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Abstract—In this paper, we consider a numerical method
for solving optimal boundary control problems governed by
parabolic equations. In order to avoid large amounts of calcu-
lation produced by traditional numerical methods, we establish
an iterative non-overlapping domain decomposition method.
The whole domain is divided into many non-overlapping
subdomains, and the optimal boundary control problem is
decomposed into local problems in these subdomains. Robin
conditions are used to communicate the local problems on the
interfaces between subdomains. We build the iterative scheme
for solving these local problems, and prove the convergence of
the scheme. Finally, we present a numerical example to verify
the validity of the iterative scheme.

Index Terms—Parabolic equations, optimal boundary con-
trol, non-overlapping domain decomposition method, iterative
method, Robin conditions

I. INTRODUCTION

IN the theory of control system, an optimal control prob-
lem is to find a control model (i.e. the control variable)

admitted by the system to make the state variable tend to
a target state in the process of optimizing (maximizing/
minimizing) the objective functional. If the state and control
variable are subjected to partial differential equations, the
optimal control problem is called the optimal control problem
governed by partial differential equations (PDEs).

In the field of science and engineering, many problems,
such as the Stefan-Boltzmann radiation law, the Lotka-
Volterra model in population dynamics, can be described
by optimal control problems governed by partial differential
equations. As well known, reference [1] discussed systemat-
ically the theory and numerical methods of optimal control
problems governed by PDEs. References [2]-[5] made further
studies. Among the numerical methods to solve the optimal
control problem governed by PDEs, an effective one is the
finite element method, i.e. building the finite element space
for the state variable and the control variable respectively;
establishing the discretized schemes for the governing PDEs;
then developing the discrete algebraic equation systems to be
solved. If the domain is large, there needs a large amount of
calculation, which can be settled by the method of parallel
computation.
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A natural way in parallel computation is non-overlapping
domain decomposition method. This method can divide the
whole domain into many subdomains, and decompose the
optimal control problem into many local problems, which
are independent ones on subdomains and can be calculated
parallel. Hence, this method can reduce much the amount of
computation. Until now, there have been a lot of articles con-
sidering the application of this method to different types of
partial differential equations, such as references [6]-[9]. Ref-
erences [10]-[13] discussed some iterative non-overlapping
domain decomposition methods for optimal boundary control
problems governed by PDEs. The important character of
these methods is how to build internal boundary conditions of
state/co-state variables to communicate the local problems on
the interfaces between subdomains. Reference [14] presented
an iterative another non-overlapping domain decomposition
method for optimal boundary control problems governed
by hyperbolic equations and proposed an internal boundary
condition (called as Robin condition). The author proved the
convergence of the method. But we should point out that
article [14] only considered the case in which the control
variable is defined in the interior of the domain, but not on
the boundary.

Invoked by the work of [14], we will discuss an iterative
non-overlapping domain decomposition method for optimal
boundary control problems governed by parabolic equations.
The structure of this article is as follows: in Section II,
we give an optimal boundary control problem governed
by parabolic equations, and build the co-state equations
and optimal boundary conditions; In Section III, we set up
the iterative non-overlapping domain decomposition scheme
by using Robin conditions and prove the convergence; In
Section IV, we present an numerical example, and verify the
validity of the iterative scheme. We make some conclusions
in Section V.

II. MODEL

Let Ω ⊂ R2 be a bounded convex domain with an smooth
boundary ∂Ω and [0, T ] be a time interval. Throughout the
paper, we adopt the standard notations for Sobolev spaces on
Ω. We will take the state space L2(0, T ;V ) with V = H1(Ω)
and the control space L2(0, T ;U) with U ⊂ L2(∂Ω).

We consider the following optimal boundary control prob-
lems governed by parabolic equations:

min
u∈U

J(u, y(u)) (1)
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subject to

∂y(x, t)
∂t

− ∆y(x, t) = f(x, t), (x, t) in Ω × (0, T ),

∂y(x, t)
∂~ν

= u(x, t) + g(x, t), (x, t) on ΓN × (0, T ),

y(x, t) = yD(x, t), (x, t) on ΓD × (0, T ),

y(x, 0) = y0(x), x in Ω,

(2)
where, the state variable y(u) ∈ L2(0, T ;V ) and the control
variable u ∈ L2(0, T ;U), ΓN and ΓD are Neuman and
Dirichlet boundary, respectively, ∂Ω = ΓN ∪ΓD,ΓN ∩ΓD =
∅, ~ν is an unit outer normal vector, f(x, t), g(x, t), y0(x)
and yD(x, t) are known functions.

Let the objective functional be

J(u, y(u))

=
1
2
{∫

Ω×(0,T )

γ|y − zd|2dxdt +
∫

ΓN×(0,T )

α|u|2dsdt
}
.

(3)
Here, zd(x, t) is the desired state variable, the constants α >
0 and γ > 0 play the roles of balancing the contributions of
the state variable y and control variable u.

According to references [1], [3], we can derive the adjoint
equation of (2)

−∂p(x, t)
∂t

− ∆p(x, t) = γ(y(x, t) − zd(x, t)),

(x, t) in Ω × (0, T ),

∂p(x, t)
∂~ν

= 0, (x, t) on ΓN × (0, T ),

p(x, t) = 0, (x, t) on ΓD × (0, T ),

p(x, T ) = 0, x in Ω,

(4)

where p(x, t) is the co-state variable of y(x, t).
And we know that when the objective functional J gets

its optimum, the control variable u ∈ L2(0, T ;U) should
satisfy

J ′(u)(v − u) ≥ 0, ∀ v ∈ L2(0, T ;U). (5)

According to the definition of the directional derivative of the
objective functional and references [1], [3], we can deduce
that the inequality (5) equals to

J ′(u)(v − u) =
∫

ΓN×(0,T )

(
αu + p

)
(v − u)dsdt ≥ 0, (6)

∀ v ∈ L2(0, T ;U). This inequality is called as the optimal-
ity condition.

Then, the optimal boundary control problems (1)-(2) are
equivalent to an optimality system composed of the state
equation (2), the co-state equation (4) and the optimality
condition (6). We can get the solution of problems (1)-(2)
by solving the optimality system (2), (4) and (6).

III. ITERATIVE NON-OVERLAPPING DOMAIN
DECOMPOSITION

In this section, we will build an iterative non-overlapping
domain decomposition scheme for the system (2), (4) and
(6), and prove the convergence.

A. Iterative Domain Decomposition

First, we divide Ω into several non-overlapping subdo-
mains Ωi, i = 1, 2, · · · , N,

Ω =
N∪
i

Ω̄i, Ωi

∩
Ωj = ∅, ∀ i 6= j.

Let ΓD,i = ΓD

∩
∂Ωi, ΓN,i = ΓN

∩
∂Ωi, ΓD,i 6= ∅,

ΓN,i 6= ∅, Σij = ∂Ωi

∩
∂Ωj be the internal boundary

between Ωi and Ωj , and Σij = Σji. Let ~νi is the unit outer
normal vector on ∂Ωi. We suppose that this decomposition
holds the regularity to guarantee the global and local equa-
tions with good properties.

Then, we decompose the system of (2),(4) and (6) into
several local problems on subdomains and use the iterative
method to solve them. Take the local problem on the subdo-
main Ωi for an example, i.e., the domain Ω and boundaries
ΓN , ΓD are replaced by Ωi, ΓN,i, ΓD,i, respectively. We
define the local solution at step k + 1 on subdomain Ωi is
(yk+1

i , pk+1
i , uk+1

i ). Hence, the local problem is

∂yk+1
i

∂t
− ∆yk+1

i = f, in Ωi × (0, T ),

∂yk+1
i

∂~νi
= uk+1

i + g, on ΓN,i × (0, T ),

yk+1
i = yD, on ΓD,i × (0, T ),

yk+1
i (x, 0) = y0(x), in Ωi,

(7)



−∂pk+1
i

∂t
− ∆pk+1

i = γ(yk+1
i − zd),

in Ωi × (0, T ),

∂pk+1
i

∂~νi
= 0, on ΓN,i × (0, T ),

pk+1
i = 0, on ΓD,i × (0, T ),

pk+1
i (T, x) = 0, in Ωi,

(8)

and∫
ΓN,i×(0,T )

(pk+1
i + αuk+1

i )(vi − uk+1
i )dsdt ≥ 0, (9)

∀ vi ∈ L2(0, T ;Ui), where Ui is a local control space and
just the restriction of the space U on Ωi, i.e.

∀ u ∈ U, u|Ωi
= ui ∈ Ui. (10)

For the later use, we define the following inner products
and norms:

(y, y′)i =
∫

Ωi×(0,T )

yy′dxdt, ||y||2i = (y, y)i,

< y, y′ >ij=
∫

Σij×(0,T )

yy′dxdt, ||y||2ij =< y, y >ij ,

< y, y′ >N,i=
∫

ΓN,i×(0,T )

yy′dsdt, ||y||2N,i =< y, y >N,i .

(11)
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According to these definitions, we establish the iterative
scheme of (7)-(8) on Ωi

(
∂yk+1

i

∂t
, v)i + (∇yk+1

i ,∇v)i = (f, v)i

+ < uk+1
i + g, v >ΓN,i

+
∑

i6=j,Σij 6=∅

<
∂yk+1

i

∂~νi
, v >ij ,

−(
∂pk+1

i

∂t
, v)i + (∇pk+1

i ,∇v)i = γ(yk+1
i − zd, v)i

+
∑

i6=j,Σij 6=∅

<
∂pk+1

i

∂~νi
, v >ij ,

(12)
where v ∈ H0,ΓD,i

= {v ∈ H1(Ωi)|v = 0, when x on ΓD,i}.
At the same time, we should put forward the boundary

conditions on the interfaces between the subdomains. These
conditions are taken the form of Robin condition, where the
state and co-state variables are skew-symmetrically coupled
[14]:

∂yk+1
i

∂~νi
+ βpk+1

i = −
∂yk

j

∂~νj
+ βpk

j , on Σij ,

∂pk+1
i

∂~νi
− βyk+1

i = −
∂pk

j

∂~νi
− βyk

j , on Σij ,

(13)

where the constant β > 0.
These conditions are called as the transmission conditions,

because they can strengthen the continuity of the solutions
of local problems and theirs directional derivative on Σij

at successive iteration steps. So the global problem can be
composed by the local problems. The value of β will be
selected in Section IV.

B. Proof of convergence

In the section, we define the local error between the global
and local solution in Ωi

(ȳi, p̄i, ūi) = (y, p, u) − (yi, pi, ui). (14)

It is easy to see that this error (ȳi, p̄i, ūi) also satisfies the
coupled equations (7)-(9) and (12)-(13), where f = 0, g = 0,
y1 = 0, yd = 0.

We use the following sequence of energies on the inter-
faces between subdomains to prove the convergence

Ek+1 =
∑

i6=j, Σij 6=∅

{
‖∂ȳk+1

i

∂~νi
‖2

ij + ‖βp̄i‖2
ij + ‖∂p̄k+1

i

∂~νi
‖2

ij

+‖βȳk+1
i ‖2

ij

}
.

(15)
Now, if we take the place of (yk+1

i , pk+1
i , uk+1

i ) by
(ȳk+1

i , p̄k+1
i , ūk+1

i ) in (12)-(13), then (15) becomes

Ek+1 = Ek − 2β
∑

i6=j,Σij 6=∅

{
<

∂ȳk+1
i

∂~νi
, p̄k+1

i >ij

− <
∂p̄k+1

i

∂~νi
, ȳk+1

i >ij + <
∂ȳk

i

∂~νi
, p̄k

i >ij

− <
∂p̄k

i

∂~νi
, ȳk

i >ij

}
.

(16)

We take the place of (yk+1
i , pk+1

i , uk+1
i ) by

(ȳk+1
i , p̄k+1

i , ūk+1
i ) in (7)-(8). These equations are multiplied

by p̄k+1
i and ȳk+1

i , and integrated by parts in spaces-time

domain, respectively. Then, we can get the following two
equations

−(ȳk+1
i ,

∂p̄k+1
i

∂t
) + (∇ȳk+1

i ,∇p̄k+1
i )i

=< ūk+1
i , p̄k+1

i >ΓN,i
+ <

∂ȳk+1
i

∂~νi
, p̄k+1

i >∂Ωi/ΓN,i
,

(17)
and

−(
∂p̄k+1

i

∂t
, ȳk+1

i ) + (∇p̄k+1
i ,∇ȳk+1

i )i

= γ(ȳk+1
i , ȳk+1

i )i+ <
∂p̄k+1

i

∂~νi
, ȳk+1

i >∂Ωi
.

(18)

Subtracting these above results (17)-(18), we obtain, for
all i,

−
∑

i6=j, Σij 6=∅

{< ∂ȳk+1
i

∂~νi
, p̄k+1

i >ij − <
∂p̄k+1

i

∂~νi
, ȳk+1

i >ij}

= −γ‖ȳk+1
i ‖2

i + < p̄k+1
i , ūk+1

i >ΓN,i
.

(19)
Now, we use the global and local inequality (6) and (9).

Under the assumptions (10), we take v = uk+1
i in (6) and

vi = u in (9), respectively. Subtracting the two inequalities,
we can get the estimate

< p̄k+1
i , ūk+1

i >ΓN,i
≤ −α‖ūk+1

i ‖2
ΓN,i

(20)

Combining (19) and (20) together, we can obtain the
following decrease law for the energies:

Ek+1 ≤ Ek − 2β
∑

i

{γ‖ȳk+1
i ‖2

i + α‖ūk+1
i ‖2

ΓN,i

+γ‖ȳk
i ‖2

i + α‖ūk
i ‖2

ΓN,i
}.

(21)

In a word, we can obtain that the sequence {Ek} is
bounded and monotone decreasing, then the limit of {Ek}
exists. The following result of convergence on each subdo-
main Ωi can be derived

‖ȳk+1
i ‖i

k−→ 0, ‖p̄k+1
i ‖i

k−→ 0, ‖ūk+1
i ‖ΓN,i

k−→ 0. (22)

Hence, the convergence of the scheme (7)-(9) is proven.

IV. NUMERICAL EXAMPLE

In this section, we present an example to prove the valid-
ity of the iterative non-overlapping domain decomposition
method mentioned in the above section.

We consider the model (1)-(4) by choosing Ω = [−2, 2]×
[−1/2, 1/2] and T = 1. Let ΓN = Γl ∪ Γr,ΓD = Γu ∪ Γd,
where Γl and Γr are the left and right edges of Ω, respec-
tively; Γu and Γd are the upside and downside edges. To
compare with the numerical solutions well, we suppose the
exact solutions of the model are: ∀ (x1, x2) ∈ Ω, t ∈ [0, T ]

y = (T − t) cos(πx1) cos(πx2),
p = −(T − t) cos(πx1) cos(πx2),
u = (T − t) cos(πx2),
zd = ((2π2 + 1)(T − t) + 1) cos(πx1) cos(πx2),
f = (2π2(T − t) − 1) cos(πx1) cos(πx2).

(23)
We divide Ω into two non-overlapping subdomains: Ω =

Ω1 ∪ Ω2, Ω1 = [−2, 0] × [−1/2, 1/2],Ω2 = [0, 2] ×
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[−1/2, 1/2], the inner boundary Γ0 = {0} × [−1/2, 1/2].
In the process of calculation, the numerical solutions are
computed on the triangular meshes, with different mesh size
h = 0.2, 0.1, 0.05 sequentially. The state variable y and co-
state variable p are approximated by piecewise linear finite
elements, while the control variable u is approximated by
piecewise constant finite elements.

Using Backward-Euler scheme to approximate the time
derivative, we get the following fully discrete iterative
scheme of (7)-(8)

(
yn+1,k+1

i − yn
i

∆t
, v)i + (∇yn+1,k+1

i ,∇v)i

= (fn+1, v)i+ < un+1,k+1
i + gn+1, v >ΓN,i

+
∑

i6=j,Σij 6=∅

<
∂yn+1,k+1

i

∂~νi
, v >ij ,

−(
pn+1,k+1

i − pn,k+1
i

∆t
, v)i + (∇pn,k+1

i ,∇v)i

= γ(yn+1,k+1
i − zn+1

d , v)i

+
∑

i6=j,Σij 6=∅

<
∂pn,k+1

i

∂~νi
, v >ij ,

(24)

where the first subscript n + 1 means at time tn+1 = (n +
1)∆t, while the second subscript k + 1 is for the iterative
step, and the time step size is ∆t = 0.1.

Reference [14] showed that some eigenvalues of the dis-
crete iteration operator are close to 1 and sometimes even
exceed 1 because of numerical errors. Hence, they suggested
to use an underrelaxed version of the transmission conditions
instead of (13). Following their ideas to our example, we take
the following form

∂yn+1,k+1
i

∂~νi
+ βpn+1,k+1

i

= ρ
(
−

∂yn+1,k
j

∂~νj
+ βpn+1,k

j

)
+(1 − ρ)

(∂yn+1,k
i

∂~νi
+ βpn+1,k

i

)
, on Σij ,

∂pn+1,k+1
i

∂~νi
− βyn+1,k+1

i

= ρ
(
−

∂pn+1,k
j

∂~νj
− βyn+1,k

j

)
+(1 − ρ)

(∂pn+1,k
i

∂~νi
− βyn+1,k

i

)
, on Σij .

(25)
Here, the parameter belongs to (0, 1) and is always chosen
as ρ = 1/2. It is easy to see that the similar convergence
proof as Section III can also be established with (25).
The parameter β has a decisive influence on the speed of
convergence. We choose β = 1/h for each case of our
numerical calculations.

We present the following numerical results at t = 0.5
for examples. Tables I and II show L2-norm error and
convergence rate of variables y, p and u in subdomain Ω1

and Ω2, respectively.
We choose four points on Γ0 as examples to show the

effect of the computations. Table III considers for the state

TABLE III
THE COMPARISON OF STATE VARIABLE y ON THE INTERFACE Γ0

(x1, x2) y y1 y2 |y1 − y2|
(0, 0.40) 0.1545 0.1543 0.1542 1.2179e − 04

(0, 0.15) 0.4455 0.4428 0.4430 1.7229e − 04

(0,−0.10) 0.4755 0.4720 0.4723 2.8156e − 04

(0,−0.35) 0.2270 0.2265 0.2265 1.0729e − 05

TABLE IV
THE COMPARISON OF CO-STATE VARIABLE p ON THE INTERFACE Γ0

(x1, x2) y y1 y2 |y1 − y2|
(0, 0.40) −0.1545 −0.1545 −0.1544 8.7926e − 05

(0, 0.15) −0.4455 −0.4438 −0.4440 2.6234e − 04

(0,−0.10) −0.4755 −0.4737 −0.4741 3.7825e − 04

(0,−0.35) −0.2270 −0.2270 −0.2271 5.8858e − 05

variable, where y is the exact solution, y1 and y2 are
the approximate solutions in Ω1 and Ω2, respectively. And
similarly, Table IV shows for the co-state variable p.

Taking the case of h = 0.05 for an example, Figures
1-6 below present the figure of the exact and approximate
solution for variables y, p and u, respectively.

For the case of h = 0.05, Figure 7 presents the trends
of objective functional J(u) in Ω1 and Ω2, when choosing
α = 0.1 and α = 0.01 differently. The iteration numbers of
J(u) change insignificantly as long as the decreasing of the
value of α, since the value of α

∫
ΓN×(0,T )

u2ds has a small
influence on the whole value of J(u).

V. CONCLUSION

We have considered an iterative non-overlapping domain
decomposition method for solving optimal boundary control
problems governed by parabolic equations. The iterative
scheme was established. The whole domain was divided
into many non-overlapping subdomains, and Robin condi-
tions were used to communicate the local problems on the
interfaces between subdomains. We proved the convergence
of the iterative scheme and presented a numerical example
to verify the validity of the iterative scheme.

In this paper, the parabolic equations were linear, and
the objective functional was defined over the whole time
interval [0, T ]. We can extend our method to the case of
nonlinear parabolic equations with the objective functional
at the final state. The results for this case will be presented
in a forthcoming paper.
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TABLE I
L2-NORM ERROR AND CONVERGENCE RATE IN SUBDOMAIN Ω1

h y p u
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Fig.2. The exact and approximate solution of y in subdomain Ω2
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Fig.4. The exact and approximate solution of p in subdomain Ω2
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Fig.5. The exact and approximate solution of u in subdomain Ω1
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Fig.6. The exact and approximate solution of u in subdomain Ω2
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Fig.7. The functional J(u) in Ω1 and Ω2 at h = 0.05
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