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Abstract—This paper studies the estimation of R = P(Y < X)

when X and Y are two independent generalized exponential
distributions containing one outlier. The maximum likelihood
estimator (MLE) and Bayesian estimator of R are obtained
under exchangeable and identifiable models, respectively.
Monte Carlo simulation is used to compare and verify the
proposed model and approaches. The simulation results show
that the performance of MLE is more satisfactory than Bayes
estimator.

Index Terms—generalized exponential distribution, outlier,
maximum likelihood estimator, bayes estimator.

I. INTRODUCTION
N reliability contexts, inferences about stress strength
model R=P(Y<X) is an interest subject. For example, in

mechanical reliability of a system, if X is the strength of a
component which is subject to the stress Y, then we know
that R is a measure of system performance. The system fails,
if at any time the applied stress Y is greater than its strength
X.
The problem of estimating R=P(Y<X), where X and Y

belong to a certain family of probability distributions, has
been widely studied in the literature, such as burr
distributions (Mokhlis, 2005), Weibull distribution (Kundu
et al., 2006), Gompertz distribution (Saraçoglu et al., 2007),
exponential distribution (Jiang et al., 2008), the generalized
gamma distribution (Pham et al., 1995) and the generalized
pareto distribution (Rezaei et al., 2010), et al.. Recently, in
the stress strength model literature, Kundu and Gupta (2005)
and Raqab et al. (2008) has considered the ordinary samples
from the generalized exponential distribution (GED), and
Baklizi (2008) has considered the record data from the GED.
All these papers assume that the sample observations are
independently and identically distributed. In fact, the sample
data may contain outliers in many cases, because outliers are
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usually caused by measurement error or erroneous
procedures (seen in Barnett et al., 1984).
Kim and Chung (2006) and Jeevanand and Nair (1994)

have considered the outlier from the burr-X distribution and
exponential distribution, but they only considered the Bayes
estimation of R. It is well known that the prior function plays
an important role in Bayes method, thus the other estimation
method should be considered.
In this paper, we focus on estimation of R=P(Y<X), where

X and Y follow the GED(θ) and GED(β). The maximum
likelihood estimator (MLE) and the Bayes estimation of R
are obtained from the samples containing outliers, which has
not been studied before.
The rest of the paper is organized as follows: In the next

Section, the generalized exponential distribution and the
stress strength model are introduced. In Section 3, we
introduce the joint distribution of (X1, X2, … , Xn) with one
outlier. In Sections 4 and 5, the MLE and the Bayes estimator
of R under exchangeable and identifiable model are obtained.
In Section 6, we present some numerical results, and
compare the Bias and the mean squares errors (MSE).
Section 7 concludes the paper.

II. GENERALIZED EXPONENTIAL DISTRIBUTION AND STRESS
STRENGTH MODEL

The generalized exponential distribution (GED) has firstly
been introduced by Gupta and Kundu (1999). Due to the
convenient structure of distribution function, the GED can be
used to analyze various lifetime data. In recent years, many
scholars have studied about this distribution, such as Raqab
and Ahsanullah(2001), Zheng(2002), Gupta and Kundu
(2003).
The probability density function with one parameter

GED(θ) is given by
1( ) (1 )x xf x e e      , 0, 0x   (1)

And the corresponding cumulative distribution function is
( ) (1 )xF x e   , 0, 0x   (2)
Suppose that X~GED(θ) and Y~GED(β) are two

independent random variables, then the reliability of stress
strength model can be obtained as

( )R P Y X 

0
( | ) ( )P Y X X x P X x dx 

 


    
 (3)
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III. JOINT DISTRIBUTION WITH OUTLIER
Let X~GED(θ)，X1, X2,… , Xn be a random sample from X,

and (n-1) of them have the same probability density function

as follow

1( ) (1 )x xf x e e      , 0, 0x   (4)

the remaining one’s probability density function is given as

1( ) (1 )x x bg x b e e      , 0, 1, 0x b    (5)

Therefore, the joint probability density function of (X1,

X2,…, Xn) can be obtained as (see Dixit and Nooghabi, 2011)

1 2
1 1

( )( 1)!( , , , ) ( )
! ( )

n n j
n i

i j j

g xnf x x x f x
n f x 


  

where f(x) and g(x) are given in (4) and (5). Then

1 2
1

1( , , , ) exp( )
n

n
n i

i
f x x x b x

n



  

1
1

11 1

(1 )
[1 exp( )]
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






 


   



 1
1 1

1 exp( ) exp [ ( )
n n

n
i

i i
b x T x

n
 

 
    

1( 1) ( )] ( )ib T x T x   (6)

where

1
1

( ) log[1 exp( )],
n

i
i

T x x


    

( ) log[1 exp( )]i iT x x    .

Similarly, let Y~ GED(β) and Y1, Y2,… , Yn be a random

sample from Y, and (n-1) of them have the same probability

density function as

1( ) (1 )y yf y e e      , 0, 0y  

the remaining one’s probability density function is given as

1( ) (1 )y y cg y c e e      , 0, 1, 0y c   

Then, we can get the joint distribution of Y1, Y2,…, Yn as

1 2( , , , )nf y y y 
1

1 exp( )
n

n
j

j
c y

n



 

 1 1
1
exp [ ( ) ( 1) ( )] ( )

n

j
j

T y c T y T y


      (7)

where

1
1

( ) log[1 exp( )],
n

j
j

T y y


    

( ) log[1 exp( )]j jT y y   

IV. MLE AND BAYES ESTIMATION OF R UNDER
EXCHANGEABLE MODEL

The exchangeable model assumes that outliers are not
identifiable and any observation in sample is as likely to be
discordant as any other. In this section, we will obtain the
MLE and the Bayes estimation of R under this condition.

A. The MLE of R
Suppose that X=(X1, X2,… , Xn) follows GED(θ) and

contains one outlier, according to the expressions (6), the log
likelihood function is given by

1
ln ln ln ln

n

i
i

f n n b x


     

1 1
1

ln{ exp[ ( ( ) ( 1) ( )) ( )]}
n

i
i

T x b T x T x


     

Differentiating lnf with respect to θ and b, respectively, we
can get
ln f n
 






1 1 1
1

1 1
1

exp[ ( ( ) ( 1) ( )) ( )][ ( ) ( 1) ( ))]

exp[ ( ( ) ( 1) ( )) ( )]

n

i i
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T x b T x T x
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





      


    
(8)

ln 1f
b b






1 1
1

1 1
1

exp[ ( ( ) ( 1) ( )) ( )][ ( ))]

exp[ ( ( ) ( 1) ( )) ( )]

n

i i
i
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i
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T x b T x T x T x

T x b T x T x

 







    


    
(9)

Equating (8) and (9) to zero, we have

1 1
1

1 1 1
1

ˆˆexp[ ( ( ) ( 1) ( )) ( )]
ˆ

ˆ ˆˆexp[ ( ( ) ( 1) ( )) ( )][ ( ) ( 1) ( ))]

n
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i
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i
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







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
      

(10)

1 1
1

1 1
1

ˆˆexp[ ( ( ) ( 1) ( )) ( )]
ˆ

ˆˆ ˆexp[ ( ( ) ( 1) ( )) ( )][ ( ))]
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
    

(11)

In the same way, we can obtain the MLE of β and c as

1 1
1

1 1 1
1

ˆ ˆexp[ ( ( ) ( 1) ( )) ( )]
ˆ

ˆ ˆ ˆexp[ ( ( ) ( 1) ( )) ( )][ ( ) ( 1) ( ))]

n

j
j
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j j
j

n T y c T y T y
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








    

      

(12)
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1 1
1

1 1
1

ˆ ˆexp[ ( ( ) ( 1) ( )) ( )]
ˆ

ˆ ˆˆexp[ ( ( ) ( 1) ( )) ( )][ ( ))]

n

j
j

n

j j
j

T y c T y T y
c

T y c T y T y T y



 





    

    

(13)

Then, it is easy to obtain the MLE of R under
exchangeable model as

ˆˆ
ˆ ˆR 
 




(14)

B. The Bayes estimation of R
In this subsection, we consider the Bayes estimation of R

under the squared error loss function. Let X=(X1, X2,…, Xn)
and Y=(Y1, Y2,… , Yn) be two independent random samples
from GED with parameters (θ, b) and (β, c), respectively.
Then, the likelihood functions are proportion to

1 1
1

( | , ) exp[ ( ( ) ( 1) ( )) ( )]
n

n
i

i
l X b b T x b T x T x  


     

and

1 1
1

( | , ) exp[ ( ( ) ( 1) ( )) ( )]
n

n
j

j
l Y c c T y c T y T y  


      (15)

In Bayesian framework, we assume that the parameters θ
and b are taken to be independently distributed to a gamma
distribution and a non informative prior distribution. Then
the joint distribution of (θ, b) is proportion to

1( , ) exp( )pb u    
In the similar manner, the joint distribution of (β, c) is

proportion to
1( , ) exp( )qc v    

(16)
where p, q, u and v are known.
Based on the above assumption, we can derive the joint

probability density function of X and Y as follows
( , | , , , ) ( | , ) ( | , ) ( , ) ( , )l X Y b c l X b l Y c b c       
the posterior density function of (θ, β, b, c) is obtained

0 0 1 1

( , | , , , )( , , , | , )
( , | , , , )

l X Y b cb c X Y
l X Y b c d d dbdc

   
   

   


   
Then

1 1
( , | , ) ( , , , | , )X Y b c X Y dbdc     

 
  

Let r=θ/(θ + β) and ρ=θ + β, ρ>0, 0<r<1. We can get

1 1
( , | , ) ( ,(1 ) , , | , )r X Y r r b c X Y dbdc     

 
  

Therefore, we obtain the marginal posterior density
function of R as

0
( | , ) ( , | , )r X Y r X Y d   


 

2 3 3 ( 2)
1 1 1

( ( ) ( )) (1 ) ( 1)
n n

m s m s
i ji j

C T x T y r r Ar     

 
    

2 2[( 1) ( 4)( 1)( ( )iAr D m s Ar rT x     

2(1 ) ( )) ( 3)( 4)( ( ) ( )) (1 )]j i jr T y Q m s m s T x T y r r       

where

1 1, , ( )m n p s n q Q T x u      , 1

2
1

QA
Q

  ,

2 1( )Q T y v  ,
( 2) ( 2)( 2, 2)
( 4)

m sB m s
m s

   
  

  
,

1 2
1 11 1

( ( ) ( )) [( 2) ( ) ]
n n

i j ii j
C T x T y m T x Q 

 
    

1
2

2
1

[( 2) ( ) ] ( 2, 2)
m

j
Qs T y Q B m s
Q


 

      
 

(17)

Hence, under the squared error loss function, the Bayes
estimator of R is

1

0
ˆ ( | ) ( | )R E r date r r date dr  

2 2
1 21 1

( ( ) ( )) { (0,0,0)
n n

i ji j
C T x T y Q H

 
  

2( 4) ( ) (1,1,0)im s T x Q H    2( 4) ( ) (1,0,1)jm s T y Q H 

( 3)( 4) ( ) ( ) (2,1,1)}i jm s m s T x T y H     (18)

where
2,1( , , ) ( 4 , 1, 3, )H abc F m s a m b m s a A         

( 1, 2)B m b s c    

( 1) ( 2)( 1, 2)
( 3)

m b s cB m b s c
m s b c

     
    

    
,

1 11
2,1

0

( ) (1 )( , ; ; )
( ) ( ) (1 )

b c b

a
c t tF a b c z dt

b c b tz

   

    .

V. MLE AND BAYES ESTIMATION OF R UNDER
IDENTIFIABLE MODEL

The identifiable model assumes that outliers are
identifiable. We treat the largest observation in the sample as
an outlier because the largest order statistics in the sample
has the largest posterior probability (see Kale and Kale,
1992). We will obtain the MLE and Bayes estimations of R
under this model.

A. The MLE of R
Suppose that X=(X1, X2,… , Xn) follows GED(θ) and

contains one outlier, according to Kale and Kale (1992), we
know that the largest order statistics in the sample is the
outlier when b>1, and we treat X(n) as outlier. Then we can
get the likelihood function and the log likelihood function as

1

2 ( )
1

( , | ) ( ) ( )
n

i n
i

L b X C f x f x



 

2 1 ( ) 1
1

exp( )exp[ ( ( ) ( 1) ( )) ( )]
n

n
i n

i
C b x T x b T x T x 


     

and

2ln ln ln lnL C n b  

1 ( ) 1
1

( ( ) ( 1) ( )) ( )
n

i n
i

x T x b T x T x


     
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where

2C is a constant, 1
1

( ) log[1 exp( )],
n

i
i

T x x


    

( ) ( )( ) log[1 exp( )]n nT x x    .

Differentiating lnL with respect to θ and b, respectively.
We can obtain the following solutions

1 ( )
ln [ ( ) ( 1) ( )] 0n

L n T x b T x
 


    


(19)

( )
ln 1 [ ( )] 0n

L T x
b b


  


(20)

From the above two equations, we derive

1 ( )

1ˆ
( ) ( )n

n
T x T x

 


 (21)

Similarly, suppose that Y=(Y1,Y2,… ,Yn) follows GED(β)
and contains one outlier, the log likelihood function from the
sample is given by

2ln ln ln lnL C n c  

1 ( ) 1
1

( ( ) ( 1) ( )) ( )
n

j n
j

y T y c T y T y


     

where

1
1

( ) log[1 exp( )],
n

i
i

T y y


    

( ) ( )( ) log[1 exp( )]n nT y y    .

Similar to (19) and (20), we can get

1 ( )

1ˆ
( ) ( )n

n
T y T y

 



(22)

Therefore, from (21) and (22), the MLE of R under the
exchangeable model is

ˆˆ
ˆ ˆR 
 




(23)

B. The Bayes estimation of R
In this subsection, we consider the Bayes estimation of R

under the squared error loss function. Let X=(X1, X2,…, Xn)
and Y=(Y1, Y2, … , Yn) be the two independent random
samples from GED with parameters (θ, b) and (β, c),
respectively. Then, the likelihood functions are proportion to

1 1 ( ) 1( | , ) exp[ ( ( ) ( 1) ( )) ( )]n
nl X b b T x b T x T x      

and

2 1 ( ) 1( | , ) exp[ ( ( ) ( 1) ( )) ( )]n
nl Y c c T y c T y T y      

Assuming the joint prior distribution of (θ, b) and (β, c) are
the same as given (15), we can get

1 2( , | , , , ) ( | , ) ( | , ) ( , ) ( , )l X Y b c l X b l Y c b c       
Using similar way, we can get the marginal posterior
distribution of R as follow

0
( | , ) ( , | , )r X Y r X Y d   


 

2 3 3 ( 2)
3 ( ) ( )( ( ) ( )) (1 ) ( 1)m s m s

n nC T x T y r r Ar       
2 2

( ) ( ) 2[( 1) ( 4)( 1)( ( ) (1 ) ( ))n nAr D m s Ar rT x r T y Q       

( ) ( )( 3)( 4)( ( ) ( )) (1 )]n nm s m s T x T y r r     

where
1

1 2
3 1 2

1
[( 2) ( ) ][( 2) ( ) ] ( 2, 2)

m

i j
QC m T x Q s T y Q Bm s
Q


  
        

 
Hence, under the mean squared error loss function, the

Bayes estimator of R is
1

0
ˆ ( | ) ( | )R E r date r r date dr  

2
3 2 ( ) 2{ (0,0,0) ( 4) ( ) (1,1,0)nC Q H m s T x Q H   

( ) 2( 4) ( ) (1,0,1)nm s T y Q H  

( ) ( )( 3)( 4) ( ) ( ) (2,1,1)}n nm s m s T x T y H     (24)

VI. MONTE CARLO SIMULATION STUDY
In this section, Monte Carlo simulation is used to compare

performance of the proposed models and methods. Without
loss of generality, let θ = 19, β = 1 and b = c = 10. We
consider sample size to be (n, m) = (5, 5), (10, 10), (15, 15),
(20, 20), (25, 25), (30, 30). For a given generated sample,
compute the MLE and Bayes estimators of R and replicate
the process 3000 times. For the different prior parameters: p
= q = u= v = 0, p = q = u = v = 1, and p = q = u = v = 2, we
obtain the Bayes estimators for R as Bayes-1, Bayes-2, and
Bayes-3, respectively. The Bias and MSE of the MLE
estimator and Bayes estimator are computed by

3000

1

1ˆ ˆ( )
3000 i

i

Bias R R R


  ,

and
3000

2

1

1ˆ ˆ( ) ( )
3000 i

i

MSE R R R


  (25)

Table I and Table II show the simulation results for the
Bias and MSE of MLE and Bayes estimators for R under
different sample sizes and different prior parameter values.
From the simulation results, it is quite clear that the

performances of both the MLE and the Bayes estimators
under the two models are quite satisfactory even for very
small sample sizes. It is noted that the Bias and MSE of the
MLE are smaller than the Bayes estimators under the two
models when the sample contains outliers.
In addition, it is observed that the Bias and MSE decrease

for all the estimators under the two models when the sample
size increases. Meanwhile, the Biases and MSE of the Bayes
estimators decrease when the parameters of prior
distributions, p, q, u and v increase.
Moreover, from the simulation results, it is observed that

the Biases and MSE of the MLE, Bayes-1, Bayes-2 and
Bayes-3 under the identifiable model are smaller than the
corresponding values under the exchangeable model.
Based on all those knowledge, when the sample contains

one outlier, we recommend use the MLE whenever the
model is the exchangeable or identifiable.
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VII. CONCLUSION
This paper deals with the estimation of R=P(Y<X) when X

and Y are two independent generalized exponential
distributed random variables. We assume that the sample
from each population contains one outlier. The MLE and
Bayes estimator of R are obtained under the exchangeable
and identifiable models. A simulation study is presented to

compare the two estimation methods under the different
model. Based on the simulation results, the performances of
the MLE are more satisfactory than Bayes estimator even for
very small sample sizes. When there is more than one outlier,
the problem becomes quite more complicated. The
corresponding estimation methods need to be explored in the
future. It may be mentioned that although it has been
assumed that the samples are from generalized exponential
distributions containing one outlier, it may be extended to
some other distributions also, for example, the Weibull or
gamma distribution containing outliers. Work is in progress,
and it will be reported later.
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TABLE I
BIAS AND MSE UNDER THE EXCHANGEABLE MODEL

(n, m) (5,5) (10, 10) (15, 15) (20, 20) (25, 25) (30, 30)

MLE bias 0.0423 0.0222 0.0172 0.0142 0.0125 0.0109
mse 0.0039 0.0011 0.0007 0.0005 0.0004 0.0003

Bsyes-1 bias 0.0729 0.0636 0.0573 0.0518 0.0487 0.0449
mse 0.0081 0.0063 0.0051 0.0042 0.0037 0.0032

Bsyes-2 bias 0.0602 0.0507 0.0458 0.0423 0.0396 0.0368
mse 0.0053 0.0040 0.0033 0.0028 0.0025 0.0021

Bsyes-3 bias 0.0526 0.0454 0.0419 0.0400 0.0379 0.0355
mse 0.0040 0.0032 0.0027 0.0025 0.0023 0.0020

TABLE II
BIAS AND MSE UNDER THE IDENTIFIABLE MODEL

(n, m) (5,5) (10, 10) (15, 15) (20, 20) (25, 25) (30, 30)

MLE bias 0.0333 0.0180 0.0158 0.0136 0.0110 0.0103
mse 0.0021 0.0007 0.0005 0.0004 0.0003 0.0002

Bsyes-1 bias 0.0584 0.0425 0.0364 0.0316 0.0287 0.0254
mse 0.0051 0.0028 0.0021 0.0015 0.0013 0.0010

Bsyes-2 bias 0.0539 0.0398 0.0319 0.0291 0.0253 0.0229
mse 0.0043 0.0403 0.0320 0.0281 0.0233 0.0221

Bsyes-3 bias 0.0477 0.0403 0.0320 0.0281 0.0233 0.0221
mse 0.0035 0.0025 0.0016 0.0012 0.0009 0.0006
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