Combining (8) with (21), we easily get that if $K \in \mathcal{K}_c^n$ and $p \geq 1$, then
\[
G_p(\Lambda_p^c(\Lambda_p^c p K)) = G_p(\Lambda_p^c K).
\]

Lemma 3.4. For $n \neq p \geq 1$, the mapping $\Lambda_p : F_c^n \to S_c^n$ is bijective.

Proof. For the case $p = 1$, since Λ_n is the classical curvature image and $\Lambda : \mathcal{S}_c^n \to F_c^n$ is a bijection (see [14], p.50), Λ_p is a bijection. For $n \neq p > 1$, $\Lambda_p : S_c^n \to F_c^n$ was proved in Proposition 3.6 of [31] that it is also a bijection. Thus Λ_p is a bijection on the class of origin-symmetric bodies for $n \neq p \geq 1$.

Proof of Theorem 1.7. It follows from (5) that $\Lambda_p^c = \Lambda_p^{-1}$ is the inverse image of Λ_p. By Lemma 3.4, equation (27) and inequality (25), we have
\[
G_p(\lambda K + \mu L) = G_p(\Lambda_p^c(\lambda K + \mu L)^c),
\]
\[
= n \omega_n \frac{\alpha_p}{\lambda} V(\lambda K + \mu L)^\frac{p}{n},
\]
\[
\geq \lambda n \omega_n \frac{\alpha_p}{\lambda} V(K)^\frac{p}{n} + \mu n \omega_n \frac{\alpha_p}{\lambda} V(L)^\frac{p}{n} = \lambda G_p(\Lambda_p^c K) + \mu G_p(\Lambda_p^c L).
\]
From the equality condition of (25), we know that equality holds in (9) for $p = 1$ if and only if K and L are homothetic, and for $p > 1$ if and only if K and L are dilates.

By (9) and (24), we easily get that if $K \in F_c^n$ and $n \neq p \geq 1$, then
\[
G_p(\nabla_p K) = G_p(K).
\]

IV. THE EQUIVALENCE OF SEVERAL INEQUALITIES

Define
\[
\mathcal{M}_p^n = \{ K \in F_c^n : there exists a Q \in \mathcal{K}_c^n \text{ with } f_p(K, \cdot) = h(Q, \cdot)^{(n+p)} \},
\]
and call it the p-elliptic type if $K \in \mathcal{M}_p^n$ (see [10]).

The following lemma is a direct consequence of Lemma 1.3.

Lemma 4.1. Suppose K \in \mathcal{M}_p^n and \ p \geq 1, then
\[
\Omega_p(K)^n + p = (n \omega_n)^p G_p(K)^n.
\]

Let \mathcal{F}_c^n denote the set of all bodies in \mathcal{K}_c^n which has a positive continuous curvature function. Combining inequality (2) with inequality (3), it follows from Lemma 4.1 that

Theorem 4.2. Suppose K \in \mathcal{F}_c^n and \ p \geq 1. If K \in \mathcal{M}_p^n, then inequality (3) is equivalent to inequality (2).

Lutwak [10] proved the following Blaschke-Santaló type inequality for p-affine surface area (Theorem 4.10 in [10]):

If $p \geq 1$ and $K \in \mathcal{K}_c^n$, then
\[
\Omega_p(K) \Omega_p(K^*) \leq (n \omega_n)^2,
\]
with equality if and only if K is an ellipsoid.

From (29) and (30), we get the following Blaschke-Santaló type inequality for p-geominimal surface area.
Theorem 4.3. For $p \geq 1$ and $K \in \mathcal{K}_n^0$, if $K \in \mathcal{M}_p^n$, then
\[G_p(K)G_p(K^*) \leq \left(\frac{n}{n-1}\right)^2, \tag{31} \]
with equality if and only if K is an ellipsoid.
If $p \geq 1$ and $K \in \mathcal{K}_n^0$, then there exists a unique body $T_pK \in \mathcal{K}_n^0$ such that (see Proposition 3.3 in [10])
\[G_p(T_pK) = nV_p(K) \text{ and } V(T_pK) = \omega_n. \]
A body in \mathcal{K}_n^0 will be called p-selfminimal if T_pK and K are dilates of each other.
For $K \in \mathcal{K}_n^0$, Lutwak [10] defined the p-geominimal area ratio of K by
\[\left(\frac{G_p(K^n)}{n^nV(K)^{n-p}}\right)^{1/p}, \]
and proved that the p-geominimal area ratios are monotone non-decreasing in p (see Theorem 6.3 in [10]): If $K \in \mathcal{K}_n^0$, and $1 \leq p \leq q$, then
\[\left(\frac{G_p(K^n)}{n^nV(K)^{n-p}}\right)^{1/p} \leq \left(\frac{G_q(K^n)}{n^nV(K)^{n-q}}\right)^{1/q}, \tag{32} \]
with equality if and only if K is p-selfminimal.
For $K \in \mathcal{K}_n^0$, Lutwak [10] defined the p-affine area ratio of K by
\[\left(\frac{\Omega_p(K^{n+p})}{n^{n+p}V(K)^{n-p}}\right)^{1/p}, \]
and also obtained that the p-affine area ratios are monotone non-decreasing in p (see Proposition 5.13 in [10]): If $K \in \mathcal{F}_n^0$, and $1 \leq p \leq q$, then
\[\left(\frac{\Omega_p(K^{n+p})}{n^{n+p}V(K)^{n-p}}\right)^{1/p} \leq \left(\frac{\Omega_q(K^{n+q})}{n^{n+q}V(K)^{n-q}}\right)^{1/q}, \tag{33} \]
with equality if and only if K and Δ_pK are dilates.
The equation (29) implies that if $K \in \mathcal{M}_p^n$ and $p \geq 1$, then
\[\left(\frac{\Omega_p(K^{n+p})}{n^{n+p}V(K)^{n-p}}\right)^{1/p} = \omega_n \left(\frac{G_p(K^n)}{n^nV(K)^{n-p}}\right)^{1/p}. \tag{34} \]
It is clear from (34) that for $K \in \mathcal{M}_p^n$ inequality (32) and inequality (33) are equivalent.
Lutwak proved the following inequalities (35) and (36) for the p-affine area ratio of K and the p-geominimal area ratio of K. Obviously, they are also equivalent for $K \in \mathcal{M}_p^n$.
If $K \in \mathcal{F}_n^0$ and $p \geq 1$, then (see Proposition 4.7 in [10])
\[\left(\frac{\Omega_p(K^{n+p})}{n^{n+p}V(K)^{n-p}}\right)^{1/p} \leq V(K)V(K^*), \tag{35} \]
with equality if and only if K^* and Δ_pK are dilates.
If $K \in \mathcal{K}_n^0$ and $p \geq 1$, then (see Proposition 6.2 in [10])
\[\left(\frac{G_p(K^n)}{n^nV(K)^{n-p}}\right)^{1/p} \leq V(K)V(K^*)/\omega_n, \tag{36} \]
with equality if and only if K is p-selfminimal.
We note that due to equality (29), Theorems 1.4-1.7 have obvious analogs for the p-affine surface area.

ACKNOWLEDGMENT

The referee of this paper proposed many very valuable comments and suggestions to improve the accuracy and readability of the original manuscript. We would like to express our most sincere thanks to the anonymous referee.

REFERENCES

[1] W. Blaschke, Vorlesungen über Differentialgeometrie II, Affine Differen-
354, Nov. 2007.