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Some Inequalities fop-Geominimal Surface Area
and Related Results

Tongyi Ma*, Yibin Feng

Abstract—The concepts ofp-affine and p-geominimal surface nice integral expression. This leads to a big obstacle on
areas were introduced by Lutwak. In this paper, we estab- extending thep-geominimal surface area. There are many
i seme Brunn Minkoskd e ineaultesofy geominl - papers on-afine ancy-geominima suface areas, sce 9.

- i
ous combinations of convex bodies. Moreover, we discuss the[16]’ (18], [25], [26]’_[27]’ [28]'_ [29], [30], [32]. .
equivalence of several inequalities, and also obtain some results Based on the notion of,-mixed volume, Lutwak intro-
similar to p-geominimal surface area for thep-affine surface duced the concepts gi-affine andp-geominimal surface
area. areas, respectively.

Index Terms—convex bodies, p-affine surface area, p- Forp > 1 andK < K7, thep-affine surface ared),(K),
geominimal surface area, Brunn-Minkowski type inequality. was defined in [10] by

nEQ,(K)5 = inf{nV,(K,Q*)V(Q)* : Q € S"}.
HereV, (K, Q*) denotes the.,-mixed volume ofK” andQ*

ET K" denote the set of convex bodies (compact, Cosee Section I1. A) and)* denotes the polar of bodg (see
vex subsets with nonempty interiors) indimensional gaction |1 Q).

Euclid_egn _spacé_t”_. For_ the set of convex bodies cpntaining For p > 1, Lutwak in [10] defined thep-geominimal
the origin in their |nter!ors, the set of convex pod|es Whosﬁjrface areals,(K), of K € K" by
centroids lie at the origin and the set of origin-symmetric
convex bodies irR"_, we write 7, K" and 7, respe;tively. w: Gp(K) = inf{nV, (K, Q)V(Q*)% Qek'y. )
S andS; respectively denote the set of star bodies (about . o N
the origin) and the set of origin-symmetric star bodieRih Fu_rther, Lutwak obta|_n_ed the following inequalities for the
Let S"—! denote the unit sphere R, and letV (k) denote P-affine and thep-geominimal surface areas.
then-dimensional volume of a bod(. For the standard unit Lemma 1.1. (Theorem 4.8 in [10] et K € K7 andp > 1.
ball B,, in R", we usew,, = V(B,,) to denote its volume. Then

The study of affine surface area goes back to Blaschke Qp(K)"P < n™PwlPV(K)" P, 2)
[1] and is about one hundred years old. It was generalize - e L
to the p-affine surface area by Lutwak in [10]. Since thenv,v(ii[h equality if and only 'fK_IS an ellipsoid.
considerable attention has been paid to jheffine surface Lemma 1.2. (Theorem 3.121in [10])et K € kg andp > 1.
area, which is now at the core of the rapidly developlng hen N " e
Brunn-Minkowski theory(see articles [4], [5], [6], [8], [11], Gp(K)" < nwpVI(E)", (3)
[12], [13], [14], [17], [19], [24], [28] or books [7], [22]). wjth equality if and only if K is an ellipsoid.

In particular, affine isoperimetric inequalities related to theayma 1.3 (1101 b. 250)Let K c 77 andp > 1. Then
p-affine surface area can be found in [10], [29]. 3 (0T p. ) ° b=t

Another fundamental concept in convex geometry is geo- Qp(K)" TP < (nw, )P Gp(K)", 4)
minimal surface area, introduced by Petty [19] more than
three decades ago. As Petty explained in [19], the ge\g
minimal surface area connects the affine geometry, relati . 1 .
geometry and Minkowski geometry. Hence it receives a | ynction (see [10Df,(K,-) : S — R, if its L,-surface

of attention (see [19], [20], [23]). The geominimal surfacérea measuré, (K, -) is absolutely continuous with respect

area was extended f@geominimal surface area by Lutwakto spherical Lebesgue measwfeand

in his seminal paper [10]. The-geominimal surface area dS,(K,-) %

shares many properties with theaffine surface area. For ds Fo(K, ).

instance, both are affine invariant and have the same degregq¢ Fr, Fr denote the set of all bodies 167, K respec-

of homogeneity. However, the-geominimal surface area iStjely. and both of them have a positive continuous curvature
different from thep-affine surface area. For instance, unlikg,nction.

the p-affine surface areg-geominimal surface area has no s - S, andp > 1, then defineASK € F7, the L,-

lar curvature image oK', by

I. INTRODUCTION

ith equality if and only if K is op-elliptic type.
convex bodyK € K7 is said to have &.,-curvature
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The following theorems are our main results: Combininy was shown in [9] that corresponding to edghe K there
L,-polar curvature image witp-geominimal surface area,is a positive Borel measurs, (K, -) on S*~! such that
we establish several Brunn-Minkowski type inequalities of

the p-geominimal surface area.

Theorem 1.4. If p > 1, K, L € K2, and A, 1 > 0 (not both
zero), then

Go(ASA- K 4y - L)) > AGp(ASK) + pGy(AL), (6)

with equality forp = 1 if and only if K and L are

homothetic, and fop > 1 if and only if K and L are dilates.
Here,\- K +, 1 - L denotes thd.,-Firey combination of

K and L (see (10)).

Theorem 1.5. If 1 <p <n,K,L e K}, and\,p >0 (not

both zero), then

Gp(Ap(Ao K+ppo L)) < AGH(ALK) + pGr(AyL). (7)

The reverse inequality holds wher> n. Equality holds in
every inequality whem # n if and only if K is a dilate of
L. Here, Ao K+, o L denotes thd.,-radial combination
of K and L (see (13)).

Theorem 1.6. If p > 1, K, L € K2, and A, 1 > 0 (not both
zero), then

Gp(Ag K FppuxL)) ™" = AG(AGK) ~ +uGy(A7L) Y,
(8)
with equality if and only ifK and L are dilates.
Here, A\ * K+_,u * L denotes theL,-harmonic radial
combination of K and L (see (16)).
Theorem 1.7. Ifn#p>1,K,L € F, and A\, u > 0 (not
both zero), then

Cp(AKTpuL) > MGy (K) + uGy(L).  (9)

with equality forp = 1 if and only if K and L are
homothetic, forp > 1 if and only if K and L are dilates.

Here, \K +,uL denotes the Blaschkg,-combination of
K and L (see (23)).

Please see the next section for above interrelated notation
definitions and their background materials. The proofs %(K’ L)
Theorems 1.4-1.7 will be given in Section Il of this paper.
Moreover, we derive the equivalence of several inequalities

in Section V.

Il. PRELIMINARIES
A. L,-Firey Combination and_,-mixed Volume

If K € K", then its support functionhx = h(K,-) :
R™ — (—00, 00), is defined by (see [22)( K, ) = max{z-

_1

Vi(K.Q) =+

/ h(Q, u)dS, (K, u)
gn—1

for all @ € K7 . It turns out that the.,-surface area measure
S,(K,-) on S"~1 is absolutely continuous with respect to
S(K,-), and has the Radon-Nikodym derivative

dSP(Ka')
dS(K, )

The L,-Brunn-Minkowski inequality was given by Lutwak
in[9]: If K,Le K, \,u >0, andp > 1, then

=h'""P(K,).

V(A K A4y - LP/™ > V()P 4+ pv(L)P", (1)

with equality for p 1 if and only if K and L are
homothetic, and fop > 1 if and only if K and L are dilates.

TakingA = p = 3 and L = —K in (10), theL,-difference
body, A, K, of K was given by (see [9])

1
2

ALK = % K4yt (“K). (12)

B. L,-radial Combination andL,-dual Mixed Volume

If K is a compact star-shaped (about the origin) s&’in
then its radial functionpx = p(K,-) : R" \ {0} — [0, 00),
is defined by (see [22]p(K,u) = max{\X > 0 : Au €
K}, ue S" L If px is positive and continuous, theli
will be called a star body (about the origin). Two star bodies
K and[L are said to be dilated of one anothepif (u)/pr(u)
is independent of, € S~ 1.

If K,L e S} and), u > 0 (not both zero), then fas > 0,
the L,-radial combination)\ o K +,u o L € 87, is defined
by (see [3])

p()‘OKIpNOLa')p:Ap(Kv')p+Np(La'>p' (13)

4:OI’p > 1,and K,L € S, the L,-dual mixed volume,
, was defined in [3] by

E‘Z)(K,L) — lim V(K+peoL) —V(K).
p

e—0t £

The following integral representation for thg,-dual mixed

volume was obtained in [3]: Ip > 1, and K, L € S, then

V(K. L) =

n/Sn,lp(Kvu)nfpp(L,u)pdS(u),

where S is the spherical Lebesgue measure &t (i.e.,

y: ye K}, = €R", wherez-y denotes the standard innetthe (n — 1)-dimensional Hausdorff measure).

product ofz andy.

We shall need the followingd.,-dual Brunn-Minkowski

For realp > 1, K, L € K, anda, 8 > 0 (not both zero), inequality (see [3]): IfK, L € 5 and0 < p < n, then

Eg]e)Lp—Flrey combinationp - K 4, 5 - L, is defined by (see V(o Kjrpu . L)p/” < )\V(K)p/” + MV(L)p/"-

h(a-K +p B L, )P = ah(K, )P + Bh(L, )P

(14)

The reverse inequality holds when > n. Equality holds
whenp # n if and only if K is a dilate ofL.

TakingA = = 3 and L = —K in (13), the L,-radial
body, A, K, of K is defined by

(10)

For p > 1, the L,-mixed volume,V, (K, L), of K,L €
K, was defined in [9] by

(15)

~ 1 ~ 1
i ALK =-oK+,-0(-K).
e—0t € 2 2
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C. L,-harmonic Radial Combination ankl,-harmonic Mix-
ed Volume

For K,L € 8}, p > 1 and A, > 0 (not both zero), the
L,-harmonic radial combinatior K#—_pu x L €S, is
defined by(see [10])

p(Nx K+_ppux L) 7P = Xp(K, )P + pp(L,-)"P. (16)
If K € K7, the polar setk*, of K is defined by
K'={zxeR":z-y<1lforall ye K}. a7)

From (17), we can easily hayd(*)* = K, and

K K
for K € K7).
By (10), (16) and (18), it follows that i<, L € K}’ and

A, i > 0 (not both zero), then
Ax K+ _ppux L=\ K*+,pu-L*)*

Define the Santélproduct of K € K by V(K)V (K™*).

The Blaschke-Santélinequality (see [22]) is one of the
fundamental affine isoperimetric inequalities. It states that 2

if K €K7 then

V(K)V(K*) <w?

n’

with equality if and only if K is an ellipsoid.
Forp > 1 and K,L € &7, the L,-harmonic mixed
volume,V_, (K, L), is defined by (see [10])

~ K¥ ,exL) - V(K
NG (K L) = tim LEFpex D) Z V)
P 0+ 5

D. L,-affine Surface Areal.,-curvature Image and Blasc-
hke L,-combination

In [10], Lutwak defined theL,-affine surface area as
follows: For K € F}' andp > 1, the L,-affine surface area,
Q,(K), of K is defined by

[ s,
S'n.fl

Further, Lutwak [10] showed the notion df,-curvature
image as follows: For anil € F.' andp > 1, defineA, K €
S, the L,-curvature image of{, by
V(ALK
TR p ),
Note that forp = 1, this definition is different from the
classical curvature image (see [14]).

The definition of Blaschkel,-combination for convex
bodies may be stated that (see [9]) #6r L € X', A\, > 0
(not both zero) andn # p > 1, the BlaschkeL,-
combination \K +,uL € K7, of K and L is defined by

Taking A = 1 = 1 and L = —K in (23), the Blaschke
L,-body,V,K € K7, of K is defined by (see [9])

1 .1
- K Z(—

0, (K)

p(A K, )P = (22)

V,K = (24)

From (22) and (23), Wang and Leng [26] proved the follow-
ing L,-Brunn-Minkowski inequality: IfK, L € F*, A\, p > 0
andn # p > 1, then

V(A MK FpuL))P/™ > AV (A, K)P/™ 4 uV (A, L)P/™,
(25)
with equality forp = 1 if and only if K and L are
homothetic, forp > 1 if and only if K and L are dilates.

K).

I1l. PROOFS OFTHEOREMS
In this section, we prove Theorems 1.4-1.7. Taking=

From the polar coordinate formula, the following integraf”™ in Proposition 3.4 of [31], we immediately give:

representation was given in [10]: i > 1 and K, L € S7,
then
~ 1

V., (K,L)=—

oL S ),

The Minkowski’'s inequality for theL,-harmonic mixed
volume can be stated that (see [10])pl$ 1 and K, L € S,
then

Vo (K, L)" > V()" PV(L) 7, (19)
with equality if and only if X and L are dilates.

The Brunn-Minkowski inequality for theL,-harmonic

radial combination can be stated that (see [10]): Suppose=

K,Le S p>1and\, >0, then

VK4 pux L)~/ > AV (K) 7P/ 4 uV (L) 7P/, (20)

with equality if and only if K and L are dilates each other.

TakingA = p = 1 and L = —K in (16), theL,-harmonic
radial body,A,K, of K is defined by

~ 1 ~ 1

; (~K).

(21)

Lemma 3.1. If p > 1 and K € K7, then for anyQ € K7,

Vo(ASK, Q) = w, Vo (K, Q) /V(K). (26)
Lemma 3.2. If p> 1 and K € K7, then
Gp(ASK) = nw,™ V(K)E. 27)

Proof. By (1), (26) and (27), we have
Gp(ASK)

. QeKl}
L inf{nw, Vo (K, Q)V(Q*) R /V(K) : Q € K1}

_P
n
Wn

>
1Q €Ky}
nw:’;LpV(K)%.

On the other hand, from (1) and (26), it follows that for
anyQ € K7

Gy(AYK)

wa "V (ASK, Q)V(Q™)F
TV (K.QOV(Q) R VI(K),

nwn"

<
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Since K € K7, and takingQ* = K, we obtian This yields the desired inequality.
. n—p » Combining (8) with (21), we easily get that K € K
Gp(ApK> <nwp," V(K)=. andp > 1, then
Above all, we yield equality (27). _ G,,(A;(APK)) = Gp(ASK).
Proof of Theorem 1.4. From (27) and (11), it follows
that Lemma 3.4. For n # p > 1, the mappingA,, : 7' — S7
. is bijective.
Gp(ApA- Kty - 1)) Proof. For the case = 1, sinceA = A¢ is the classical

nwr:Tp VN K 4y p- L))% curvature image and : S} — F is a bijection (see [14],
n—p 2 n—p 2 p.50),AS is a bijection. Fom # p > 1, A? : S — FJ' was
Anwn™ V(K)™ + pnwn™ V(L) proved in Proposition 3.6 of [31] that it is also a Cbijection.

= AGp(A K) + pGp(AjL). Thus forn # p > 1, A : S* — F7 is bijective. From the
aEjefinition of theL,-polar curvature imagd , we know that
it is the inverse of the.,-curvature image\,. This implies
that A, is a bijection on the class of origin-symmetric bodies

Vv

From the equality condition of inequality (11), we know th
equality holds in (6) forp = 1 if and only if K and L are
homothetic, and fop > 1 if and only if K and L are dilates.

According to (6) and (12), we easily get thathf € 7 forn#p>1. . 1
andp > 1, then . Propf of The_orem 1.7. It follows from (5) that/_xp =A,
is the inverse image of,,. By Lemma 3.4, equation (27) and
Gp(A(ApK)) = Gp(AK). inequality (25), we have
Proof of Theorem 1.5. It follows from (27) and (14) G,,(AKﬁu—puL)
<p< ° v
that forl < p <mn, = Gp(ASA,(A\K Tpul)
Gy fhel) - = T V(KT L)
= nwn,” V(Ao K+ppo L)Z‘ > Awn™ V(ALK + pnwn™ V(A,L)*

Anwn™ V(K)% + pnwn™ V(L)%

= AG(AK) + pGp(ApL). From the equality condition of (25), we know that equality
The reverse inequality holds wher> n. From the equality holds in (9) forp = 1 if and only if K’ and L are homothetic,
condition of inequality (14), we know that equality holds irend forp > 1 if and only if K" and L are dilates.

IN

— MG, (K) + nGy(L).

(7) whenp # n if and only if K is a dilate ofL. By (9) and (24), we easily get that K € 7 andn #
Together (7) with (15), we easily get thatif € £? and p > 1, then
p #n, then GI)(VPK) = GP(K)'

G,(AS(A,K)) = G,(A°K).
a ”( oK) a b ) IV. THE EQUIVALENCE OF SEVERAL INEQUALITIES
Proof of Theorem 1.6. By (27) and (20), we have

Gp(Ag(A = KFppu+ L))~

Define

My ={K € F : there exists & € Ky
n-p . _q ~ _p
(nwn™ ) V(Ax Ktppus L))" with £,(K, ) = h(Q, ) =),

ey -1 -z T -z
Alnwn™) V)™ Fp(newon™ ) VIL)™™  and call it thep-elliptic type if i € M™ (see [10]).
)\Gp(A;jK)‘1 + uG,,(A;L)‘l. The following lemma is a direct consequence of Lemma

Y

From the equality condition of inequality (20), we know thaiL'g' N
equality holds in (8) if and only i and L are dilates. ~ -€mma 4.1. Supposei’ € M andp > 1, then

An immediate consequence of Theorem 1.6 is: Q (K)"P = (nw, PGy (K" (29)
Corollary 3.3. With the same assumptions of Theorem |, if
A, > 0, then Let 7' denote the set of all bodies ik which has a

positive continuous curvature function. Combining inequality
. R 1 5 1 5 (2) with inequality (3), it follows from Lemma 4.1 that
4G (A, (A x Ktppx L)) < S Gp(ALK) + ;G,,(APL), (28) Theorem 4.2. Supposek’ € Fo andp > 1. If K € M,
then inequality (3) is equivalent to inequality (2).
) . . , . Lutwak [10] proved the following Blaschke-Sanialype
Proof.  Using Cauchy’s inequality and the arlthmetlqnequality for p-affine surface area (Theorem 4.10 in [10]):

with equality if and only ifK and L are dilates each other.

mean-harmonic mean inequality in (8), we have If p>1andK € K7, then
GO ) Q0 (K)2(K") < (on)?, (30
= AGp(ApK) =+ pGy (A L)1 with equality if and only if K is an ellipsoid.
1 . 1 . From (29) and (30), we get the following Blaschke-Sahtal
< EGP(ApIQ + JGP(ApL)~ type inequality forp-geominimal surface area.

(Advance online publication: 15 February 2016)
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