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Abstract—By employing continuation theorem of the coinci-
dence degree, and inequality technique, some sufficient condi-
tions are established for the existence of periodic solution and
global exponential stability of fuzzy cellular neural networks
with time-varying delays. These results have important leading
significance in the design and applications of globally stable
neural networks. Moreover an example is given to illustrate
the effectiveness and feasible of results obtained.

Index Terms—fuzzy cellular neural networks, periodic solu-
tion, global exponential stability, time-varying delays.

I. INTRODUCTION

CELLULAR neural network is formed by many units
named cells, and that cell contains linear and nonlinear

circuit elements, which typically are linear capacitor, linear
resistor, linear and nonlinear controlled source, and inde-
pendent sources. Nowadays, cellular neural networks(CNNs)
are widely used in signal and image processing, associative
memories, pattern classification ([1], [2], [3], [4], [5], [6]).
In the last decade, dynamic behaviors of CNNs have been
intensively studied because of the successful hardware im-
plementation and their widely application (see, for example,
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25]).

In recent years, many researchers pay much attention to
dynamical behavior and application of fuzzy neural network
(see [27], [28]). In this paper, we would like to integrate
fuzzy operations into cellular neural networks. Speaking of
fuzzy operations, Yang and Yang [29] first introduced fuzzy
cellular neural networks (FCNNs) combining those opera-
tions with cellular neural networks. So far researchers have
founded that FCNNs are useful in image processing, and
some results have been reported on stability and periodicity
of FCNNs ([29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39]). However, to the best of our knowledge,
few author investigated the stability of fuzzy cellular neural
networks with time-varying delays.
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This paper is concerned with the existence, and the global
exponential stability of periodic solution for the following
fuzzy cellular neural networks

x′i(t) = −ci(t)xi(t) +
n∑
j=1

aij(t)fj(xj(t))

+
n∧
j=1

αij(t)fj(xj(t− τij(t)))

+
n∨
j=1

βij(t)fj(xj(t− τij(t))) + Ii(t) (1)

+

m∧
j=1

Tij(t)uj(t) +

n∨
j=1

Hij(t)uj(t),

i = 1, 2, · · · , n, where n corresponds to the number of
neurons in neural networks. xi(t) is the activations of the ith
neuron at time t. ci(t) denotes the rate with which the ith
neuron will reset its potential to the resting state in isolation
when disconnected from the network and external inputs;∧

and
∨

denote the fuzzy AND and fuzzy OR operations.
aij(t) denotes the strengths of connectivity between cell
i and cell j at time t. αij(t), βij(t), Tij(t) and Hij(t)
are elements of fuzzy feedback MIN template and fuzzy
feedback MAX template, fuzzy feed-forward MIN template
and fuzzy feed-forward MAX template between cell i and
j at time t. τij(t) corresponds to the time delay required in
processing and transmitting a signal from the jth cell to the
ith cell at time t. uj(t) and Ii(t) denote the external input,
bias of the ith neurons at time t, respectively. fj(·) is signal
transmission functions.

Throughout the paper, we give the following assumptions
(A1) |fj(x)| ≤ pj |x| + qj for all x ∈ R, j = 1, 2, · · · , n,
where pj , qj are nonnegative constants.
(A2) The signal transmission functions fj(·)(j =
1, 2, · · · , n) are Lipschtiz continuous on R with Lipschtiz
constants pj , namely, for any x, y ∈ R

|fj(x)− fj(y)| ≤ pj |x− y|, fj(0) = gi(0) = 0.

Definition 1.1 If f(t) : R → R is a continuous function,
then the upper right derivative of f(t) is defined as

D+f(t) = lim
h→0+

sup
1

h
(f(t+ h)− f(t)).

Let τ = max1≤i,j≤n supt≥0{τij(t)}. For continuous func-
tions ϕi(i = 1, 2, · · · , n) defined on [−τ, 0], we set Ψ =
(ϕ1, ϕ2, · · · , ϕn)T . If x(t) = (x1(t), x2(t), · · · , xn(t))T is
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an ω−periodic solution of system (1), then we denote

‖Ψ− x‖ =
n∑
i=1

( sup
−τ≤t≤0

|ϕi(t)− xi(t)|).

Assume that system (1) is supplemented with initial value of
type

xi(t) = ϕi(t), −τ ≤ t ≤ 0.

Definition 1.2 The periodic solution x(t) =
(x1(t), x2(t), · · · , xn(t))T is said to be globally
exponentially stable. If there exist constants
λ > 0 and M ≥ 1 such that for any solution
x(t) = (x1(t), x2(t), · · · , xn(t))T of system (1)

|xi(t)− xi(t)| ≤M‖Ψ− x‖e−λt, t ≥ 0. (2)

Lemma 1.1(see [26]) If ρ(K) < 1 for matrix K =
(kij)n×n ≥ 0, then (E − K)−1 ≥ 0, where E denotes the
identity matrix of size n.

Lemma 1.2(see [29]) Suppose x and y are two states of
system (1), then we have∣∣∣∣∣∣

n∧
j=1

αij(t)fj(x) −
n∧
j=1

αij(t)fj(y)

∣∣∣∣∣∣
≤

n∑
j=1

|αij(t)||fj(x)− fj(y)|,

and ∣∣∣∣∣∣
n∨
j=1

βij(t)fj(x) −
n∨
j=1

βij(t)fj(y)

∣∣∣∣∣∣
≤

n∑
j=1

|βij(t)||fj(x)− fj(y)|.

The remainder of this paper is organized as follows. In
Section 2, we will give the sufficient conditions to ensure the
existence of periodic oscillatory solution for fuzzy cellular
neural networks with time-varying delays, and show that all
other solutions converge exponentially to it as n → ∞. In
Section 3, an example will be given to illustrate effectiveness
of results obtained. We will give a general conclusion in
Section 4.

II. PERIODIC OSCILLATORY SOLUTIONS

In this section, we will consider the existence and glob-
al stability of periodic oscillatory solutions of system (1)
with τij(t), ci(t), aij(t), αij(t), βij(t), Tij(t), Hij(t), uj(t)
and Ii(t) satisfying the following assumptions:

(A3) τij(·) ∈ C(R, [0,∞)) are periodic with common
period ω for i, j = 1, 2, · · · , n.
(A4) ci(·) ∈ C(R, (0,∞)), aij(·), αij(·), βij(·), Tij(·), Hij(·),
uj(·), Ii(·) ∈ C(R,R) are periodic with common periodic
ω, and fi(·) ∈ C(R,R), i, j = 1, 2, · · · , n.

We will use the coincidence degree theory to obtain the
existence of an ω-periodic solution to system (1). For the
sake of convenience, we briefly summarize the theory as
below.

Let X and Z be normed spaces, L : DomL ⊂ X 7→ Z be
a linear mapping and N : X 7→ Z be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimKerL = codim ImL < ∞ and ImL is closed in
Z. If L is a Fredholm mapping of index zero, then there exist
continuous projectors P : X 7→ X and Q : Z 7→ Z such that
ImP = KerL and ImL = KerQ = Im(I − Q). It follows
that L|DomL ∩ KerP : (I − P )X 7→ ImL is invertible. We
denote the inverse of this map by Kp. If Ω is a bounded
open subset of X , the mapping N is called L-compact on
Ω. if QN(Ω) is bounded and Kp(I − Q)N : Ω 7→ X is
compact. Because ImQ is isomorphic to KerL, there exists
an isomorphism J : ImQ 7→ KerL.

Let Ω ⊂ Rn be open and bounded, f ∈
C1(Ω, Rn)

⋂
C(Ω, Rn) and y ∈ Rn\f(∂Ω

⋃
Sf ), i.e., y is

a regular value of f . Here, Sf = {x ∈ Ω : Jf (x) = 0}, the
critical set of f , and Jf is the Jacobian of f at x. Then the
degree (deg{f,Ω, y}) is defined by

deg{f,Ω, y} =
∑

x∈f−1(y)

sgnJf (x)

with the agreement that the above sum is zero if f−1(y) = Φ.

Lemma 2.1 Let L be a Fredholm mapping of index zero and
let N be L-compact on Ω. Suppose that
(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is
such that x /∈ ∂Ω.
(b) QNx 6= 0 for each x ∈ ∂Ω

⋂
KerL and

deg{JQN,Ω
⋂

KerL, 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying
in DomL

⋂
Ω.

To be convenience, in the rest of paper, for a continuous
function g : [0, ω] 7→ R, we denote

g+ = max
t∈[0,ω]

g(t), g− = min
t∈[0,ω]

g(t), ḡ =
1

ω

∫ ω

0

g(t)dt.

Theorem 2.1 Under assumptions (A1), (A3) and (A4),
kij =

(
1
c̄ + ω

)
(|aij | + |αij | + |βij |)pj , K = (kij)n×n.

Suppose that ρ(K) < 1, then system (1) has at least an
ω-periodic solution.

Proof. Take X = Z = {x(t) = (x1(t), x2(t), · · · , xn(t))T ∈
C(R,Rn) : x(t + ω) = x(t), t ∈ R} and denote ‖x‖ =
max1≤i≤n maxt∈[0,ω] |xi(t)|. Equipped with the norm ‖ · ‖,
both X and Z are Banach space. For any x(t) ∈ X , it is
easy to check that

Θ(xi, t) := −ci(t)xi(t) +
n∑
j=1

aij(t)fj(xj(t))

+

n∧
j=1

αij(t)fj(xj(t− τij(t)))

+
n∨
j=1

βij(t)fj(xj(t− τij(t))) + Ii(t)

+
m∧
j=1

Tij(t)uj(t) +
n∨
j=1

Hij(t)uj(t) ∈ Z.

Let

L : Dom L = {x ∈ X : x ∈ C(R,Rn)} 3 x 7→ ẋ(·) ∈ Z.
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P : X 3 x 7→ 1

ω

∫ ω

0

x(t)dt ∈ X,

Q : Z 3 z 7→ 1

ω

∫ ω

0

z(t)dt ∈ Z,

N : X 3 x 7→ Θ(x, ·) ∈ Z.

For any V = (v1, v2, · · · , vn) ∈ Rn, we identify it as
the constant function in X or Z with the value vector
V = (v1, v2, · · · , vn). Then system (1) can be reduced
to operator equation Lx = Nx. It is easy to see that
KerL = Rn, ImL = {z ∈ Z : 1

ω

∫ ω
0
z(t)dt = 0}. Which

is closed in Z, dimKerL = codimImL = n < ∞, and P,Q
are continuous projectors such that ImP = KerL,KerQ =
ImL = Im(I −Q). It follows that L is a Fredholm mapping
of index zero. Furthermore, the generalized inverse (to L)
Kp : ImL 7→ KerP ∩ DomL given by

(Kp(z))i(t) =

∫ t

0

zi(s)ds−
1

ω

∫ ω

0

∫ s

0

zi(v)dvds.

Therefore, applying the Arzela-Ascoli theorem, one can
easily show that N is L-compact on Ω̄ with any bounded
open subset Ω ⊂ X . Since ImQ = KerL, we take the
isomorphism J of ImQ onto KerL to be the identity mapping.

Now we need only to show that, for an appropriate open
bounded subset Ω, application of the continuation theorem
corresponding to the operator equation Lx = λNx, λ ∈
(0, 1), Let

ẋi(t) = λΘ(xi, t) i = 1, 2, · · · , n. (3)

Assume that x = x(t) ∈ X is a solution of system (3) for
some λ ∈ (0, 1). Integrating (3) over the interval [0, ω], we
obtain that

0 =

∫ ω

0

ẋi(t)dt = λ

∫ ω

0

Θ(xi, t)dt. (4)

Hence∫ ω
0

ci(t)xi(t)dt

=

∫ ω

0


n∑
j=1

aij(t)fj(xj(t))

+
n∧
j=1

αij(t)fj(xj(t− τij(t)))

+
m∧
j=1

Tij(t)uj(t) +
n∨
j=1

βij(t)fj(xj(t− τij(t)))

+
n∨
j=1

Hij(t)uj(t) + Ii(t)

 dt. (5)

Noting assumption (A1), we get

|xi|−ci ≤
n∑
j=1

(|aij |+ |αij |+ |βij |)pj |xj |+

+
n∑
j=1

(|aij |+ αij |+ |βij |)qj + |Ii|

+
n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+. (6)

It follows that

|xi|− ≤ 1

ci

n∑
j=1

(|aij |+ |αij |+ |βij |)pj |xj |+

+
1

ci


n∑
j=1

(|aij |+ αij |+ |βij |)qj

 (7)

+
1

ci


n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+ + |Ii|

 .

Note that each xi(t) is continuously differentiable for i =
1, 2, · · · , n, it is certain that there exists ti ∈ [0, ω] such that
|xi(ti)| = |xi(t)|−. Set F = (F1, F2, · · · , Fn)T , where

Fi = (
1

ci
+ ω)


n∑
j=1

(|aij |+ αij |+ |βij |)qj

+
n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+ + |Ii|

 . (8)

In view of ρ(K) < 1 and Lemma 1.1, we have (E −
K)−1F = h = (h1, h2, · · · , hn)T ≥ 0, where hi is given
by

hi =
n∑
j=1

kijhj + Fi, i = 1, 2, · · · , n. (9)

Set

Ω = {(x1, x2, · · · , xn)T ∈ Rn : |xi| < hi, i = 1, 2, · · · , n}.
(10)

Then, for t ∈ [ti, ti + ω], we have

|xi(t)| ≤ |xi(ti)|+
∫ t

ti

D+|xi(t)|dt

≤ |xi(t)|− +

∫ t+ω

ti

D+|xi(t)|dt

≤ 1

ci

n∑
j=1

(|aij |+ |αij |+ |βij |)pj |xj |+

+
1

ci


n∑
j=1

(|aij |+ αij |+ |βij |)qj

+
n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+ + |Ii|


+

∫ t+ω

ti

D+|xi(t)|dt

≤ (
1

ci
+ ω)


n∑
j=1

(|aij |+ |αij |+ |βij |)pj |xj |+


+(
1

ci
+ ω)


n∑
j=1

(|aij |+ αij |+ |βij |)qj

+
n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+ + |Ii|


≤

n∑
j=1

kijhj + Fi = hi. (11)
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Clearly, hi, i = 1, 2, · · · , n, are independent of λ. Then for
∀λ ∈ (0, 1), x ∈ ∂Ω such that Lx 6= λNx. When u =
(x1, x2, · · · , xn)T ∈ ∂Ω∩KerL = ∂Ω∩Rn, u is a constant
vector with |xi| = hi, i = 1, 2, · · · , n. Note that QNu =
JQNu, when u ∈ KerL, it must be

(QN)ui = −cixi +
n∑
j=1

(aij + αij + βij)f(xj)

+
n∧
j=1

Tijuj +
n∨
j=1

Hijuj + Ii. (12)

We claim that

‖(QNu)i‖ > 0, i = 1, 2, · · · , n. (13)

On the contrary, suppose that there are some i such
that‖(QNu)i‖ = 0, namely

cixi =
n∑
j=1

(aij+αij+βij)f(xj)+
n∧
j=1

Tijuj+
n∨
j=1

Hijuj+Ii.

(14)
Then we have

hi = |xi| =
1

ci

∣∣∣∣∣∣
n∑
j=1

(aij + αij + βij)f(xj)

+
n∧
j=1

Tijuj +
n∨
j=1

Hijuj + Ii

∣∣∣∣∣∣
≤ 1

ci


n∑
j=1

(|aij |+ |αij |+ |βij |)pjhj

+
n∑
j=1

(|aij |+ |αij |+ |βij |)qj

+
n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+ + |Ii|


< (

1

ci
+ ω)


n∑
j=1

(|aij |+ |αij |+ |βij |)pj |hj |+


+(
1

ci
+ ω)


n∑
j=1

(|aij |+ αij |+ |βij |)qj

+
n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+ + |Ii|


=

n∑
j=1

kijhj + Fj . (15)

Which is a contradiction. Therefore (13) holds and

QNu 6= 0, for u ∈ ∂Ω ∩ kerL = ∂Ω ∩Rn. (16)

Consider the homotopy Φ : (Ω∩KerL)× [0, 1] 7→ Ω∩KerL
defined by

Φ(u, µ) = µdiag(−c1,−c2, · · · ,−cn)u+(1−µ)QNu. (17)

Note that Φ(·, 0) = JQN , if Φ(u, µ) = 0, then we have

|xi| =
1− µ
ci

∣∣∣∣∣∣
n∑
j=1

(aij + αij + βij)f(xj)

+
n∧
j=1

Tijuj +
n∨
j=1

Hijuj + Ii

∣∣∣∣∣∣
≤ 1

ci


n∑
j=1

(|aij |+ |αij |+ |βij |)pjhj

+
n∑
j=1

(|aij |+ |αij |+ |βij |)qj

+
n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+ + |Ii|


< (

1

ci
+ ω)


n∑
j=1

(|aij |+ |αij |+ |βij |)pj |hj |+


+(
1

ci
+ ω)


n∑
j=1

(|aij |+ αij |+ |βij |)qj

+
n∧
j=1

|Tij ||uj |+ +
n∨
j=1

|Hij ||uj |+ + |Ii|


=

n∑
j=1

kijhj + Fj . (18)

Therefore Φ(u, µ) 6= 0 for any (u, µ) ∈ (Ω ∩ KerL). It
follows from the property of invariance under homotopy that

deg {JQN,Ω ∩ KerL, 0}
= deg{Φ(·, 0),Ω ∩ KerL, 0}
= deg{Φ(·, 1),Ω ∩ KerL, 0}
= deg{diag(−c1,−c2, · · · ,−cn)}
6= 0.

Thus, we have shown that Ω satisfies all the assumptions of
Lemma 2.1. Hence, Lu = Nu has at least one ω-periodic
solution on DomL ∩ Ω. This completes the proof.

Theorem 2.2 Let τ = max1≤i,j≤n,t∈[0,ω]{τij(t)}. Suppose
that (A2), (A3) and (A4) hold, ρ(K) < 1, and that

ci −
n∑
j=1

(|aij |+ |αij |+ |βij |)pjec
+τ > 0, (19)

then system (1) has exactly one ω−periodic solution x̃(t).
Moreover it is globally exponentially stable.

Proof. Let C = C([−τ, 0], Rn) with the norm ‖ϕ‖ =
sups∈[−τ,0],1≤i≤n |ϕi(s)|. From (A2), we can get |fj(u)| ≤
pj |u| + |fj(0)| = pj |u|, j = 1, 2, · · · , n. Hence al-
l hypotheses in Theorem 2.1 with qj = fj(0) = 0
hold. Thus system (1) has at least one ω-periodic solu-
tion, say x(t) = (x1(t), x2(t), · · · , xn(t))T . Let x(t) =
(x1(t), x2(t), · · · , xn(t))T be an arbitrary solution of system
(1). Calculating the right derivative D+|xi(t) − xi(t)| of
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|xi(t)− xi(t)| along the solutions of system (1)

D+ |xi(t)− xi(t)|
≤ −ci(t)|xi(t)− xi(t)|

+
n∑
j=1

|aij(t)[fj(xj(t))− fj(xj(t))]|

+

∣∣∣∣∣∣
n∧
j=1

αij(t)fj(xj(t− τij(t)))

−
n∧
j=1

αij(t)fj(xj(t− τij(t)))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∨
j=1

βij(t)fj(xj(t− τij(t)))

−
n∨
j=1

βij(t)fj(xj(t− τij(t)))

∣∣∣∣∣∣
≤ −ci(t)|xi(t)− x̃i(t)|+

n∑
j=1

|aij(t)|pj |xj(t)− xj(t)|

+

n∑
j=1

|αij(t)|pj |xj(t− τij(t))− xj(t− τij(t))|

+

n∑
j=1

|βij(t)|pj |xj(t− τij(t))− xj(t− τij(t))|

≤ −ci(t)|xi(t)− xi(t)|+
n∑
j=1

(|aij(t)|+ |αij(t)|

+|βij(t)|)pj sup
t−τ≤s≤t

|xj(s)− xj(s)|. (20)

Let zi(t) = |xi(t) − xi(t)|. Then (20) can be transformed
into

D+zi(t) ≤ −ci(t)zi(t) +
n∑
j=1

(|aij(t)|+ |αij(t)|

+|βij(t)|)pj sup
t−τ≤s≤t

zj(s). (21)

Thus, for t > t0, we have

D+ (zi(t)e

∫ t
t0
ci(s)ds

) ≤
n∑
j=1

(|aij(t)|+ |αij(t)|

+|βij(t)|)pj‖zt‖e
∫ t
t0
ci(s)ds

. (22)

It follows that

zi(t) e

∫ t
t0
ci(s)ds ≤ |zi(t0)|

+

∫ t

t0


n∑
j=1

(|aij(u)|+ |αij(u)|

+|βij(u)|)pj‖zu‖e
∫ u
t0
ci(s)ds

}
du. (23)

Thus, for any θ ∈ [−τ, 0], we have

e

∫ t+θ
t0

ci(s)ds
= e

(
∫ t
t0

+
∫ t+θ
t

)ci(s)ds ≥ e
∫ t
t0
ci(s)ds−c+i τ . (24)

Therefore

e

∫ t
t0
ci(s)ds−c+i τzi(t+ θ) ≤ e

∫ t+θ
t0

ci(s)ds
zi(t+ θ)

≤ ‖zt0‖+

∫ t

t0


n∑
j=1

(|aij(u)|+ |αij(u)|+ |βij(u)|)

× pj‖zu‖e
∫ u
t0
ci(s)ds

}
du.

It follows that

e

∫ t
t0
ci(s)ds‖zt‖ ≤ ec

+
i
τ‖zt0‖+

∫ t

t0

ec
+
i
τ


n∑
j=1

(|aij(u)|

+|αij(u)|+ |βij(u)|)pj‖zu‖e
∫ u
t0
ci(s)ds

}
du. (25)

By Gronwall’s inequality, we obtain

‖zt‖ ≤ ec
+τ‖zt0‖

× e

∫ t
t0
ec

+τ
∑n

j=1
(|aij(u)|+|αij(u)|+|βij(u)|)pjdu

× e

∫ t
t0
−ci(s)ds

, t ≥ t0. (26)

Let t0 = 0, for t ≥ 0, [s] denotes the largest integer less than
or equal to s. Noting that [ tω ] ≥ t

ω − 1 and (19), we get

‖zt‖ ≤ ec
+τ‖z0‖

× e

∫ t
0
ec

+τ
∑n

j=1
(|aij(u)|+|αij(u)|+|βij(u)|)pjdu

× e

∫ t
0
−ci(s)ds

= ec
+τ‖z0‖eH(t)

≤ e
c+τ+(−ci+

∑n

j=1
(|aij |+|αij |+|βij)|pjec

+τ )ω[ tω ]‖z0‖

× exp


∫ t

ω[ tω ]

−ci(s) +
n∑
j=1

(|aij(s)|+ |αij(s)|

+|βij(s)|) pjec
+
i
τ
)
ds
}

≤ ec
+τ‖z0‖e

−(ci−
∑n

j=1
(|aij |+|αij |+|βij |)pjec

+τ )t

= M‖z0‖e−λt, (27)

where H(t) =
(∫ ω[ tω ]

0
+
∫ t
ω[ tω ]

)
ec

+τ
∑n
j=1((|aij(s)| +

|αij(s)| + |βij(s)|)pj − ci(s))ds, M = max1≤i≤n{ec
+
i
τ},

λ = min1≤i≤n{ci −
∑n
j=1(|aij | + |αij | + |βij |)|pjec

+τ}.
From (27), it is clear that periodic solution xi(t) is global
exponentially stable. This completes the proof of Theorem
2.2.

III. AN ILLUSTRATIVE EXAMPLE

Example 3.1 Consider the following fuzzy cellular neural
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networks with delays

x′1(t) = −c1(t)x1(t) +
∑2
j=1 a1j(t)fj(xj(t))

+
∧2
j=1 α1j(t)fj(xj(t− τ1j(t))) + I1(t)

+
∨2
j=1 β1j(t)fj(xj(t− τ1j(t)))

+
∧2
j=1 T1j(t)uj(t) +

∨2
j=1H1j(t)uj(t)

x′2(t) = −c2(t)x2(t) +
∑2
j=1 a2j(t)fj(xj(t))

+
∧2
j=1 α2j(t)fj(xj(t− τ2j(t))) + I2(t)

+
∨2
j=1 β2j(t)fj(xj(t− τ2j(t)))

+
∧2
j=1 T2j(t)uj(t) +

∨2
j=1H2j(t)uj(t),

(28)
where

c1(t) = 4 + sin t, c2(t) = 3 + cos t,

f1(x) = sin(
1

3
x) +

1

4
, f2(x) = cos(

1

3
x) +

1

3
,

a11(t) = α11(t) = β11(t) =
1

4
+ sin t,

a12(t) = α12(t) = β12(t) =
1

5
+ cos t,

a21(t) = α21(t) = β21(t) =
1

6
+ sin t,

a22(t) = α22(t) = β22(t) =
1

7
+ cos t,

Tij(t) = Hij(t) = sin t, (i, j = 1, 2),

τ11(t) = τ12(t) =
1

3
sin t, τ21(t) = τ22(t) =

1

3
cos t,

I1(t) = 2 sin t, I2(t) = 3 cos t, u1(t) = u2(t) = 4 sin t.

By simple computation, we have

c1 = 4, c2 = 3, a11 = α11 = β11 =
1

4
,

a12 = α12 = β12 =
1

5
, c+ = 5,

a21 = α21 = β21 =
1

6
, a22 = α22 = β22 =

1

7
,

c+ = 5, p1 = p2 =
1

3
, τ =

1

3
.

It can be easily check that all the conditions of Theorem 2.1
and Theorem 2.2 are satisfied. Thus system (28) has at least
2π−periodic solution which is global exponentially stable.

IV. CONCLUSION

In this paper, we have studied the existence, and expo-
nential stability of the periodic solution for fuzzy cellular
neural networks with time-varying delays. Some sufficient
conditions set up here are easily verified and these conditions
are correlated with parameters and time delays of the system
(1). The obtained criteria can be applied to design globally
exponentially periodic oscillatory fuzzy cellular neural net-
works.
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