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Abstract—The modeling and pricing of covariance swap
derivatives under correlated stochastic volatility models are
studied. The pricing problem of the derivative under the case
of discrete sampling covariance is mainly discussed, by efficient
Control Variate Monte Carlo simulation. Based on the closed
form solutions derived for approximate models with correlated
deterministic volatility by partial differential equation method,
two kinds of acceleration methods are therefore proposed when
the volatility processes obey the Hull-White stochastic processes.
Through analyzing the moments for the underlying processes,
the efficient control volatility under the approximate model
is constructed to make sure the high correlation between the
control variate and the problem. The numerical results illustrate
the high efficiency of the control variate Monte Carlo method;
the results coincide with the theoretical results. The idea in
the paper is also applicable for the valuation of other financial
derivatives with discrete features under multi-factor models.

Index Terms—Covariance swap, Stochastic volatility, Monte
Carlo, Control variate, Variance reduction.

I. INTRODUCTION

MONTE Carlo method is a numerical method based on
the probability theory. Monte Carlo method becomes

more and more popular, as the rapid growth of the financial
derivative markets and the increase of the complexity of the
pricing models. The advantage of Monte Carlo method is that
the efficiency of the method is independent of the number
of state variables. If the number of state variables is greater
than three, Monte Carlo method is suitably used to solve
the high dimensional pricing problem and often becomes the
only computationally feasible means of derivative pricing.

Suppose the price of the derivative µ = E[V ] will be
estimated by mean value V n = 1

n

∑n
i=1 Vi, where {Vi}ni=1

are independent and identical distribution (i.i.d) samples of
the random variable V . Then by the Central Limit Theorem,
the price µ asymptotically falls into the interval

[V n − σn√
n
Z δ

2
, V n +

σn√
n
Z δ

2
],
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with probability 1 − δ, where σn is the standard deviation
of estimation of V , δ is significance level and Z δ

2
is the

quantile of standard normal distribution under δ
2 . The error

is σn√
n
Z δ

2
, which just rely on the deviation σ and sample

storage n.However, although Monte Carlo method is easy
to implement and effective to solve the multi-dimensional
problem, it’s disadvantage is its slow convergence. The
convergence rate of Monte Carlo method is O(n− 1

2 ). We
have to spend 100 times as much as computer time in order
to reduce the error by a factor of 10 [8].

Many financial practitioners and researchers concentrate
on the problem of computational efficiency, several ap-
proaches to speed up Monte Carlo simulation, such as
control variate, antithetic variables, importance sampling and
stratification[7] have been proposed over the last few years.
These techniques aim to reduce the variance per Monte Carlo
simulation so that a given level of accuracy can be achieved
with a smaller number of simulations. Control variate is one
of the most widely used variance reduction techniques, main-
ly because of the simplicity of its implementations, and the
fact that it can be accommodated in an existing Monte Carlo
calculator with a small effort. This paper mainly studies the
pricing of covariance derivatives under correlated stochastic
volatility models through fast Monte Carlo simulation.

Different control variates are proposed to accelerate the
convergence rate of the simulation errors, based on the
closed form solutions of simplified models. The numerical
experiments show the high efficiency of our acceleration
methods, which can also be extended to the pricing of other
path-dependent derivatives in an extended Black-Scholes
framework, such as Asian options, Lookback options and
other variance derivatives.

The covariance swap is a covariance forward contact of
the underlying assets S1 and S2, and its payoff at expiration
is equal to

P = M × (CovR(S1, S2)−K2
cov),

where Kcov is a strike price, M is the notional amount,
and CovR(S1, S2) is the realized covariance between two
assets S1 and S2. Therefore, in the risk-neutral world, the fair
strike covariance can be attained by E[CovR(S1, S2)]. The
procedure for calculating the realized covariance is usually
clearly specified in the contract and includes details about
the source and observation frequency of the price of the
underlying assets, and the method to calculate the covariance.

The covariance swap is the main representation of the
new generation of variance and volatility swap derivatives,
and becoming very popular and actively traded in financial
practice in recent years. Variance and volatility derivatives
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are based on a single underlying asset. Their payoffs just
depend on the realized variance or volatility of the underlying
asset or an index. The market for variance and covariance
swaps has been growing, which are now actively quoted and
used to speculate on future (co)variance levels, to trade the
spread between implied and realized (co)variance levels, or
to hedge the (co)variance exposures of other positions by
many financial institutions. The objective of this paper is
to demonstrate the modeling and the pricing of a covariance
swap. This contract pays the excess of the realized covariance
between two currencies over a constant specified at the outset
of the contract. Such a contract is growing as a useful
complement for the variance contracts that trade OTC on
several currencies. By combining variance and covariance
swaps, the realized variance of return on a portfolio of
currencies can be locked in.

Logically, a correlation swap is a correlation forward
contract of two underlying rates S1 and S2, whose payoff
at expiration is equal to:

P = M × (CorrR(S1, S2)−Kcorr),

where Kcorr is a strike correlation, M is the notional amount,
and CorrR(S1, S2) is the realized correlation of two under-
lying assets S1 and S2. Therefore the fair strike correlation
is E[CorrR(S1, S2)]. The correlation CorrR(S1, S2) can be
presented by the covariance,

CorrR(S1, S2) =
CovR(S1, S2)

σR(S1)σR(S2)
.

Therefore, the modeling and pricing of correlation swap will
be attained with the research results of covariance swap.

The research on the pricing of variance swap and volatility
swap is very massive and we do not intend to give a list here.
We will give a brief introduction of the pricing of covariance
swap and correlation swap. As these are two-dimensional
path-dependent derivatives. Their pricing problems are more
difficult than general variance swap or volatility swap which
is only based on single underlying asset. Andrei Badescu
etal [1] discussed the analytical pricing of pseudo-variance,
pseudo-volatility, pseudo-covariance and pseudo-correlation
swaps. Sebastien Bossu [2]and[3] from JPMorgan proposed
a ”toy model” for modeling and pricing correlation swaps
on the components of an equity index and found that the
fair strike of a correlation swap is approximately equal
to a particular measure of implied correlation. Giovanni
Salvi and Anatoliy Swishchuk[4] researches the modeling
and pricing of covariance and correlation swaps with semi-
Markov volatilities assumption. Da Foneseca et al.[5] solved
a portfolio optimization problem in a market with risky
assets and volatility derivatives to discuss the influence of
variance and covariance swap in a market. J. Drissien etal
[6] discussed the price of correlation risk for equity options.
The research on the covariance swap and correlation swap
is developed extensively due to its importance and broad
applicability in risk-hedging, arbitrage and manage the risk
of the fund in the financial transactions.

In this paper, by PDE method and Monte Carlo variance
reduction techniques, the modeling and pricing of covariance
swap derivatives under the correlated stochastic volatility
structure are researched. Modeling and pricing of the deriva-
tives are separately discussed under the cases of continuously

and discretely sampled covariance. For the continuously
sampled covariance derivatives, a closed form solution is
derived directly by the PDE method. For the discretely
sampled covariance derivatives, two kinds of fast Monte
Carlo simulation methods are developed and studied. The
discretely sampled covariance derivatives are more applicable
in financial practice as the assets ”covariance” cannot be
observed directly in the market. The choice of efficient
control variates is also discussed in the paper.

The rest of the paper is arranged as follows. We begin by
modeling covariance swaps with the PDE method and ∆-
hedging principle under the stochastic volatility assumption
in Section 2. In Section 3, the first control variate method of
Monte Carlo simulation for the valuation of the covariance
swap is proposed. The analytical solution for the control
variate is attained. Then, with the moment analysis for the
underlying and auxiliary stochastic processes, an approx-
imate “optimal volatility” is provided for developing the
highly efficient control variate in this framework. In Section
4, the second improved control variate method is constructed
based on the algorithm in Section 3 and the choice of
the optimal control volatility constants is also considered.
In Section 5, the computational and analytical results are
illustrated and coincide with the theoretical analysis well.
Concluding remarks are given in Section 6.

II. MODELING AND PRICING OF COVARIANCE SWAP

IN this section, the partial differential equation pricing
model for the covariance swap under the correlated

stochastic volatility assumption is obtained. The variance
products are all derivatives based on stochastic volatility
model. The research on the stochastic volatility starts from
the early 1980’s. In 1973, Black and Scholes made a major
breakthrough by deriving pricing formulas for vanilla options
written on the stock. The Black-Scholes model assumes
that the volatility term is a constant. This assumption is
not always satisfied by real-life options as the probability
distribution of an equity has a fatter left tail and thinner
right tail than the lognormal distribution as in Hull [14],
and the assumption of constant volatility in financial model
is incompatible with derivatives prices observed in the mar-
ket, verified by volatility smile. The concept of stochastic
volatility was introduced by Hull and White (1987) [15], and
subsequent developments include the work of Scott (1987)
[19], Stein and Stein (1987)[16], Ball and Roma (1994)
[17], and Heston (1993) [18]. They proposed and improved
different stochastic volatility models to satisfy the various
needs in financial practice.

The stochastic volatility model used in this paper is the
Geometric Brownian Motion proposed by Hull and White
in 1987. Under the martingale measure, the underlying
assets and volatilities are assumed obeying the stochastic
differential equations:

dS(1)(t)

S(1)(t)
= rdt+ σ

(1)
t dW

(1)
t , σ

(1)
t =

√
Y (1)(t),

dY (1)(t)

Y (1)(t)
= µ(1)dt+ σ̂(1)dW

(3)
t . (1)

dS(2)(t)

S(2)(t)
= rdt+ σ

(2)
t dW

(2)
t , σ

(2)
t =

√
Y (2)(t),
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dY (2)(t)

Y (2)(t)
= µ(2)dt+ σ̂(2)dW

(4)
t . (2)

Where r is deterministic interest rate; µ(i) > 0, (i = 1, 2) is
the drift of the volatility; σ̂(i) > 0, (i = 1, 2) is the volatility
of volatility; W (i)

t , (i = 1, 2, 3, 4) are Wiener processes, and
Cov(dW

(i)
t , dW

(j)
t ) = ρijdt. We further suppose that the

market is no-arbitrage and no transaction costs. There are N
observation dates 0 = T0 < T1 < T2 <, · · · , < TN = T .
S
(1)
i = S(1)(Ti) and S

(2)
i = S(2)(Ti) are the asset price on

the ith date, and Y
(1)
i = Y (1)(Ti) and Y

(2)
i = Y (2)(Ti) are

the instantaneous variance at Ti. The payoff function for the
covariance swap at the maturity T is

V |t=T = M × [
N∑
i=1

1

T
(ln(

S
(1)
i

S
(1)
i−1

))(ln(
S
(2)
i

S
(2)
i−1

))−K2
cov]

= h(S
(1)
0 , S

(2)
0 , S

(1)
1 , S

(2)
1 , · · · , S(1)

N , S
(2)
N ). (3)

For the case of continuously sampled covariance, the payoff
function denoted by W (.) for the covariance swap at the
maturity T is

W |t=T = M × (
1

T

∫ T

0

ρ12

√
Y

(1)
t

√
Y

(2)
t dt−K2

cov), (4)

as the realized covariance of the two assets S(1) and S(2) is
given by Giovanni S.etal. [4]

CovR(S
(1), S(2)) =

1

T
[lnS

(1)
T , lnS

(2)
T ] =

1

T

∫ T

0

ρ12σ
(1)
t σ

(2)
t dt.

Then the pricing model for the price of the covariance
swap with continuously sampled covariance will be estab-
lished, and the closed form solution will be deduced.

Define a auxiliary state variable It to measure the accu-
mulated covariance of S(1) and S(2),

It =

∫ t

0
ρ12

√
Y (1)(s)

√
Y (1)(s)ds

t
.

This state variable is known at time t and satisfies the
ordinary differential equation,

dIt
dt

=
(ρ12

√
Y (1)(t)

√
Y (2)(t)− It)

t
.

The price process of the derivative is denoted by W =

W (Y
(1)
t , Y

(2)
t , It, t). During the small time interval (t, t +

dt), by Itô lemma, the change of the price of the covariance
swap will be

dW =
∂W

∂t
dt+

∂W

∂Y (1)
dY (1)+

∂W

∂I
dI+

1

2

∂2W

∂Y (1)2
dY (1)2+

1

2

∂2W

∂Y (2)2
dY (2)2+ρ34

∂2W

∂Y (1)∂Y (2)
dY (1)dY (2)+

∂W

∂Y (2)
dY (2)

As there is no default risk and based on risk neutral con-
ditions, E[dW ] = rWdt will be satisfied. Then the partial
differential equation of the price process W (Y

(1)
t , Y

(2)
t , It, t)

of the covariance swap with payoff (4) is attained as follows,

∂W
∂t + µ(1)Y (1) ∂W

∂Y (1) +
1
2 (σ̂

(1))2(Y (1))2 ∂2W
∂Y (1)2

+

µ(2)Y (2) ∂W
∂Y (2) +

1
2 (σ̂

(2))2(Y (2))2 ∂2W
∂Y (2)2

+

ρ34σ̂
(1)σ̂(2)Y (1)Y (2) ∂2W

∂Y (1)∂Y (2) +
∂W
∂I

ρ12

√
Y (1)Y (2)−I

t

−rW = 0, 0 < I, Y (1), Y (2) < ∞, 0 ≤ t ≤ T,
W |t=T = M(IT −K2

cov).
(5)

The solution of the above equation (5) has the following
semi-linear expression,

W (Y (1), Y (2), I, t) = A(t;T )I+B(t;T )
√
Y (1)Y (2)+C(t;T ),

where

A(t;T ) =
Mte−r(T−t)

T
,C(t;T ) = −MK2

cove
−r(T−t),

B(t;T ) =
Mρ12[e

−a(T−t) − e−r(T−t)]

T (r − a)
,

a =
1

8
(σ̂(1))2+

1

8
(σ̂(2))2− 1

4
ρ34σ̂

(1)σ̂(2)− 1

2
µ(1)− 1

2
µ(2)+r.

(6)
Therefore the price formula of this kind of covariance

swap is obtained from the above price expression.
Theorem 2.1 The price of the covariance swap for the

case of continuously sampled covariance with payoff (4) is

W |t=0 =
Mρ12

√
Y

(1)
0 Y

(2)
0 [e−aT − e−rT ]

T (r − a)
−K2

covMe−rT ,

where Kcov, Y
(1)
0 , Y

(2)
0 ,M, µ, T, r and a are given as in

equations (1), (2), (3)and (6).
For the case of discretely sampled covariance, the payoff

function is expressed by equation (3). Then we will discuss
the pricing model for the covariance derivative with PDE
method. There are four sources of randomness about this
problem. When constructing a risk-free portfolio, the deriva-
tives cannot be perfectly hedged with just the underlying
assets. Instead we need another two covariance swaps called
V 1∗
t and V 2∗

t on the same underlying assets. Then during an
arbitrary observation interval (Ti−1, Ti), we construct a risk-
less portfolio Π, containing the product V , the quantity ∆1

of the underlying asset S1, the quantity ∆2 of the underlying
asset S2, the quantity ∆3 of another traded covariance swap
V 1∗
t and the quantity ∆4 of another traded covariance swap

V 2∗
t . By Itô lemma and ∆−hedging principle, choosing

∆1, · · · ,∆4 to make Π risk-less during [t, t+ dt]. Then the
equation governing V can be written as in Jiang [20]

LV = ∂V
∂t + rS(1) ∂V

∂S(1) + µ(1)Y (1) ∂V
∂Y (1) + rS(2) ∂V

∂S(2)+

µ(2)Y (2) ∂V
∂Y (2) − rV + 1

2

∑4
i,j=1 ρijaiajZiZj

∂2V
∂Zi∂Zj

= 0.

(7)
Where, for convenience with a1 =

√
Y (1), a2 =√

Y (2), a3 = σ̂(1), a4 = σ̂(2) and Z1 = S1, Z2 = S2, Z3 =
Y (1), Z4 = Y (2) in the last part of the above expression.

As the market is assumed no arbitrage, the price of the
covariance swap should be continuous at observation date
Ti. Take V = Vi(i = 1, 2, · · · , N), t ∈ (Ti−1, Ti), the partial
differential equation pricing model for the covariance swap
is therefore given by

LVN = 0, 0 < S(1), S(2), Y (1), Y (2) < ∞,
TN−1 ≤ t < TN = T,

VN |t=T = h(S
(1)
0 , S

(2)
0 , · · · , S(1)

N−1, S
(2)
N−1, S

(1), S(2)),

and{
LVi = 0, 0 < S(1), S(2), Y (1), Y (2) < ∞, Ti−1 ≤ t < Ti.
Vi|t=Ti = Vi+1|t=Ti , (i = 1, 2, · · · , N − 1).

(8)
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If the analytical solution
VN (S

(1)
0 , S

(2)
0 , S

(1)
1 , S

(2)
1 · · · , S(1)

N−1, S
(2)
N−1, S

(1), S(2), t)
is obtained from the first problem, then at t = TN−1,
S(1) = S

(1)
N−1, S

(2) = S
(2)
N−1, and VN−1|t=TN−1

=

VN (S
(1)
0 , S

(2)
0 , S

(1)
1 , S

(2)
1 · · · , S(1)

N−1, S
(2)
N−1, TN−1), which is

the terminal value of the recursion second problem with
i = N − 1. Therefore, the following solutions VN−1, · · · , V1

can be solved by induction method.
It is very difficulty to derive the analytical expression of

(8). If the finite difference method is used directly to solve
the above path dependent variable problem, there will need
too much computational cost. So in next two sections, we
will use fast Monte Carlo simulation method to discuss the
above multi-dimensional pricing problem.

III. FAST MONTE CARLO SIMULATION FOR PRICING THE
DERIVATIVE

THE aim of this section is to develop fast simulation
algorithms for pricing covariance swap under the cor-

related stochastic volatility models. The control variate accel-
eration techniques are proposed and used to price covariance
derivatives under this structure. The method of control variate
is one of the most widely used variance reduction tech-
niques. Its popularity rests on the ease of implementation,
the availability of controls, and on the straight intuition
of the underlying theory. The method of control variate
exploits information about the errors in estimates of known
quantities to reduce the error in an estimate of an unknown
quantity explained in detail in Glasserman[7] and Xu[8].
These techniques aim to reduce the variance per Monte Carlo
observation so that a given level of accuracy can be obtained
with a smaller number of simulations. We just give a simple
introduction on this method.

The main idea of control variate is through exploiting
information about the errors in estimates of known quantities
to reduce the errors in an estimate of an unknown quantity, as
explained in detail in [7]. Consider the problem of estimating
the expectation E[P ], where the random variable P is the
discounted payoff of a derivative. Denote P1, · · · , Pm be
outputs from m replications of simulations and suppose that
Pi, (i = 1, · · · ,m) are independent and identical distributed
(i.i.d.). The Monte Carlo estimator of the price is the average

P =
P1 + · · ·+ Pm

m
.

Suppose that on each simulation there is another output Xi

along with Pi and the pairs (Xi, Pi) are i.i.d. The expectation
E[X] = E[Xi] is assumed known. Then for any fixed
coefficient b we can calculate Pi(b) = Pi − b(Xi − E[X])
from the ith simulation. So the control variate estimator of
the derivative price is given by

P (b) =
1

m

m∑
i=1

(Pi − b(Xi − E[X])) = P − b(X − E[X]),

here the observed error (X − E[X]) serves as a control.
The control variate estimate P (b) = P − b(X − E[X]) is

an unbiased estimator of E(P ), and its variance is

Var(P (b)) = Var(P )+b2Var(X)−2bρXP

√
Var(P )Var(X).

The optimal coefficient b∗ = Cov[X,P ]
Var(X) minimizes the vari-

ance, which is given by

Var(P (b∗)) = (1− ρ2XP )Var(P ).

This indicates that a rather high degree of correlation ρXV

is needed for the control variate to yield better effects of
variance reduction. And the error reduction ratio is denoted
by 1√

1−ρ2
XP

. The popularity of control variate rests on the

ease of implementations, the availability of controls, and on
the straight intuition of the underlying theory. According to
the variety of problems, different types of instruments can
be chosen as controls, including underlying assets, tractable
options, bond prices, tractable dynamics, hedges and so on.

Control variate technique is widely used mainly because
of the simplicity of its implementations, and the fact that
they can be accommodated in an existing Monte Carlo
calculator with a small effort. The skill of the control
variate method lies in how to choose suitable and efficient
control variate. Examples of successful implementations of
control variate for pricing the derivatives include Hull and
White(1987)[9], Kemna and Vorst(1990)[10], Turnbull and
Wakeman(1991)[11], Fu, Madan and Wang (1999)[12] and
Ma and Xu (2010)[13].

A. Analytical Solution for the Covariance Swap with Deterministic
Volatility

In this subsection, we consider another covariance swap
under the assumption of correlated deterministic volatility
instead of correlated stochastic volatility models (1). The
assets are assumed to follow,

dS(1)(t)

S(1)(t)
= rdt+ σ(1)dW

(1)
t , (9)

dS(2)(t)

S(2)(t)
= rdt+ σ(2)dW

(2)
t , (10)

where r is interest rate; σ(1) and σ(2) are the deterministic
volatility constants which will be chosen in next subsection;
W

(1)
t and W

(2)
t are the same Wiener processes as in (1) and

(2), and E(dW
(1)
t dW

(2)
t ) = ρ12dt. Let W = W (S, t) denote

the price of this auxiliary derivative and the payoff function
at maturity is also h(S

(1)
0 , S

(2)
0 , S

(1)
1 , S

(2)
1 , · · · , S(1)

N , S
(2)
N ) as

in (3). Then similar to the derivation in Section 2, the PDE
pricing model of the product is given by

L1W := ∂W
∂t + rS(1) ∂W

∂S(1) +
1
2σ

(1)2S(1)2 ∂2W
∂S(1)2

+

rS(2) ∂W
∂S(2) +

1
2σ

(2)2S(2)2 ∂2W
∂S(2)2

+

ρ12σ
(1)σ(2)S(1)S(2) ∂2W

∂S(1)∂S(2) − rW = 0,

0 < S(1), S(2) < ∞, Ti−1 < t ≤ Ti,

W |t=T = h(S
(1)
0 , S

(2)
0 , S

(1)
1 , S

(2)
1 , · · · , S(1)

N , S
(2)
N ),

W |t=T+
i−1

= W |t=T−
i−1

, (i = 1, 2, · · · , N).

(11)
The closed form solution to the above problem (11) will be
derived by partial differential equation method.

We use the recursive method to solve these equations.
When there’s a single observation point, the model is sim-
plified as{

L1W = 0 0 < S(1), S(2) < ∞, 0 < t ≤ T,
W |t=T = h(S(1), S(2)).
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The analytical solution is given by
W (S

(1)
0 , S

(2)
0 , 0)

= e−rT

∫ ∞

−∞

∫ ∞

−∞
h(S

(1)
0 eA1−α1 , S

(2)
0 eA2−α2)

f(α1, α2)dα1dα2, (12)

where A1 = (r− σ(1)2

2 )T,A2 = (r− σ(2)2

2 )T , and f(α1, α2)
is the density function of the two dimensional normal distri-
bution N(0, 0, σ(1)2T, σ(2)2T, ρ12), which has the expression
of
f(α1, α2) =

1

2πσ(1)σ(2)
√

1−ρ2
12T

×

exp(−α2
1σ

(2)2 − 2ρ12σ
(1)σ(2)α1α2 + α2

2σ
(1)2

2σ(1)2σ(2)2(1− ρ212)T
).

Then substitute the payoff function into Equation (12) and
yield the below Lemma 3.1.

Lemma 3.1 The price of the covariance swap with single
discrete observation date under the stochastic process (9) and
(10) is given by

W |t=0 = Me−rT [(r− σ(1)2

2
)(r− σ(2)2

2
)T 2+ ρ12σ

(1)σ(2)T

−K2
cov],

where Kcov, σ
(1), σ(2),M, T, r, ρ12 are given as in equations

(9) and (10).
Then when there are N observation points, the model is

expressed as{
LWN = 0, 0 < S(1), S(2) < ∞, TN−1 ≤ t < TN = T,

WN |t=T = h(S
(1)
0 , S

(2)
0 , · · ·S(1)

N−1, S
(2)
N−1, S

(1), S(2)),

{
LWi = 0, 0 < S(1), S(2) < ∞, Ti−1 ≤ t < Ti.
Wi|t=Ti = Wi+1|t=T+

i
, (i = 1, 2, · · · , N − 1).

Where 0 < T1 < · · · < TN = T , Wi(i = 1, 2 · · ·N) denotes
the value of W during [Ti−1, Ti]. By formula (12) and the
method of recursion, the pricing formula of the derivative
with N observation dates can be expressed as

W (S
(1)
0 , S

(2)
0 , 0) = e−rT

∫∞
−∞

∫∞
−∞ · · ·

∫∞
−∞

∫∞
−∞

f1(α1, α2)f2(β1, β2) · · · fN (γ1, γ2)h(S
(1)
0 eA1−α1 ,

S
(2)
0 eA2−α2 , · · · , S(1)

0 e(A1−α1)+(B1−β1)+···+(Z1−γ1),

S
(2)
0 e(A2−α2)+(B2−β2)+···+(Z2−γ2))

dα1dα2dβ1dβ2 · · · dγ1dγ2.
(13)

Where A1 = (r − σ(1)2

2 )∆T1, A2 = (r − σ(1)2

2 )∆T1,

B1 = (r − σ(1)2

2 )∆T2, B2 = (r − σ(2)2

2 )∆T2, · · ·,Z1 =

(r − σ(1)2

2 )∆TN , Z2 = (r − σ(2)2

2 )∆TN , and
fi(∗, ∗),(i = 1, 2, · · · , N) is the density function
of the two dimensional correlated normal distribution
N(0, 0, σ(1)2∆Ti, σ

(2)2∆Ti, ρ12).
Substitute the payoff function h into Equation (13) and

solve the 2N dimensional integration problem, then Theorem
3.1 is achieved, which will be an important result for fast
Monte Carlo simulation for pricing covariance swap.

Theorem 3.1 The price of the covariance swap deriva-
tive with N discrete observation dates under the stochastic
processes (9) and (10) is given by

W (S
(1)
0 , S

(2)
0 , 0) = M exp(−rT )

T [
N∑
j=1

(r − σ(1)2

2 )(r − σ(2)2

2 )

∆T 2
j + ρ12σ

(1)σ(2)T −K2
covT ].

where M, r, σ(1), σ(2),∆Tj ,Kcov, T, ρ12 are given in Sec-
tion 1 and 2.

Proof Substituting h(S
(1)
0 , S

(2)
0 , S

(1)
1 , S

(2)
1 , · · · , S(1)

N , S
(2)
N )

into (12) yields

W (S
(1)
0 , S

(2)
0 , 0) = Me−rT

T

∫∞
−∞

∫∞
−∞ · · ·

∫∞
−∞

∫∞
−∞

f1(α1, α2)f2(β1, β2) · · · fN (γ1, γ2)
[(A1 − α1)(A2 − α2) + (B1 − β1)(B2 − β2) + · · ·

+(Z1 − γ1)(Z2 − γ2)]dα1dα2dβ1dβ2 · · · dγ1dγ2
−K2

covMe−rT = Me−rT

T (J −K2
covT ).

Then by calculating directly,

J = (A1A2 + ρ12σ
(1)σ(2)∆T1) + (B1B2 + ρ12σ

(1)σ(2)

∆T2)+, · · · ,+(Z1Z2 + ρ12σ
(1)σ(2)∆TN ).

Substitute these 2N expressions A1, A2, B1, B2, · · · , Z1, Z2

to J ,

J =

N∑
j=1

(r − σ(1)2

2
)(r − σ(2)2

2
)∆T 2

j + ρ12σ
(1)σ(2)T.

Therefore

W (S
(1)
0 , S

(2)
0 , 0) = M exp(−rT )

T [
N∑
j=1

(r − σ(1)2

2 )(r − σ(2)2

2 )

∆T 2
j + ρ12σ

(1)σ(2)T −K2
covT ].

Remark When N → ∞ and max
1<i≤N

∆Ti → 0, the above

expression exhibits the same as the one in the Theorem 2.1
when µ(1) → 0+, µ(2) → 0+, σ̂(1) → 0+, σ̂(2) → 0+.

B. Control Variate Fast Algorithm for Valuation of the Covariance
Swap

The explicit algorithm for the valuation of the covariance
swap by control variate Monte Carlo simulation is given as
follows:

(i). Divide [0, T ] into n parts with mesh size ∆t = T/n =
tk+1 − tk, and set time discrimination ponits {tk}nk=1 cover
the set of observation dates {Ti}Ni=1.

(ii). Generate correlated standard normal random numbers
Z1,j
k , Z2,j

k , Z3,j
k , Z4,j

k , according to Cholesky factor and cor-
relation matrix [ρkl], (k, l = 1, 2, 3, 4). Based on diffusions
(1) and (2), set

S(1),j(tk+1) = S(1),j(tk)e
((r− 1

2 (σ
(1),j
tk

)2)∆t+σ
(1),j
tk

√
∆tZ1,j

k
)
,

S
(1),j
t0 = S

(1)
0 ,

S(2),j(tk+1) = S(2),j(tk)e
((r− 1

2 (σ
(2),j
tk

)2)∆t+σ
(2),j
tk

√
∆tZ2,j

k
)
,

S
(2),j
t0 = S

(2)
0 ,

where σ
(1),j
tk

and σ
(2),j
tk

are governed by σ
(1),j
tk

=

√
Y

(1),j
k

and σ
(2),j
tk

=

√
Y

(2),j
k , then

Y
(1),j
k+1 = Y

(1),j
k exp((µ− 1

2
(σ̂(1))2)∆t+ σ̂(1)

√
∆tZ3,j

k ),
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Y
(2),j
k+1 = Y

(2),j
k exp((µ− 1

2
(σ̂(2))2)∆t+ σ̂(2)

√
∆tZ4,j

k ),

The replication j of the stock prices S
(1)
t , S

(2)
t following

processes (1) and (2) are simulated.
(iii). According to the clause of the covariance swap and

replication j in (ii), set the jth price of the product

Vj = M exp(−rT )(

N∑
i=1

(
1

T
ln(

S
(1),j
i

S
(1),j
i−1

) ln(
S
(2),j
i

S
(2),j
i−1

)−K2
cov)).

(iv). Based on the auxiliary processes (8) and (9), set

S(1c),j(tk+1) = S1c,j(tk)e
((r− 1

2 (σ
(1))2)∆t+σ(1)

√
∆tZ1,j

k
),

S
(1),j
t0 = S

(1)
0 , S

(2),j
t0 = S

(2)
0 ,

S(2c),j(tk+1) = S2c,j(tk)e
((r− 1

2 (σ
(2))2)∆t+σ(2)

√
∆tZ1,j

k
),

with the same sequences Z1,j
k and Z2,j

k as in (ii). Then the
replication j of the auxiliary stock prices S(1)

t , S
(2)
t following

processes (9) and (10) are simulated.
(v). According to the covariance swap contract and repli-

cation j in (iv), set the jth value of the control variate

Xj = M exp(−rT )(

N∑
i=1

(
1

T
ln(

S
(1c),j
i

S
(1c),j
i−1

) ln(
S
(2c),j
i

S
(2c),j
i−1

)−K2
cov)).

(vi). Set the jth control variate estimate
Vj(b) = Vj − b(Xj − E[X]),

where E[X] is given by W (S
(1)
0 , S

(2)
0 , 0) in Theorem 3.1.

(vii). The control variate estimate of the price of co-
variance swap derivative under stochastic volatility structure
(1),(2) is finally obtained from the mean of m replications,

V (b) =
1

m

m∑
j=1

Vj(b) = V − b(X − E[X]).

Then the optimal coefficient b∗ which minimizes
the variance Vj(b) is estimated by b̂m =
m∑
i=1

(Xi −X)(Vi − V )(
m∑
i=1

(Xi −X)
2
)−1.

The important step of the control variate techniques of the
above algorithms lies in how to choose suitable and favorable
volatility control constants σ(1) and σ(2), to make sure high
correlation between the control variate X and the problem V .
We researched the first two moments of stochastic processes
(1),(2) and the auxiliary processes (9),(10), and give a
method to choose efficient control volatility constants. The
results are shown in Theorem 3.2.

Theorem 3.2 If the control volatility constants of process-
es (9) and (10) satisfy

σ(1) =

√
Y

(1)
0

eµ(1)T − 1

µ(1)T
, σ(2) =

√
Y

(2)
0

eµ(2)T − 1

µ(2)T
,

then the mean and the variance of the auxiliary processes (9)
and (10) approximately equal to the mean and the variance
of underlying processes (1) and (2) at maturity T .

Proof For the auxiliary processes (9) and (10), the mean
and the variance are as follows, respectively,

E(S
(1c)
T ) = S

(1c)
0 erT ,

V ar(S
(1c)
T ) = (S

(1c)
0 )2e2rT (e(σ

(1c))2T − 1).

E(S
(2c)
T ) = S

(2c)
0 erT ,

V ar(S
(2c)
T ) = (S

(2c)
0 )2e2rT (e(σ

(2c))2T − 1).

For the underlying processes (1) and (2), the mean and the
variance are separately

E(S
(1)
T ) = E(S

(1)
0 e

(
∫ T

0
(r− 1

2Y
(1)(t))dt+

∫ T

0

√
Y (1)(t)dW1t))

= S
(1)
0 erT ,

V ar(S
(1)
T )

= E[(S
(1)
0 )2e2rT (e

−
∫ T

0
Y (1)(t)dt+2

∫ T

0

√
Y (1)(t)dW1t − 1)]

= (S
(1)
0 )2e2rT

E[e
2
∫ T

0

√
Y (1)(t)dW1t−2

∫ T

0
Y (1)(t)dt+

∫ T

0
Y (1)(t)dt − 1],

and

E(S
(2)
T ) = E(S

(2)
0 e

(
∫ T

0
(r− 1

2Y
(2)(t))dt+

∫ T

0

√
Y (2)(t)dW2t))

= S
(2)
0 erT ,

V ar(S
(2)
T )

= E[(S
(2)
0 )2e2rT (e

−
∫ T

0
Y (2)(t)dt+2

∫ T

0

√
Y (2)(t)dW2t − 1)]

= (S
(2)
0 )2e2rT

E[e
2
∫ T

0

√
Y (2)(t)dW2t−2

∫ T

0
Y (2)(t)dt+

∫ T

0
Y (2)(t)dt − 1].

If the two stochastic integrals
∫ T

0
Y (1)(t)dt and∫ T

0
Y (2)(t)dt can be approximated by the mean integral∫ T

0
E(Y (1)(t))dt and

∫ T

0
E(Y (2)(t))dt, then by the

Exponential Martingale Theorem, the below equations can
be obtained

V ar(S
(1)
T ) = (S

(1)
0 )2e2rT [e

∫ T

0
Y

(1)
0 eµ

(1)tdt − 1],

V ar(S
(2)
T ) = (S

(2)
0 )2e2rT [e

∫ T

0
Y

(2)
0 eµ

(2)tdt − 1].

If the initial values of stock prices (1), (2) and auxiliary
processes (9), (10) are similar, i.e. S

(1)
0 = S

(1c)
0 , S

(2)
0 =

S
(2c)
0 , and their control volatility expressions satisfy

(σ(1))2 = Y
(1)
0

eµ
(1)T − 1

µ(1)T
, (σ(2))2 = Y

(2)
0

eµ
(2)T − 1

µ(2)T
,

then their mean and variance are equivalent at maturity T ,

E(S
(1c)
T ) = E(S

(1)
T ), V ar(S

(1c)
T ) = V ar(S

(1)
T ).

E(S
(2c)
T ) = E(S

(2)
T ), V ar(S

(2c)
T ) = V ar(S

(2)
T ).

Theorem 3.2 tells us that if σ(1) and σ(2) are chosen as
in above discussion, the processes (9) and (10) approximate
processes (1) and (2) in the sense of ”moments” at the
maturity T . The control variate and the problem are expected
to have high correlation. Therefore the control variate in this
case will be expected to have a well variance reduction effect,
which will be testified in next numerical subsection.
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C. Numerical Results

Numerical results will be illustrated the efficiency of the
acceleration simulation algorithm discussed in section 3.2.
Parameters M = 1000, r = 0.05, T = 1, µ1 = 0.20, µ2 =
0.10, S10 = 10, S20 = 12, Y10 = 0.152, Y20 = 0.152, σ̂1 =
0.01, σ̂2 = 0.02 are chosen, [0, T ] is divided into 100 parts
with the mesh size ∆t = T/100. As strike price Kcov is
just a constant decrement, having no effect on the numerical
effects, Kcov = 0 is supposed without loss of generality.

Table 1 and Table 2 show the results of error ratios, the
prices of covariance swap and estimate errors with control
variate of various simulation path numbers for the case of
N = 10 and N = 20 respectively. The control volatility
constant σ(1) = 0.1578 and σ(2) = 0.1538 according to
Theorem 3.2. In the tables, Price1 and Error1 denote the
simulation results of crude Monte Carlo simulation, Error1=
1√
m

√
1

m−1

∑m
j=1(Vj − V̄ )2. Price2 and Error2 denote the

simulation results of control variate Monte Carlo method,
Error2= 1√

m

√
1

m−1

∑m
j=1(Vj(b)− ¯V (b))2. Variance reduc-

tion ratio is denoted by Ratio1=Error1/Error2. The results
show that the control variate algorithm has obvious variance
reduction effects. All the ratios are greater than 22. As the
number of simulation paths increases, all the estimated errors
have a decrease tendency. The number of simulations without
control variate would have to be increased by a factor of
Ratio12 in order to achieve the same accuracy as a given
number of simulations with control variate. Furthermore, the
effects of variance reduction are stable, not influenced by the
simulation paths.

Table 1: The results with N = 10
Paths Price1 Price2 Error1 Error2 Ratio1
500 12.0457 11.6786 0.3651 0.0156 23.4738
1000 10.5649 11.6729 0.2648 0.0113 23.3957
2000 11.4888 11.6750 0.1858 0.0081 22.8342
5000 11.6548 11.6743 0.1160 0.0052 22.7432
8000 1.5963 11.6715 0.0926 0.0041 22.6306

Table 2: The results with N = 20
Paths Price1 Price2 Error1 Error2 Ratio1
500 12.5516 11.6056 0.2557 0.0106 24.1978
1000 12.0684 11.6022 0.1799 0.0077 23.2207
2000 11.9264 11.6051 0.1281 0.0056 22.8404
5000 11.5268 11.6055 0.0813 0.0036 22.5414
8000 11.5678 11.6057 0.0649 0.0029 22.7235

The analysis of correlation between the pricing problem
and the control variate are also considered. Fig. 1 and
2 shows scatter plots of simulated values with stochastic
volatility against the values with deterministic volatility
constant for the case of N = 10 and N = 20, respectively.
They all show the strong correlations between the two cases
and their resulting correlations are 0.9990.

Fig. 3 and 4 demonstrates the relationship between Error
reduction ratio and control volatility constant square. An un-
constrained optimization problem maxσ{ V ar[Vj ]

minb{V ar[Vj(b)]}}
is introduced, and a direct search method is used to solve
this optimization problem. From Fig. 2, we can see that Error
reduction ratios are very sensitive with volatility constants
square σ2 and symmetrically distributed. The searched opti-
mal volatility square σ∗2 is very close to σ(1)2 = 0.15782 =
0.0248 and σ(2)2 = 0.15382 = 0.0236. These numerical
results testified the high efficiency of the control variate
proposed by Theorem 3.1.
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Fig. 1. Scatter plots of values of covariance swap with the stochastic
volatility against the values of covariance swap with a single volatility
constant for N = 10
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Fig. 2. Scatter plots of values of covariance swap with the stochastic
volatility against the values of covariance swap with a single volatility
constant for N = 20
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Fig. 3. The relationship between Error reduction ratio and control volatility
constant square, for N = 10

IV. IMPROVED CONTROL VARIATE FOR MONTE CARLO
METHOD

A. Improved Control Variate
The control variate Monte Carlo simulation proposed in

Section 3 has good variance reduction effects. The control
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Fig. 4. The relationship between Error reduction ratio and control volatility
constant square, for N = 20

volatility constants in processes (9) and (10) are determined
by making the mean and the variance of the auxiliary
processes (9) and (10) approximate those of processes (1)
and (2). at the maturity T . Considering the characters of the
variance swap derivative, which depends on the stock prices
at observation dates Ti, (0 = T0 < T1 < · · · < TN = T ),
we try to use piecewise constants σ1

i,c, σ
2
i,c, (i = 1, 2 · · ·N)

in stead of σ1, σ2 of the processes (9) and (10). The im-
provement of the control variate algorithm is further studied
in this section.

The key research point of the algorithm is still on the
choice of the control variate. If the approximate underlying
auxiliary processes are further studied and assumed as fol-
lows, instead of process (9) and (10),

dS(1)(t)

S(1)(t)
= rdt+ σ

(1)
i,c dW

(1)
t , t ∈ [Ti−1, Ti], (14)

dS(2)(t)

S(2)(t)
= rdt+ σ

(2)
i,c dW

(2)
t , t ∈ [Ti−1, Ti], (15)

where r is interest rate; σ
(1)
i,c > 0 and σ

(2)
i,c > 0, (i =

1 · · ·N) are the volatility constants during the ith observation
period [Ti−1, Ti]. The denotation W

(1)
t and W

(2)
t are the

same Wiener processes as in processes (1) and (2), and
E(dW

(1)
t dW

(2)
t ) = ρ12dt. Then the price of this auxiliary

derivative is denoted by W2 = W2(S
(1), S(2), t), and the

payoff function at maturity is still denoted as

h(S
(1)
0 , S

(2)
0 , S

(1)
1 , S

(2)
1 , · · · , S(1)

N , S
(2)
N )

just as in Equation (3). Then similar to the derivation in
Section 3.1, the PDE pricing model of the auxiliary product
can be attained and the closed-form solutions of the price
of the product is achieved by Theorem 4.1, with the proof
omitted.

Theorem 4.1 The price of the covariance swap with N
discrete observation dates under the stochastic process (13)
and (14) is given by

W2(S
(1)
0 , S

(2)
0 , 0) = M exp(−rT )

T [
N∑
i=1

(r − σ
(1)2
i,c

2 )(r − σ
(2)2
i,c

2 )

∆T 2
i + ρ12σ

(1)
i,c σ

(2)
i,c T −K2

covT ],

where M, r, σ
(1)
i,c , σ

(2)
i,c ,∆Ti,Kvar, T and ρ12 are given in

above sections.
Then how to choose the list of deterministic volatility

constants σi,c, i = 1, · · · , N in (14) and (15) to make sure
the high correlation between the control variate W2 and the
derivative V . We are inspired by the idea in above section
and consider the first two moments at discrete observation
dates Ti, the piecewise constants σ(1)

i,c , σ
(2)
i,c , i = 1, · · · , N are

chosen to make the mean and the variance of the process (1)
and (2) approximately equal to those of processes (14) and
(15). Then the following Theorem 4.2 is achieved.

Theorem 4.2 If the list of piecewise volatility constants
σi,c, (i = 1, 2 · · · , N) satisfy the equations,

σ
(1)
i,c =

√
Y

(1)
0 (exp(µ(1)Ti)− exp(µ(1)Ti−1))

µ(1)(Ti − Ti−1)
,

σ
(2)
i,c =

√
Y

(2)
0 (exp(µ(2)Ti)− exp(µ(2)Ti−1))

µ(2)(Ti − Ti−1)
.

then the mean and the variance of the process (13) and (14)
are nearly equal to those of processes (1) and (2) at the
observation date Ti.

Proof We just need to prove at observations date Ti, their
fist two moments are nearly equal, which is similar to the
proof of Theorem 3.2 and the proof is omitted.

Then how to choose the list of deterministic volatility
constants σi,c, i = 1, · · · , N in (13) and (14) to make sure
the high correlation between the control variate W2 and the
derivative V . We are inspired by the idea in above section and
consider the first two moments at discrete observation dates
Ti, the piecewise constants σi,c, i = 1, · · · , N are chosen
to make the mean and the variance of the process (1) and
(2) approximately equal to those of processes (13) and (14).
Then the following Theorem 4.2 is achieved.

Theorem 4.2 If the list of piecewise volatility constants
σi,c, (i = 1, 2 · · · , N) satisfy the equations,

σ
(1)
i,c =

√
Y

(1)
0 (exp(µ(1)Ti)− exp(µ(1)Ti−1))

µ(1)(Ti − Ti−1)
,

σ
(2)
i,c =

√
Y

(2)
0 (exp(µ(2)Ti)− exp(µ(2)Ti−1))

µ(2)(Ti − Ti−1)
.

then the mean and the variance of the process (13) and (14)
are nearly equal to those of processes (1) and (2) at the
observation date Ti.

Proof We just need to prove at observations date Ti, their
fist two moments are nearly equal, which is similar to the
proof of Theorem 3.2 and the proof is omitted.

B. Numerical Results of the Improved Acceleration Algorith-
m

The main difference of the improvement algorithm from
the algorithm in Section 3 is that during the observation
period [Ti−1, Ti], the volatility constants decided by Theorem
4.2 which will be used to simulate the control processes. In
this case, the processes (14) and (15) seem to have a better
approximation to the underlying stochastic processes (1) and
(2), and the better variance reduction effects will be expected.
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In order to make comparison with previous algorithm.
Numerical parameters are chosen as the same as in Subsec-
tion 3.3. Table 3 and Table 4 record the simulation results
of the improved control variate Monte Carlo simulation.
Here Error1 denotes the simulation errors of crude Monte
Carlo simulation and Error3 denotes the simulation errors of
improved control variate Monte Carlo simulation. Variance
reduction ratio is denoted by Ratio2=Error1/Error3. The
selected piecewise control volatility constants for the case
of N = 10 by Theorem 4.2 is that σ(1) =[0.1508 0.1523
0.1538 0.1553 0.1569 0.1585 0.1601 0.1617 0.1633 0.1650]
and σ(2) =[0.1504 0.1511 0.1519 0.1526 0.1534 0.1542
0.1550 0.1557 0.1565 0.1573]. Then the selected piecewise
control volatility constants for the case of N = 20 is that
σ(1) =[0.1504 0.1511 0.1519 0.1526 0.1534 0.1542 0.1550
0.1557 0.1565 0.1573 0.1581 0.1589 0.1597 0.1605 0.1613
0.1621 0.1629 0.1637 0.1645 0.1654] and σ(2) =[0.1502
0.1506 0.1509 0.1513 0.1517 0.1521 0.1525 0.1528 0.1532
0.1536 0.1540 0.1544 0.1548 0.1551 0.1555 0.1559 0.1563
0.1567 0.1571 0.1575]. Especially, when N = 1, the two
algorithms are same.

Table 3: The results with N = 10 of the improved algorithm
Paths Price1 Price3 Error1 Error3 Ratio2
500 13.5678 11.3672 0.3651 0.0029 124.5770
1000 12.4537 11.6705 0.2648 0.0021 124.3808
2000 11.0264 11.6736 0.1858 0.0015 121.9264
5000 11.9865 11.6729 0.1160 0.0010 120.4219

Table 4: The results with N = 20 of the improved algorithm
Paths Price1 Price3 Error1 Error3 Ratio2
500 13.0568 11.4026 0.2557 0.0024 106.9722
1000 12.0486 11.6641 0.1799 0.0017 105.4123
2000 11.7963 11.6394 0.1281 0.0013 102.8288
5000 11.6528 11.6935 0.0813 0.0009 98.9774

From the results in Table 3 and Table 4, we can see that
the improved control variate algorithm has better obvious
variance reduction effects than the control variate determined
by Theorem 3.2. All the ratios are nearly 100, 4 times as
much as Ratio1. As the number of simulation paths increases,
the estimated error also has a decrease tendency. The number
of simulations without control variate would have to be
increased by a factor of Ratio22 in order to achieve the same
accuracy as a given number of simulations with improved
control variate. Furthermore, the effects of variance reduction
are stable, not influenced by the simulation paths. The better
variance reduction effect of the improved control variate in
Section 4 is because the auxiliary stochastic process with
piecewise volatility constants can approximate the original
process with stochastic volatility process better.

Then Fig. 5 and 6 shows scatter plots of simulated values
with stochastic volatility against the values with piecewise
constant volatility for the case of N = 10 and N = 20,
respectively, with correlation coefficient bigger than 0.9999.
They all show stronger correlations than the first cases of
control variate I demonstrated by Fig. 1 and 2. The evident
comparison of variance reduction ratios of the two kinds
of control variate acceleration algorithms is listed in Fig.
7, where ’o’ denotes the variance reduction ratio of the
improved algorithm in Section 4, and ’*’denotes the variance
reduction ratio of the algorithm in Section 3.

V. CONCLUSION AND FURTHER DISCUSSION

In this paper, modeling and pricing of covariance swap
derivative are discussed through the combination of PDE
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Fig. 5. Scatter plots of values of covariance swap with the stochastic
volatility against the values of covariance swap with piecewise volatility
constants, for N = 10
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Fig. 6. Scatter plots of values of covariance swap with the stochastic
volatility against the values of covariance swap with piecewise volatility
constants, for N = 20

approach and Monte Carlo simulation. Control variate Monte
Carlo method is applied to the pricing of the covariance
swap. Two kinds of control variate techniques are proposed,
based on the closed form solutions in simplified models
with constant or piecewise constant volatility. The variance
reduction ratios of the improved control variate algorithm
which is based on the piecewise constant volatility are
smaller than that of the original control variate based on a
single constant volatility.

The algorithms in the paper can also be extended to the
pricing of other financial derivatives, such as Asian options,
Lookback options with discrete sampling features under
multi-factor stochastic volatility models. Multiple control
variate techniques can be considered based on the high
moments of the stochastic volatility. Furthermore, other
variance reduction techniques can be applied to the research
of the hedging and the risk of the derivatives next. Then the
research on the optimal control variate can be considered[21].
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Fig. 7. Comparison of the effects of two control variate algorithms
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