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Abstract—In this paper, we are concerned with seeking exact
solutions expressed in the Jacobi elliptic functions for fractional
partial differential equations, where the fractional derivative
is defined in the sense of the modified Riemann-Liouville
derivative. Based on a fractional complex transformation,
certain fractional partial differential equation is converted into
another ordinary differential equation of integer order, and
the exact solutions of the latter are assumed to be expressed
in a polynomial in the Jacobi elliptic functions including the
Jacobi sine function, the Jacobi cosine function, and the Jacobi
elliptic function of the third kind. The degree of the polynomial
can be determined by the homogeneous balance principle.
As for applications, we apply this method to seek Jacobi
elliptic function solutions for the space-time fractional KP-
BBM equation and the (2+1)-dimensional space-time fractional
Nizhnik-Novikov-Veselov System.

Index Terms—Fractional differential equation; Jacobi elliptic
function; Exact solution; Fractional complex transformation

I. INTRODUCTION

It is well known that nonlinear partial differential equa-
tions are widely used to describe many complex phenomena
in various fields including either the scientific work or
engineering fields. During the past few decades, searching for
explicit solutions of nonlinear partial differential equations
by using various methods has been the main goal for many
researchers, and many powerful methods for constructing
exact solutions of nonlinear partial differential equations have
been established and developed. Some of these methods
include the homogeneous balance method [1,2], the tanh-
method [3-5], the inverse scattering transform [6], the gen-
eralized Riccati equation method [7-9], the (G’/G) method
[10-13], the Jacobi elliptic function method [14-15] and so
on.

Fractional differential equations involving fractional
derivatives are generalizations of classical differential equa-
tions of integer order, and are widely used as models to
express many important physical phenomena such as fluid
mechanics, plasma physics, optical fibers, biology, solid state
physics, chemical kinematics, chemical physics and so on
(See [16,17] for example). In order to illustrate better the
described physical phenomena, one need to obtain their
analytical solutions. So the research on how to extend those
methods suitable for solving differential equations of integer
order to be suitable for solving fractional differential equa-
tions has been paid an increasing attention. Recently, under
the definition of the modified Riemann-Liouville derivative
[18-21], many authors have extended some efficient methods
from differential equations of integer order to fractional
differential equations. For example, in [22], Zhang et al.
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generalized the traditional Riccati sub-equation method to
be suitable for seeking exact solutions of partial differential
equations in fractional case, and proposed a new fractional
Riccati sub-equation method, where the sub-equation used
is the fractional Riccati equation Dα

ξ ϕ = σ + ϕ2, and
Dα denotes the modified Riemann-Liouville derivative of
α− order. This method got improved in [23-26]. In [27-
29], the authors extended the (G’/G) method to be suitable
for solving fractional partial differential equations, while
in [30], the simplest equation method is extended to seek
exact solutions of fractional partial differential equations. The
most important point in these methods lies that based on a
certain fractional complex transformation or a traveling wave
transformation, certain fractional differential equation can be
converted into another differential equation in different form,
which can be solved based on an auxiliary equation named
sub-equation. With these methods, a variety of fractional
differential equations arising in mathematical physics have
been investigated, and analytical solutions in various forms
for these equations were found. These obtained solutions
have contributed much in understanding better the physical
effects that the fractional differential equations demonstrate.

In this paper, we extend the traditional Jacobi ellip-
tic function method to seek exact solutions for fractional
partial differential equations in the sense of the modified
Riemann-Liouville derivative. First by a fractional complex
transformation, certain fractional partial differential equation
is converted into another ordinary differential equation of
integer order. Then the exact solutions of the converted
ordinary differential equation are assumed to be expressed
in a polynomial in the Jacobi elliptic functions, where the
coefficients are unknown. By use of the concept of the sub-
equation methods and the properties of the Jacobi elliptic
functions, the coefficients can be determined with the aid of
mathematical software.

For the definition and theoretic investigations of the
modified Riemann-Liouville fractional derivative, we refer
the reader to [31-34]. Some important properties for the
modified Riemann-Liouville derivative are listed as follows
[18,22-30]:

Dα
t t

r =
Γ(1 + r)

Γ(1 + r − α)
tr−α. (1)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t). (2)

Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t). (3)

Dα
t f [g(t)] = Dα

g f [g(t)](g
′(t))α. (4)
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The rest of this paper is organized as follows. In Section
2, we give the description of the Jacobi elliptic function
method for solving fractional partial differential equations.
Then in Section 3 and Section 4, we apply this method to
seek exact solutions for the space-time fractional KP-BBM
equation and the (2+1)-dimensional space-time fractional
Nizhnik-Novikov-Veselov System respectively. In Section 5,
we present some concluding comments.

II. DESCRIPTION OF THE JACOBI ELLIPTIC FUNCTION
METHOD FOR SOLVING FRACTIONAL PARTIAL

DIFFERENTIAL EQUATIONS
In this section, we give the description of the Jacobi elliptic

function method for solving fractional partial differential
equations.

Suppose that a fractional partial differential equation, say
in the independent variables t, x1, x2, ..., xn, is given by

P (u1, ...uk, D
α
t u1, ..., D

α
t uk,

∂u1

∂x1
, ...,

∂uk

∂x1
, Dβ

x2
u1, ...D

β
x2
u1,

...,
∂u1

∂xn−1
, ...,

∂uk

∂xn−1
, Dγ

xn
u1, ..., D

γ
xn
uk, ...) = 0, (5)

where ui = ui(t, x1, x2, ..., xn), i = 1, ..., k are unknown
functions, P is a polynomial in ui and their various partial
derivatives including fractional derivatives in the sense of the
modified Riemann-Liouville derivative.

Step 1. For Eq. (5), suppose that ui(t, x1, x2, ..., xn) =
Ui(ξ), and a fractional complex transformation for ξ as
follows:

ξ =
ctα

Γ(1 + α)
+k1x1+

k2x
β
2

Γ(1 + α)
+...kn−1xn−1+

knx
γ
n

Γ(1 + γ)
+ξ0,

(6)
where c, k1, ..., kn−1, kn, ξ0 are all nonzero constants.
Based on the transformation above, for the terms in (5)
containing fractional derivative, such as Dα

t u1, using (1) and
(3) one can obtain that

Dα
t u1 = Dα

t U1(ξ) = U ′
1(ξ)D

α
t ξ = cU ′

1(ξ).

For the terms in (5) containing derivative of integer order,
such as ∂u1

∂x1
, one has

∂u1

∂x1
=

∂U1

∂ξ
ξ
′

x1
= k1U

′
1(ξ).

So by this transformation for ξ, Eq. (5) can be turned into
the following ordinary differential equation of integer order
with respect to the variable ξ:

P̃ (U1, ..., Uk, U ′
1, ..., U

′
k, U ′′

1 , ..., U
′′
k , ...) = 0. (7)

Step 2. Suppose that the solution of (7) can be expressed
by a polynomial in the Jacobi elliptic functions as follows:

Uj(ξ) = a
(0)
j +

mj∑
n+p+q=1

a
(n,p,q)
j snn(ξ)cnp(ξ)dnq(ξ),

j = 1, 2, ..., k, (8)

where n, p, q are nonnegative integers with 1 ≤ n +

p + q ≤ mj , a
(0)
j , a

(n,p,q)
j , j = 1, 2, ..., k are constants

to be determined later, the positive integer mj can be de-
termined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing

in (7), sn(ξ), cn(ξ), dn(ξ) denote the Jacobi elliptic sine
function, Jacobi elliptic cosine function, and the Jacobi
elliptic function of the third kind respectively.

For the Jacobi elliptic functions, one has

sn′(ξ) = cn(ξ)dn(ξ), cn′(ξ) = −sn(ξ)dn(ξ),

dn′(ξ) = −m2sn(ξ)cn(ξ), (9)

where m is the modulus, and

cs(ξ) =
cn(ξ)

sn(ξ)
, sd(ξ) =

sn(ξ)

dn(ξ)
, dc(ξ) =

dn(ξ)

cn(ξ)
,

sc(ξ) =
1

cs(ξ)
, ds(ξ) =

1

sd(ξ)
,

cd(ξ) =
1

dc(ξ)
, nd(ξ) =

1

dn(ξ)
, ns(ξ) =

1

sn(ξ)
, nc(ξ) =

1

cn(ξ)
.

cn2(ξ) = −sn2(ξ) + 1, dn2(ξ) = −m2sn2(ξ) + 1,

dn2(ξ) = m2cn2(ξ) + 1−m2, ns2(ξ) = cs2(ξ) + 1,

ns2(ξ) = ds2(ξ) +m2, ds2(ξ) = cs2(ξ) + 1−m2,

nc2(ξ) = sc2(ξ) + 1, dc2(ξ) = (1−m2)nc2(ξ) +m2,

dc2(ξ) = (1−m2)sc2(ξ)+1, cd2(ξ) =
m2 − 1

m2 nd2(ξ)+
1

m2 ,

cd2(ξ) = (m2 − 1)sd2(ξ) + 1, nd2(ξ) = m2sd2(ξ) + 1.

Step 3. Substituting (8) into (7) and using (9), the
left-hand side of (7) is converted into another polynomial in
snn(ξ)cnp(ξ)dnq(ξ). Collecting all coefficients of the same
power and Equating them to zero, yields a set of algebraic
equations for a(0)j , a

(n,p,q)
j , j = 1, 2, ..., k.

Step 4. Solving the equations system in Step 3, we can
construct a variety of Jacobi elliptic function solutions for
Eq. (5).

III. APPLICATION OF THE JACOBI ELLIPTIC FUNCTION
METHOD TO THE SPACE-TIME FRACTIONAL KP-BBM

EQUATION

In this section, we apply the Jacobi elliptic function
method to seek exact solutions for the space-time fractional
KP-BBM equation, which is denoted as follows:

Dβ
x [D

α
t u+Dβ

xu−aDβ
xu

2−bDα
t (D

2β
x u)]+eD2γ

y u = 0, (10)

where 0 < α, β, γ ≤ 1, a, b, e are constants, u = u(x, y, t)
is unknown, and the concerned fractional derivative is defined
by the modified Riemann-Liouville derivative. When α =
β = γ = 1, Eq. (10) becomes the following known KP-
BBM equation of integer order:

(ut + ux − a(u2)x − buxxt)x + euyy = 0.

In order to apply the Jacobi elliptic function method to
solve Eq. (10), we suppose u(x, y, t) = U(ξ), where ξ =

c
Γ(1 + α)

tα+ k
Γ(1 + β)

xβ + k
Γ(1 + γ)

yγ + ξ0, c, k, ξ0 are
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all constants with k, c ̸= 0. Then by use of (1) and (3) one
can deduce that Dα

t ξ = c, Dβ
xξ = Dγ

y ξ = k, and
Dα

t u = Dα
t U(ξ) = U ′(ξ)Dα

t ξ = cU ′(ξ),
Dβ

xu = Dβ
xU(ξ) = U ′(ξ)Dβ

xξ = kU ′(ξ),
Dγ

yu = Dγ
yU(ξ) = U ′(ξ)Dγ

y ξ = kU ′(ξ).
(11)

Then Eq. (10) can be turned into the following form with
respect to the new variable ξ:

ckU ′′(ξ) + k2U ′′(ξ)− 2ak2[(U ′(ξ))2 + U(ξ)U ′′(ξ)]

−bck3U (4)(ξ) + ek2U ′′(ξ) = 0. (12)

Suppose that the solution of Eq. (12) can be expressed by
a polynomial in the Jacobi elliptic functions as follows:

U(ξ) = a(0) +

m∑
n+p+q=1

a(n,p,q)snn(ξ)cnp(ξ)dnq(ξ). (13)

By balancing the order of U (4)(ξ) and U(ξ)U ′′(ξ) in (12)
one can obtain m = 2. So

U(ξ) = a(0) + a(1,0,0)sn(ξ) + a(0,1,0)cn(ξ) + a(0,0,1)dn(ξ)

+a(2,0,0)sn2(ξ) + a(1,1,0)sn(ξ)cn(ξ) + a(0,1,1)cn(ξ)dn(ξ)

+a(0,2,0)cn2(ξ)+a(0,0,2)dn2(ξ)+a(1,0,1)sn(ξ)dn(ξ). (14)

Substituting (14) into (12), using (9) and collecting all
the terms with the same power of snn(ξ)cnp(ξ)dnq(ξ)
together, equating each coefficient to zero, yields a set of
algebraic equations. Solving these equations with the aid of
mathematical software such as Maple, yields the following
values, where i denotes the unit of the imaginary numbers.

Case 1:

a(0) =
k + bck2m2 + 4bck2 + ek + c

2ak
, a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −3m2kcb

a
,

a(1,1,0) = ±3cbkm2

a
i, a(0,1,1) = 0, a(1,0,1) = 0,

a(0,2,0) = a(0,0,2) = 0.

Case 2:

a(0) =
k + 4bck2m2 + 4bck2 + ek + c

2ak
, a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −6m2kcb

a
,

a(1,1,0) = 0, a(0,1,1) = 0, a(1,0,1) = 0,

a(0,2,0) = a(0,0,2) = 0.

Case 3:

a(0) =
k + 4bck2m2 + bck2 + ek + c

2ak
, a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −3m2kcb

a
,

a(1,1,0) = 0, a(0,1,1) = 0, a(1,0,1) = ±3cbkm

a
i,

a(0,2,0) = a(0,0,2) = 0.

Case 4:

a(0) =
k + bck2m2 + bck2 + ek + c

2ak
, a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −3m2kcb

a
,

a(1,1,0) = 0, a(0,1,1) = ±3mkcb

a
, a(1,0,1) = 0,

a(0,2,0) = a(0,0,2) = 0.

Case 5:

a(0) =
k + bck2m2 + bck2 + ek + c

2ak
, a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −3m2kcb

2a
,

a(1,1,0) = ±3cbkm2

2a
i, a(0,1,1) = ±3mkcb

2a
,

a(1,0,1) = ±3cbkm

2a
i, a(0,2,0) = a(0,0,2) = 0.

Substituting the results above into Eq. (14) we can
obtain the following exact solutions in the forms
of the Jacobi elliptic functions for Eq. (10), where
ξ = c

Γ(1 + α)
tα + k

Γ(1 + β)
xβ + k

Γ(1 + γ)
yγ + ξ0.

Family 1:

u1(x, y, t) =
k + bck2m2 + 4bck2 + ek + c

2ak

−3m2kcb

a
sn2(ξ)± 3cbkm2i

a
sn(ξ)cn(ξ). (15)

Family 2:

u2(x, y, t) =
k + 4bck2m2 + 4bck2 + ek + c

2ak
− 6m2kcb

a
sn2(ξ).

(16)
Family 3:

u3(x, y, t) =
k + 4bck2m2 + bck2 + ek + c

2ak

−3m2kcb

a
sn2(ξ)± 3cbkm

a
isn(ξ)dn(ξ). (17)

Family 4:

u4(x, y, t) =
k + bck2m2 + bck2 + ek + c

2ak

−3m2kcb

a
sn2(ξ)± 3mkcb

a
cn(ξ)dn(ξ). (18)

Family 5:

u5(x, y, t) =
k + bck2m2 + bck2 + ek + c

2ak

−3m2kcb

2a
sn2(ξ)± 3cbkm2i

2a
sn(ξ)cn(ξ)

±3mkcb

2a
cn(ξ)dn(ξ)± 3cbkmi

2a
sn(ξ)dn(ξ). (19)

Remark 1. We note that the Jacobi elliptic function solu-
tions established in (15)-(19) for the space-time fractional
KP-BBM equation (10) are new exact solutions so far in the
literature.
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IV. APPLICATION OF THE JACOBI ELLIPTIC FUNCTION
METHOD TO THE (2+1)-DIMENSIONAL SPACE-TIME

FRACTIONAL NIZHNIK-NOVIKOV-VESELOV SYSTEM

Consider the (2+1)-dimensional space-time fractional
Nizhnik-Novikov-Veselov System [28]

Dα
t u+ aD3β

x u+ bD3γ
y u+ cDβ

xu+ dDγ
yu

= 3aDβ
x(uv) + 3bDγ

y (uw),
Dβ

xu = Dγ
yv,

Dγ
yu = Dβ

xw,

, 0 < α, β, γ ≤ 1.

(20)
In [28], the author solved Eqs. (20) by use of the (G’/G)
method, and obtained some exact solutions including hy-
perbolic function solutions, trigonometric function solution-
s, and rational function functions for it. Now we apply
the Jacobi function method method to solve it. Suppose
u(x, y, t) = U(ξ), v(x, y, t) = V (ξ), w(x, y, t) = W (ξ),
where ξ = m

Γ(1 + α)
tα + k

Γ(1 + β)
xβ + l

Γ(1 + γ)
yγ + ξ0,

m, k, l, ξ0 are all constants with k, l, m ̸= 0. By use of
(1) and (3), we obtain

Dα
t u = Dα

t U(ξ) = U ′(ξ)Dα
t ξ = mU ′(ξ),

Dβ
xu = Dβ

xU(ξ) = U ′(ξ)Dβ
xξ = kU ′(ξ),

Dγ
yu = Dγ

yU(ξ) = U ′(ξ)Dγ
y ξ = lU ′(ξ),

and then Eqs. (17) can be turned into the following forms
mU ′ + ak3U ′′′ + bl3U ′′′ + ckU ′ + dlU ′

= 3ak(UV )′ + 3bl(UW )′,
kU ′ = lV ′,
lU ′ = kW ′.

(21)

Suppose that the solution of Eqs. (21) can be expressed
by a polynomial in the Jacobi elliptic functions as follows:

U(ξ) = a(0) +
m1∑

n+p+q=1
a(n,p,q)snn(ξ)cnp(ξ)dnq(ξ),

V (ξ) = b(0) +
m2∑

n+p+q=1
b(n,p,q)snn(ξ)cnp(ξ)dnq(ξ),

W (ξ) = c(0) +
m3∑

n+p+q=1
c(n,p,q)snn(ξ)cnp(ξ)dnq(ξ).

(22)
Balancing the order of U ′′′ and (UV )′, the order of U ′ and
V ′, the order of U ′ and W ′ in (21), we can obtain m1 =
m2 = m3 = 2. So we have

U(ξ) = a(0) + a(1,0,0)sn(ξ) + a(0,1,0)cn(ξ) + a(0,0,1)dn(ξ)

+a(2,0,0)sn2(ξ) + a(1,1,0)sn(ξ)cn(ξ)

+a(0,1,1)cn(ξ)dn(ξ) + a(1,0,1)sn(ξ)dn(ξ)

+a(0,2,0)cn2(ξ) + a(0,0,2)dn2(ξ),

V (ξ) = b(0) + b(1,0,0)sn(ξ) + b(0,1,0)cn(ξ) + b(0,0,1)dn(ξ)

+b(2,0,0)sn2(ξ) + b(1,1,0)sn(ξ)cn(ξ)

+b(0,1,1)cn(ξ)dn(ξ) + b(1,0,1)sn(ξ)dn(ξ)

+b(0,2,0)cn2(ξ) + b(0,0,2)dn2(ξ),

W (ξ) = c(0) + c(1,0,0)sn(ξ) + c(0,1,0)cn(ξ) + c(0,0,1)dn(ξ)

+c(2,0,0)sn2(ξ) + c(1,1,0)sn(ξ)cn(ξ)

+c(0,1,1)cn(ξ)dn(ξ) + c(1,0,1)sn(ξ)dn(ξ)

+c(0,2,0)cn2(ξ) + c(0,0,2)dn2(ξ).
(23)

Substituting (23) into (21), using (9) and collecting all
the terms with the same power of snn(ξ)cnp(ξ)dnq(ξ)
together, equating each coefficient to zero, yields a set of
algebraic equations. Solving these equations with the aid of
mathematical software, yields the following values.

Case 1:

a(0) = a(0), a(1,0,0) = 0, a(0,1,0) = 0, a(0,0,1) = 0,

a(2,0,0) =
m2l(bl3 + ak3)

k(bl + ak)
, a(1,1,0) = 0, a(0,1,1) = 0,

a(1,0,1) = ±ml(bl3 + ak3)

k(bl + ak)
i, a(0,2,0) = a(0,0,2) =

b(0,2,0) = b(0,0,2) = c(0,2,0) = c(0,0,2) = 0

b(0) = −4ak3m2l + ak3l + 3a(0)k2a+ 3a(0)kbl

3l(bl + ak)

−−ckl − dl2 + bl4 + 4bl4m2 −ml

3l(bl + ak)
,

b(1,0,0) = 0, b(0,1,0) = 0, b(0,0,1) = 0,

b(2,0,0) =
m2(bl3 + ak3)

bl + ak
, b(1,1,0) = 0, b(0,1,1) = 0,

b(1,0,1) = ±m(bl3 + ak3)

bl + ak
i, c(0) = c(0), c(1,0,0) = 0,

c(0,1,0) = 0, c(0,0,1) = 0, c(2,0,0) =
l2m2(bl3 + ak3)

k2(bl + ak)
,

c(1,1,0) = 0, c(0,1,1) = 0, c(1,0,1) = ± l2(bl3 + ak3)m

k2(bl + ak)
i.

Case 2:

a(0) = a(0), a(1,0,0) = 0, a(0,1,0) = 0, a(0,0,1) = 0,

a(2,0,0) =
m2l(bl3 + ak3)

k(bl + ak)
, a(1,1,0) = ±m2l(bl3 + ak3)

k(bl + ak)
i,

a(0,1,1) = 0, a(1,0,1) = 0,

b(0) = −ak3m2l + 4ak3l + 3a(0)k2a+ 3a(0)kbl

3l(bl + ak)

−−ckl + bl4m2 −ml − dl2 + 4bl4

3l(bl + ak)
,

b(1,0,0) = 0, b(0,1,0) = 0, b(0,0,1) = 0, b(2,0,0) =
m2(bl3 + ak3)

bl + ak
,

b(1,1,0) = ±m2(bl3 + ak3)

bl + ak
i, b(0,1,1) = 0, b(1,0,1) = 0,

c(0) = c(0), c(1,0,0) = 0, c(0,1,0) = 0, c(0,0,1) = 0,

c(2,0,0) =
l2m2(bl3 + ak3)

k2(bl + ak)
, c(1,1,0) = ± l2(bl3 + ak3)m2

k2(bl + ak)
i,

c(0,1,1) = 0, c(1,0,1) = 0, a(0,2,0) = a(0,0,2) =

b(0,2,0) = b(0,0,2) = c(0,2,0) = c(0,0,2) = 0.

Case 3:

a(0) = a(0), a(1,0,0) = 0, a(0,1,0) = 0, a(0,0,1) = 0,

a(2,0,0) =
2m2l(bl3 + ak3)

k(bl + ak)
, a(1,1,0) = 0,

a(0,1,1) = 0, a(1,0,1) = 0,

b(0) = −4ak3l + 4ak3m2l + 3a(0)k2a+ 3a(0)kbl

3l(bl + ak)

−−ckl − dl2 + 4bl4m2 + 4bl4 −ml

3l(bl + ak)
,

b(1,0,0) = 0, b(0,1,0) = 0, b(0,0,1) = 0,
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b(2,0,0) =
2m2(bl3 + ak3)

bl + ak
, b(1,1,0) = 0, b(0,1,1) = 0, b(1,0,1) = 0,

c(0) = c(0), c(1,0,0) = 0, c(0,1,0) = 0, c(0,0,1) = 0,

c(2,0,0) =
2l2m2(bl3 + ak3)

k2(bl + ak)
, c(1,1,0) = 0,

c(0,1,1) = 0, c(1,0,1) = 0, a(0,2,0) = a(0,0,2) = b(0,2,0) =

b(0,0,2) = c(0,2,0) = c(0,0,2) = 0.

Case 4:

a(0) = − (ak3 + bl3m2 − ck + 3blb(0) + ak3m2)l

3k(bl + ak)

− (−m+ 3ab(0)k − dl + bl3)l

3k(bl + ak)
,

a(1,0,0) = 0, a(0,1,0) = 0, a(0,0,1) = 0,

a(2,0,0) =
m2l(bl3 + ak3)

k(bl + ak)
, a(1,1,0) = 0,

a(0,1,1) = ±ml(bl3 + ak3)

k(bl + ak)
, a(1,0,1) = 0,

b(0) = b(0), b(1,0,0) = 0, b(0,1,0) = 0, b(0,0,1) = 0,

b(2,0,0) =
m2(bl3 + ak3)

bl + ak
, b(1,1,0) = 0,

b(0,1,1) = ±m(bl3 + ak3)

bl + ak
, b(1,0,1) = 0,

c(0) = c(0), c(1,0,0) = 0, c(0,1,0) = 0, c(0,0,1) = 0,

c(2,0,0) =
l2m2(bl3 + ak3)

k2(bl + ak)
, c(1,1,0) = 0,

c(0,1,1) = ± l2m(bl3 + ak3)

k2(bl + ak)
, c(1,0,1) = 0, a(0,2,0) =

a(0,0,2) = b(0,2,0) = b(0,0,2) = c(0,2,0) = c(0,0,2) = 0.

Case 5:

a(0) = − (ak3 + bl3m2 − ck + 3blb(0) + ak3m2)l

3k(bl + ak)

− (−m+ 3ab(0)k − dl + bl3)l

3k(bl + ak)
,

a(1,0,0) = 0, a(0,1,0) = 0, a(0,0,1) = 0, a(0,2,0) = a(0,0,2)

= b(0,2,0) = b(0,0,2) = c(0,2,0) = c(0,0,2) = 0,

a(2,0,0) =
m2l(bl3 + ak3)

2k(bl + ak)
, a(1,1,0) = ∓m2l(bl3 + ak3)

2k(bl + ak)
i,

a(0,1,1) =
ml(bl3 + ak3)

2k(bl + ak)
, a(1,0,1) = ±ml(bl3 + ak3)

2k(bl + ak)
i,

b(0) = b(0), b(1,0,0) = 0, b(0,1,0) = 0, b(0,0,1) = 0,

b(2,0,0) =
m2(bl3 + ak3)

2(bl + ak)
, b(1,1,0) = ∓m2(bl3 + ak3)

2(bl + ak)
i,

b(0,1,1) =
m(bl3 + ak3)

2(bl + ak)
, b(1,0,1) = ±m(bl3 + ak3)

2(bl + ak)
i,

c(0) = c(0), c(1,0,0) = 0, c(0,1,0) = 0, c(0,0,1) = 0,

c(2,0,0) =
l2m2(bl3 + ak3)

2k2(bl + ak)
, c(1,1,0) = ∓ l2m2(bl3 + ak3)

2k2(bl + ak)
i,

c(0,1,1) =
l2m(bl3 + ak3)

2k2(bl + ak)
, c(1,0,1) = ± l2m(bl3 + ak3)

2k2(bl + ak)
i.

Case 6:

a(0) = − (ak3 + bl3m2 − ck + 3blb(0) + ak3m2)l

3k(bl + ak)

− (−m+ 3ab(0)k − dl + bl3)l

3k(bl + ak)
,

a(1,0,0) = 0, a(0,1,0) = 0, a(0,0,1) = 0,

a(0,2,0) = a(0,0,2) = b(0,2,0) = b(0,0,2) = c(0,2,0) = c(0,0,2) = 0,

a(2,0,0) =
m2l(bl3 + ak3)

2k(bl + ak)
, a(1,1,0) = ±m2l(bl3 + ak3)

2k(bl + ak)
i,

a(0,1,1) = −ml(bl3 + ak3)

2k(bl + ak)
, a(1,0,1) = ±ml(bl3 + ak3)

2k(bl + ak)
i,

b(0) = b(0), b(1,0,0) = 0, b(0,1,0) = 0, b(0,0,1) = 0,

b(2,0,0) =
m2(bl3 + ak3)

2(bl + ak)
, b(1,1,0) = ±m2(bl3 + ak3)

2(bl + ak)
i,

b(0,1,1) = −m(bl3 + ak3)

2(bl + ak)
, b(1,0,1) = ±m(bl3 + ak3)

2(bl + ak)
i,

c(0) = c(0), c(1,0,0) = 0, c(0,1,0) = 0, c(0,0,1) = 0,

c(2,0,0) =
l2m2(bl3 + ak3)

2k2(bl + ak)
, c(1,1,0) = ± l2m2(bl3 + ak3)

2k2(bl + ak)
i,

c(0,1,1) = − l2m(bl3 + ak3)

2k2(bl + ak)
, c(1,0,1) = ± l2m(bl3 + ak3)

2k2(bl + ak)
i.

Substituting the results above into Eq. (23) we can obtain
the following Jacobi elliptic functions solutions for Eqs. (20),
where ξ = m

Γ(1 + α)
tα + k

Γ(1 + β)
xβ + l

Γ(1 + γ)
yγ + ξ0.

Family 1:



u1(x, y, t) = a(0) +
m2l(bl3 + ak3)

k(bl + ak)
sn2(ξ)

±ml(bl3 + ak3)i
k(bl + ak)

sn(ξ)dn(ξ),

v1(x, y, t) = −4ak3m2l + ak3l + 3a(0)k2a+ 3a(0)kbl
3l(bl + ak)

−−ckl − dl2 + bl4 + 4bl4m2 −ml
3l(bl + ak)

+
m2(bl3 + ak3)

bl + ak
sn2(ξ)

±m(bl3 + ak3)i
bl + ak

sn(ξ)dn(ξ),

w1(x, y, t) = c(0) +
l2m2(bl3 + ak3)

k2(bl + ak)
sn2(ξ)

± l2(bl3 + ak3)mi

k2(bl + ak)
sn(ξ)dn(ξ).

(24)
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Family 2:



u2(x, y, t) = a(0) +
m2l(bl3 + ak3)
k(bl + ak)

sn2(ξ)

±m2l(bl3 + ak3)i
k(bl + ak)

sn(ξ)cn(ξ),

v2(x, y, t) = −ak3m2l + 4ak3l + 3a(0)k2a+ 3a(0)kbl
3l(bl + ak)

−−ckl + bl4m2 −ml − dl2 + 4bl4

3l(bl + ak)

+
m2(bl3 + ak3)

bl + ak
sn2(ξ)

±m2(bl3 + ak3)i
bl + ak

sn(ξ)cn(ξ),

w2(x, y, t) = c(0) +
l2m2(bl3 + ak3)
k2(bl + ak)

sn2(ξ)

± l2(bl3 + ak3)m2i
k2(bl + ak)

sn(ξ)cn(ξ).

(25)

Family 3:



u3(x, y, t) = a(0) +
2m2l(bl3 + ak3)

k(bl + ak)
sn2(ξ),

v3(x, y, t) = −4ak3l + 4ak3m2l + 3a(0)k2a+ 3a(0)kbl
3l(bl + ak)

−−ckl − dl2 + 4bl4m2 + 4bl4 −ml
3l(bl + ak)

+
2m2(bl3 + ak3)

bl + ak
sn2(ξ),

w3(x, y, t) = c(0) +
2l2m2(bl3 + ak3)

k2(bl + ak)
sn2(ξ).

(26)

Family 4:



u4(x, y, t) = − (ak3 + bl3m2 − ck + 3blb(0) + ak3m2)l
3k(bl + ak)

− (−m+ 3ab(0)k − dl + bl3)l
3k(bl + ak)

+
m2l(bl3 + ak3)
k(bl + ak)

sn2(ξ)

±ml(bl3 + ak3)
k(bl + ak)

cn(ξ)dn(ξ),

v4(x, y, t) = b(0) +
m2(bl3 + ak3)

bl + ak
sn2(ξ)

±m(bl3 + ak3)
bl + ak

cn(ξ)dn(ξ),

w4(x, y, t) = c(0) +
l2m2(bl3 + ak3)
k2(bl + ak)

sn2(ξ)

± l2m(bl3 + ak3)
k2(bl + ak)

cn(ξ)dn(ξ).

(27)

Family 5:

u5(x, y, t) = − (ak3 + bl3m2 − ck + 3blb(0) + ak3m2)l
3k(bl + ak)

− (−m+ 3ab(0)k − dl + bl3)l
3k(bl + ak)

+
m2l(bl3 + ak3)
k(bl + ak)

sn2(ξ)

∓m2l(bl3 + ak3)i
2k(bl + ak)

sn(ξ)cn(ξ)

+
ml(bl3 + ak3)
2k(bl + ak)

cn(ξ)dn(ξ)

±ml(bl3 + ak3)i
2k(bl + ak)

sn(ξ)dn(ξ),

v5(x, y, t) = b(0) +
m2(bl3 + ak3)
2(bl + ak)

sn2(ξ)

∓m2(bl3 + ak3)i
2(bl + ak)

sn(ξ)cn(ξ)

+
m(bl3 + ak3)
2(bl + ak)

cn(ξ)dn(ξ)

±m(bl3 + ak3)i
2(bl + ak)

sn(ξ)dn(ξ),

w5(x, y, t) = c(0) +
l2m2(bl3 + ak3)
2k2(bl + ak)

sn2(ξ)

∓ l2m2(bl3 + ak3)i
2k2(bl + ak)

sn(ξ)cn(ξ)

+
l2m(bl3 + ak3)
2k2(bl + ak)

cn(ξ)dn(ξ)

± l2m(bl3 + ak3)
2k2(bl + ak)

isn(ξ)dn(ξ).

(28)
Family 6:

u6(x, y, t) = − (ak3 + bl3m2 − ck + 3blb(0) + ak3m2)l
3k(bl + ak)

− (−m+ 3ab(0)k − dl + bl3)l
3k(bl + ak)

+
m2l(bl3 + ak3)
k(bl + ak)

sn2(ξ)

∓m2l(bl3 + ak3)i
2k(bl + ak)

sn(ξ)cn(ξ)

−ml(bl3 + ak3)
2k(bl + ak)

cn(ξ)dn(ξ)

±ml(bl3 + ak3)i
2k(bl + ak)

sn(ξ)dn(ξ),

v6(x, y, t) = b(0) +
m2(bl3 + ak3)
2(bl + ak)

sn2(ξ)

∓m2(bl3 + ak3)i
2(bl + ak)

sn(ξ)cn(ξ)

−m(bl3 + ak3)
2(bl + ak)

cn(ξ)dn(ξ)

±m(bl3 + ak3)i
2(bl + ak)

sn(ξ)dn(ξ),

w6(x, y, t) = c(0) +
l2m2(bl3 + ak3)
2k2(bl + ak)

sn2(ξ)

∓ l2m2(bl3 + ak3)i
2k2(bl + ak)

sn(ξ)cn(ξ)

− l2m(bl3 + ak3)
2k2(bl + ak)

cn(ξ)dn(ξ)

± l2m(bl3 + ak3)
2k2(bl + ak)

isn(ξ)dn(ξ).

(29)

Remark 2. To our best knowledge, the Jacobi elliptic
function solutions established in (24)-(29) are new exac-
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t solutions to the (2+1)-dimensional space-time fractional
Nizhnik-Novikov-Veselov System (20).

V. FURTHER RESULTS FOR THE SPACE-TIME FRACTIONAL
KP-BBM EQUATION

In this section, as an extension of the method used in
Sections II-IV, we propose a different approach to deduce
new exact solutions for the following space-time fractional
KP-BBM equation

Dα
x [D

α
t u+Dα

xu− aDα
xu

2 − bDα
t (D

2α
x u)] + eD2α

y u = 0.
(30)

In order to obtain new exact solutions for Eq. (30), suppose
u(x, y, t) = U(η), where η = ct + kx + ky + η0, c, k, η0
are all constants with k, c ̸= 0. Then by use of Eq. (4) one
can deduce that

Dα
t u = Dα

t U(η) = Dα
ηU(η)(η′(t))α = cαDα

ηU(η),
Dα

xu = Dα
xU(η) = Dα

ηU(η)(η′(x))α = kαDα
ηU(η),

Dα
y u = Dα

yU(η) = Dα
ηU(η)(η′(y))α = kαDα

ηU(η).
(31)

Then Eq. (30) can be turned into the following form with
respect to the new variable η:

cαkαD2α
η U(η) + k2αD2α

η U(η)− 2ak2α[(Dα
ηU(η))2

+U(η)D2α
η U(η)]− bcαk3αD4α

η U(η) + ek2αD2α
η U(η) = 0.

(32)
Set ξ =

ηα

Γ(1 + α)
, sn(ξ) = sn(η), cn(ξ) =

cn(η), dn(ξ) = dn(η), cs(ξ) = cs(η), sd(ξ) =
sd(η), dc(ξ) = dc(η), sc(ξ) = sc(η), ds(ξ) =
ds(η), cd(ξ) = cd(η), nd(ξ) = nd(η), ns(ξ) =
ns(η), nc(ξ) = nc(η). Then by Eqs. (1) and (3) one
can obtain that Dα

η sn(η) = Dα
η sn(η) = Dα

η sn(ξ) =
sn′(ξ)Dα

η ξ = sn′(ξ). So according to Eq. (9) we deduce
that

Dα
η sn(η) = cn(η)dn(η), (33)

and similarly

Dα
η cn(η) = −sn(η)dn(η), (34)

Dα
η dn(η) = −m2sn(η)cn(η). (35)

Suppose that the solution of Eq. (32) can be expressed by
a polynomial in the Jacobi elliptic functions as follows:

U(η) = a(0) +

m∑
n+p+q=1

a(n,p,q)snn(η)cnp(η)dn
q
(η). (36)

By balancing the order of D4α
η U(η) and U(η)D2α

η U(η) in
(32) one can obtain m = 2. So

U(η) = a(0) + a(1,0,0)sn(η) + a(0,1,0)cn(η) + a(0,0,1)dn(η)

+a(2,0,0)sn2(η) + a(1,1,0)sn(η)cn(η) + a(0,1,1)cn(η)dn(η)

+a(1,0,1)sn(η)dn(η)+a(0,2,0)cn2(ξ)+a(0,0,2)dn2(ξ). (37)

Substituting (37) into (32), using (33)-(35) and collecting
all the terms with the same power of snn(η)cnp(η)dn

q
(η)

together, equating each coefficient to zero, yields a set of
algebraic equations. Solving these equations with the aid of
mathematical software, yields the following values, where i
denotes the unit of the imaginary numbers.

Case 1:

a(0) =
kα + bcαk2αm2 + 4bcαk2α + ekα + cα

2akα , a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −3m2kαcαb

a
,

a(1,1,0) = ±3cαbkαm2

a
i, a(0,1,1) = 0, a(1,0,1) = 0,

a(0,2,0) = a(0,0,2) = 0.

Case 2:

a(0) =
kα + 4bcαk2αm2 + 4bcαk2α + ekα + cα

2akα , a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −6m2kαcαb

a
,

a(1,1,0) = 0, a(0,1,1) = 0, a(1,0,1) = 0,

a(0,2,0) = a(0,0,2) = 0.

Case 3:

a(0) =
kα + 4bcαk2αm2 + bcαk2α + ekα + cα

2akα , a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −3m2kαcαb

a
,

a(1,1,0) = 0, a(0,1,1) = 0, a(1,0,1) = ±3cαbkαm

a
i,

a(0,2,0) = a(0,0,2) = 0.

Case 4:

a(0) =
kα + bcαk2αm2 + bcαk2α + ekα + cα

2akα
, a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −3m2kαcαb

a
,

a(1,1,0) = 0, a(0,1,1) = ±3mkαcαb

a
, a(1,0,1) = 0,

a(0,2,0) = a(0,0,2) = 0.

Case 5:

a(0) =
kα + bcαk2αm2 + bcαk2α + ekα + cα

2akα
, a(1,0,0) = 0,

a(0,1,0) = 0, a(0,0,1) = 0, a(2,0,0) = −3m2kαcαb

2a
,

a(1,1,0) = ±3cαbkαm2

2a
i, a(0,1,1) = ±3mkαcαb

2a
,

a(1,0,1) = ±3cαbkαm

2a
i, a(0,2,0) = a(0,0,2) = 0.

Substituting the results above into Eq. (37), considering
such equality holds sn(η) = sn(ξ), where ξ =

ηα

Γ(1 + α)
,

and η = ct + kx + ky + η0, we can obtain the following
exact solutions in the forms of the Jacobi elliptic functions
for Eq. (30).

Family 1:

u1(x, y, t) =
kα + bcαk2αm2 + 4bcαk2α + ekα + cα

2akα

−3m2kαcαb

a
sn2(ξ)± 3cαbkαm2i

a
sn(ξ)cn(ξ). (38)
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Family 2:

u2(x, y, t) =
kα + 4bcαk2αm2 + 4bcαk2α + ekα + cα

2akα

−6m2kαcαb

a
sn2(ξ). (39)

Family 3:

u3(x, y, t) =
kα + 4bcαk2αm2 + bcαk2α + ekα + cα

2akα

−3m2kαcαb

a
sn2(ξ)± 3cαbkαm

a
isn(ξ)dn(ξ). (40)

Family 4:

u4(x, y, t) =
kα + bcαk2αm2 + bcαk2α + ekα + cα

2akα

−3m2kαcαb

a
sn2(ξ)± 3mkαcαb

a
cn(ξ)dn(ξ). (41)

Family 5:

u5(x, y, t) =
kα + bcαk2αm2 + bcαk2α + ekα + cα

2akα

−3m2kαcαb

2a
sn2(ξ)± 3cαbkαm2i

2a
sn(ξ)cn(ξ)

±3mkαcαb

2a
cn(ξ)dn(ξ)± 3cαbkαmi

2a
sn(ξ)dn(ξ). (42)

Remark 3. We note that the value of ξ in (38)-(42) is
essentially different from that in (15)-(19), and the Jacobi el-
liptic function solutions established in (38)-(42) are different
exact solutions from those in Section III. So the approach
used here is essentially different from that in Sections II-
IV. Moreover, as one can see, the method mentioned in
this section can also be applied to deduce new Jacobi
elliptic function solutions for the (2+1)-dimensional space-
time fractional Nizhnik-Novikov-Veselov System (20) under
the condition α = β = γ = 1.

VI. CONCLUSIONS

In this paper, we extend the Jacobi elliptic function method
to seek exact solutions for fractional partial differential
equations. This method belongs to the categories of the sub-
equation methods, and the fractional complex transforma-
tion used here for ξ plays the most important role in the
solving process. In order to demonstrate the validity of this
method, we apply it to seek exact solutions in the forms
of the Jacobi elliptic functions for the space-time fractional
KP-BBM equation and the (2+1)-dimensional space-time
fractional Nizhnik-Novikov-Veselov System. With the aid of
mathematical software, a series of Jacobi elliptic functions
solutions for the two equations have been successfully found.
Finally, as an extension of this method, we propose a new
approach for seeking new Jacobi elliptic function solutions
for space-time fractional differential equations. Being concise
and powerful, this method can also be applied to seek exact
solutions for many other fractional differential equations.
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[24] B. Lu, “Bäcklund transformation of fractional Riccati equation and
its applications to nonlinear fractional partial differential equations,”
Phys. Lett. A, vol. 376, pp. 2045-2048, 2012.

[25] B. Zheng, “Exact Solutions For Fractional Partial Differential Equa-
tions By Projective Riccati Equation Method,” U.P.B. Sci. Bull., Series
A, vol. 77, no.1, pp. 99-108, 2015.

[26] Y. Zhang and Q. Feng, “Fractional Riccati Equation Rational Expan-
sion Method For Fractional Differential Equations,” Appl. Math. Inf.
Sci., vol. 7, no.4, pp. 1575-1584, 2013.

[27] N. Shang and B. Zheng, “Exact Solutions for Three Fractional Partial
Differential Equations by the (G’/G) Method,” IAENG International
Journal of Applied Mathematics, vol. 43, no.3, pp. 114-119, 2013.

[28] B. Zheng, “Exact Solutions for Some Fractional Partial Differential
Equations by the (G’/G) Method,” Math. Pro. Engi., vol. 2013, article
ID: 826369, pp. 1-13, 2013.

[29] B. Zheng, “(G’/G)-Expansion Method for Solving Fractional Partial
Differential Equations in the Theory of Mathematical Physics,” Com-
mun. Theor. Phys., vol. 58, pp. 623-630, 2012.

[30] N. Taghizadeh, M. Mirzazadeh, M. Rahimian and M. Akbari, “Appli-
cation of the simplest equation method to some time-fractional partial
differential equations,” Ain Shams Engineering Journal, vol. 4, pp.
897-902, 2013.

[31] S. Guo, L. Mei, Y. Fang and Z. Qiu, “Compacton and solitary pat-
tern solutions for nonlinear dispersive KdV-type equations involving
Jumarie’s fractional derivative,” Phys. Lett. A, vol. 376, pp. 158-164,
2012.

[32] C.F.L. Godinho, J. Weberszpil and J.A. Helayël-Neto , “Extending
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