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Abstract—The resistance distance between any two vertices of
a connected graph is defined as the effective resistance between
them in the electrical network constructed from the graph by
replacing each edge with a (unit) resistor. The Kirchhoff index
Kf(G) is the sum of resistance distances between all pairs of
vertices in G. For a graph G, let R(G) be the graph obtained
from G by adding a new vertex corresponding to each edge
of G and by joining each new vertex to the end vertices of
the corresponding edge. Let G1 ⊙ G2, G1 ⊖ G2 be the R-
vertex corona and R-edge corona of G1 and G2. In this paper,
formulate for the resistance distance and the Kirchhoff index
in G1 ⊙ G2 and G1 ⊖ G2 whenever G1 and G2 are arbitrary
graphs are obtained. This improves and extends some earlier
results.

Index Terms—Kirchhoff index, Resistance distance, R-vertex
corona, R-edge corona, Generalized inverse

I. INTRODUCTION

IN1993, Klein and Randić [1] introduced a distance func-
tion named resistance distance on the basis of electrical

network theory. The resistance distance rij(G) between any
two vertices i and j in G is defined to be the effective
resistance between them when unit resistors are placed on
every edge of G. The Kirchhoff index Kf(G) is the sum of
resistance distances between all pairs of vertices of G. The
computation of two-point resistances in networks and the
Kirchhoff index are classical problem in electric theory and
graph theory. The resistance distance and the Kirchhoff index
attracted extensive attention due to its wide applications
in physics, chemistry and others. For more information on
resistance distance and Kirchhoff index of graphs, the readers
are referred to Refs. [2]-[12] and the references therein.

Let G = (V (G), E(G)) be a graph with vertex set V (G)
and edge set E(G). Let di be the degree of vertex i in G
and DG = diag(d1, d2, · · · d|V (G)|) the diagonal matrix with
all vertex degrees of G as its diagonal entries. For a graph
G, let AG and BG denote the adjacency matrix and vertex-
edge incidence matrix of G, respectively. The matrix LG =
DG −AG is called the Laplacian matrix of G, where DG is
the diagonal matrix of vertex degrees of G. We use µ1(G) ≥
u2(G) ≥ · · · ≥ µn(G) = 0 to denote the spectrum of LG.
If G is connected, then any principal submatrix of LG is
nonsingular.

In [13], new graph operations based on R(G) graphs: R-
vertex corona and R-edge corona, are introduced, and their
A-spectrum(resp., L-spectrum) are investigated. For a graph
G, let R(G) be the graph obtained from G by adding a new
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vertex corresponding to each edge of G and by joining each
new vertex to the end vertices of the corresponding edge.
Let I(G) be the set of newly added vertices, i.e. I(G) =
V (R(G)) \ V (G). Let G1 and G2 be two vertex-disjoint
graphs.

Definition 1. ([13]) The R-vertex corona of G1 and G2,
denoted by G1 ⊙ G2, is the graph obtained from vertex
disjoint R(G1) and |V (G1)| copies of G2 by joining the
ith vertex of V (G1) to every vertex in the ith copy of G2.

Definition 2. ([13]) The R-edge corona of G1 and G2,
denoted by G1 ⊖ G2, is the graph obtained from vertex
disjoint R(G1) and |I(G1)| copies of G2 by joining the ith
vertex of |I(G1)| to every vertex in the ith copy of G2.

Note that if Gi has ni vertices and mi edges for i = 1, 2,
then G1 ⊙ G2 has n1 + m1 + n1n2 vertices and 3m1 +
n1m2+n1n2 edges, G1⊖G2 has n1+m1+m1n2 vertices
and 3m1 +m1m2 +m1n2 edges.

This paper is organized as follows. In Section 2, some
auxiliary lemma are given. In Section 3, we obtain formulas
for resistance distances of R-vertex corona and R-edge
corona of two arbitrary graphs. In Section 4, we obtain
formulas for Kirchhoff index of R-vertex corona and R-edge
corona of two arbitrary graphs.

II. PRELIMINARIES

Let M be a square matrix M . The {1}-inverse of M is
a matrix X such that MXM = M . If M is singular, then
M has infinitely many {1}-inverse [14]. The group inverse
of M , denoted by M#, is the unique matrix X such that
MXM = M , XMX = X and MX = XM . It is known
[9, 11] that M# exists if and only if rank(M) = rank(M2).
If M is real symmetric, then M# exists and M# is a
symmetric {1}- inverse of M . Actually, M# is equal to the
Moore-Penrose inverse of M since M is symmetric [15].

We use M (1) to denote any {1}- inverse of a matrix M .
Let (M)uv-denote the (u, v)-entry of M .

Lemma 1. ([16]) Let G be a connected graph. Then

ruv(G) = (L
(1)
G )uu + (L

(1)
G )vv − (L

(1)
G )uv − (L

(1)
G )vu

= (L#
G)uu + (L#

G)vv − 2(L#
G)uv.

Let 1n denotes the column vector of dimension n with
all the entries equal one. We will often use 1 to denote an
all-ones column vector if the dimension can be read from
the context.

Lemma 2. ([17]) For any graph, we have L#
G1 = 0.

Lemma 3. ([18]) Let

M =

(
A B
C D

)
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be a nonsingular matrix. If A and D are nonsingular, then

M−1 =

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
=

(
(A−BD−1C)−1 −A−1BS−1

−S−1CA−1 S−1

)
,

where S = D − CA−1B.

For a vertex i of a graph G, let T (i) denote the set of all
neighbors of i in G.

Lemma 4. ([17]) Let G be a connected graph. For any
i, j ∈ V (G),

rij(G) = d−1
i

1 +
∑

k∈T (i)

rkj(G)− d−1
i

∑
k,l∈T (i)

rkl(G)

 .

Lemma 5. ([16]) Let G be a connected graph on n
vertices. Then

Kf(G) = ntr(L
(1)
G )− 1TL

(1)
G 1 = ntr(L#

G).

Lemma 6. ([4]) Let G be a connected graph of order n
with edge set E. Then∑

u<v,uv∈E

ruv(G) = n− 1.

Lemma 7. Let

L =

(
A B
BT D

)
be the Laplacian matrix of a connected graph. If D is
nonsingular, then

X =

(
H# −H#BD−1

−D−1BTH# D−1 +D−1BTH#BD−1

)
is a symmetric {1}-inverse of L, where H = A−BD−1BT .

Proof Let H = A−BD−1BT , and

X

=

(
H# −H#BD−1

−D−1BTH# D−1 +D−1BTH#BD−1

)
=

(
I 0

−D−1BT I

)(
H# 0
0 D−1

)
(

I −BD−1

0 I

)
.

Since D is nonsingular, then

L =

(
A B
BT D

)
=

(
I BD−1

0 I

)(
H 0
0 D

)(
I 0

D−1BT I

)
.

By computation, we have

LX

=

(
I BD−1

0 I

)(
H 0
0 D

)(
I 0

D−1BT I

)
(

I 0
−D−1BT I

)(
H# 0
0 D−1

)
(

I −BD−1

0 I

)
=

(
I −BD−1

0 I

)(
HH# 0

0 I

)
(

I −BD−1

0 I

)
=

(
HH# −HH#BD−1 +BD−1

0 I

)
LXL =

(
HH# BD−1 −HH#BD−1

0 I

)
(

A B
BT D

)
=

(
HH#(A−BD−1BT ) +BD−1BT B

BT D

)
= L.

Hence X is a symmetric {1}-inverse of L, where H = A−
BD−1BT .

Remarks: The above result is similar to Lemma 2.8 in
[16], this is another form of Lemma 2.8, but in the process
of computing the resistance distance and Kirchhoff index of
graph G1⊙G2 and G1⊖G2, we use this formula to be more
superior than Lemma 2.8 in [16].

III. RESISTANCE DISTANCE IN R-VERTEX CORONA AND
R-EDGE CORONA OF TWO GRAPHS

We first give formulae for resistance distance between two
arbitrary vertexes in G1 ⊙G2.

Theorem 1. Let G1 be a graph with n1 vertices and m1

edges and G2 be a graph with n2 vertices and m2 edges.
Then the following holds:

(a) For any i, j ∈ V (G1), we have

rij(G1 ⊙G2) =
2

3
(L#

G1
)ii +

2

3
(L#

G1
)jj −

4

3
(L#

G1
)ij .

(b) For any i, j ∈ V (G2), we have

rij(G1 ⊙G2) = (In1 ⊗ (LG2 + In2)
−1)ii + (In1 ⊗ (LG2

+In2)
−1)jj − 2(In1 ⊗ (LG2 + In2))

−1.

(c) For any i ∈ V (G1), j ∈ V (G2), we have

rij(G1 ⊙G2) =
2

3
(L#

G1
)ii + (In1 ⊗ (LG2 + In2)

−1)jj

−2

3
(L#

G1
)ij .

(d) For any i ∈ I(G1), j ∈ V (G1) ∪ V (G2), let uivi ∈
E(G1) denote the edge corresponding to i, we have
rij(G1 ⊙G2)

=
1

2
+

1

2
ruij(G1 ⊙G2) +

1

2
rvij(G1 ⊙G2)

−1

4
ruivi(G1 ⊙G2).

(e) For any i, j ∈ I(G1), let uivi, ujvj ∈ E(G1) denote the
edges corresponding to i, j, we have
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rij(G1 ⊙G2)

= 1 +
1

4
(ruiuj (G1 ⊙G2) + ruivj (G1 ⊙G2)

+rviuj (G1 ⊙G2) + rvivj (G1 ⊙G2)

−ruivi(G1 ⊙ G2)− rujvj (G1 ⊙G2).

Proof Let R be the incidence matrix of G1. Then with
a proper labeling of vertices, the Laplacian matrix of G =
G1 ⊙G2 can be written as

L(G) = LG1 +DG1 + n2In1 −R −In1 ⊗ 1Tn2

−RT 2Im1 0m1×n1n2

−In1 ⊗ 1n2 0n1n2×m1 In1 ⊗ (LG2 + In2)

 ,

where 0s,t denotes the s× t matrix with all entries equal to
zero.

Let A = LG1+DG1+n2In1 , B =
(
−R −In1 ⊗ 1Tn2

)
,

BT =

(
−RT

−In1 ⊗ 1n2

)
and

D =

(
2Im1 0m1×n1n2

0n1n2 ×m1 In1 ⊗ (LG2 + In2)

)
.

We begin with the calculation about H .

Let Q = In1 ⊗ (LG2 + In2)
−1, then

H

= LG1 +DG1 + n2In1 −
(
−R −In1 ⊗ 1Tn2

)(
2Im1 0m1×n1n2

0n1n2×m1 Q

)−1 ( −RT

−In1 ⊗ 1n2

)
= LG1 +DG1 + n2In1−(

− 1
2R −In1 ⊗ 1Tn2

(LG2 + In2)
−1

)(
−RT

−In1 ⊗ 1n2

)
= LG1 +DG1 + n2In1 − 1

2RRT − n2In1

= 3
2LG1 ,

so, we have H# = 2
3L

#
G1

.

Now we are ready to calculate −H#BD−1 and
−D−1BTH#.

Let K = In1 ⊗ 1Tn2
, then

−H#BD−1

= −H#
(
−R −In1 ⊗ 1Tn2

)(
2Im1 0m1×n1n2

0n1n2 ×m1 In1 ⊗ (LG2 + In2)

)−1

= −H#
(
−1

2R −In1 ⊗ 1Tn2

)
=

(
1
2H

#R H#K
)

and
−D−1BTH#

= −
(

2Im1 0m1×n1n2

0n1n2×m1 In1 ⊗ (LG2 + In2)

)−1

(
−RT

−In1
⊗ 1n2

)
H#

=

(
1
2R

T

In1 ⊗ 1n2

)
H# =

(
1
2R

TH#

KTH#

)
.

Next we are ready to compute the D−1BTH#BD−1.

D−1BTH#BD−1

=

(
−1

2R
TH#

−KTH#

)(
−R −K

)
(

2Im1 0m1×n1n2

0n1n2×m1 In1 ⊗ (LG2 + In2)

)−1

=

(
1
2R

TH#R 1
2R

TH#K
KTH#R KTH#K

)
(

1
2Im1 0m1×n1n2

0n1n2×m1 In1 ⊗ (LG2 + In2)
−1

)
=

(
1
4R

TH#R 1
2R

TH#K
1
2K

TH#R KTH#K

)
,

where KTHK = 2
3K

TL#
G1

K = 2
3jn2×n2 ⊗ L#

G1
.

Based on Lemma 7, the following matrix

N = 2
3L

#
G1

1
3L

#
G1

R 2
3L

#
G1

K
1
3R

TL#
G1

1
2Im1 +

1
6R

TL#
G1

R 1
3R

TL#
G1

K
2
3K

TL#
G1

1
3K

TL#
G1

R Q+ 2
3K

TL#
G1

K


(1)

is a symmetric {1}- inverse of L(G1 ⊙ G2), where Q =
In1 ⊗ (LG2 + In2)

−1, K = In1 ⊗ 1Tn2
.

Let G = G1⊙G2, then For any i, j ∈ V (G1), by Lemma
1 and the Equation (1), we have

rij(G) =
2

3
(L#

G1
)ii +

2

3
(L#

G1
)jj −

4

3
(L#

G1
)ij ,

as stated in (a).

For any i, j ∈ V (G2), by Lemma 1 and the Equation (1),
we have

rij(G) = (In1 ⊗ (LG2 + In2)
−1)ii + (In1 ⊗ (LG2

+In2)
−1)jj − 2(In1 ⊗ (LG2 + In2)

−1)ij ,

as stated in (b).

For any i ∈ V (G1), j ∈ V (G2), by Lemma 1 and the
Equation (1), we have

rij(G) =
2

3
(L#

G1
)ii + (In1 ⊗ (LG2 + In2)

−1)jj

−2

3
(L#

G1
)ij ,

as stated in (c).

For any i ∈ I(G1), j ∈ V (G1)∪V (G2), let uivi ∈ E(G1)
denote the edge corresponding to i, by Lemma 4, we have

rij(G) =
1

2
+

1

2
ruij(G1 ⊙G2) +

1

2
rvij(G1 ⊙G2)

−1

4
ruivi(G1 ⊙G2),

as stated in (d).

For any i, j ∈ I(G1), let uivi, ujvj ∈ E(G1) denote the
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edges corresponding to i, j, by Lemma 4, we have

rij(G) =
1

2
+

1

2
ruij(G1 ⊙G2) +

1

2
rvij(G1 ⊙G2)

−1

4
ruivi(G1 ⊙G2)

= 1 +
1

4

(
ruiuj (G1 ⊙G2) + ruivj (G1 ⊙G2)

+rviuj (G1 ⊙G2) + rvivj (G1 ⊙G2)

−ruivi(G1 ⊙ G2)− rujvj (G1 ⊙G2)
)
,

as stated in (e).

The following result is proved in a way that is certainly
similar in spirit to the proof of Theorem 1, but is a little
more complicated in detail. Next, we will give the formulate
for the resistance distance between two arbitrary vertexes in
G1 ⊖G2.

Theorem 2. Let G1 be a graph on n1 vertices and m1

edges and G2 be a graph on n2 vertices and m2 edges, let
G = G1 ⊖G2. Then the following holds:

(a) For any i, j ∈ V (G1), we have

rij(G) =
2

3
(L#

G1
)ii +

2

3
(L#

G1
)jj −

4

3
(L#

G1
)ij .

(b) For any i, j ∈ V (G2), we have
rij(G)

= (Im1 ⊗ (LG2 + In2 −
1

n2 + 2
jn2×n2)

−1)ii

+(Im1 ⊗ (LG2 + In2 −
1

n2 + 2
jn2×n2)

−1)jj

−2(Im1 ⊗ (LG2 + In2 −
1

n2 + 2
jn2×n2)

−1)ij .

(c) For any i ∈ V (G1), j ∈ V (G2), we have

rij(G) =
2

3
(L#

G1
)ii + (Im1 ⊗ (LG2 + In2

− 1

n2 + 2
jn2×n2)

−1)jj − (Im1 ⊗

(LG2 + In2 −
1

n2 + 2
jn2×n2)

−1)ij .

(d) For any i ∈ I(G1), j ∈ V (G1) ∪ V (G2), let uivi ∈
E(G1) denote the edge corresponding to i, we have

rij(G) =
1

n2 + 2
(1 + rjui(G1 ⊖G2) + rjvi(G1 ⊖G2)

+
∑

k∈V (G2)

rjk(G1 ⊖G2)

− 1

(n2 + 2)2Kf(G2) +
∑

k∈V (G2)

ruik(G1 ⊖G2) +

ruivi(G1 ⊖G2) +
∑

k∈V (G2)

rvik(G1 ⊖G2)

 .

(e) For any i, j ∈ I(G1), let uivi, ujvj ∈ E(G1) denote
the edges corresponding to i, j, we have

rij(G)

=
1

n2 + 2

(
1 + riuj (G1 ⊖G2) + rivj (G1 ⊖G2)

+
∑

k∈V (G2)

rik(G1 ⊖G2)

− 1

(n2 + 2)2Kf(G2) +
∑

k∈V (G2)

rujk(G1 ⊖G2)

+rujvj (G1 ⊖G2) +
∑

k∈V (G2)

rvjk(G1 ⊖G2)

 .

Proof Let R be the incidence matrix of G1. Then with a
proper labeling of vertices, the Laplacian matrix of G1⊖G2

can be written as

L(G) = LG1 +DG1 −R 0n1×m1n2

−RT (n2 + 2)Im1 −Im1 ⊗ 1Tn2

0m1n2×n1 −Im1 ⊗ 1n2 Im1 ⊗ (LG2 + In2)

 ,

where 0s,t denotes the s× t matrix with all entries equal to
zero.

Let A = LG1 + DG1 , B =
(
−R 0n1×m1n2

)
, BT =(

−RT

0m1n2×n1

)
and

D =

(
(n2 + 2)Im1 −Im1 ⊗ 1Tn2

−Im1 ⊗ 1n2 Im1 ⊗ (LG2 + In2)

)
.

Note that RRT = DG1 + AG1 . Let R1 = [(n2 + 2)Im1 −
(−Im1 ⊗ 1Tn2

)(Im1 ⊗ (LG2 + In2))
−1(−Im1 ⊗ 1n2)]

−1 =
1
2Im1 . By Lemma 3, we have

D−1 = (
1
2Im1

1
2Im1 ⊗ 1Tn2

1
2Im1 ⊗ 1n2 F

)
,

where F = Im1 ⊗ (LG2 + In2 − 1
n2+2jn2×n2)

−1.

We begin with the calculation about H .

Let T = Im1 ⊗ (LG2 +In2 − 1
n2+2jn2×n2)

−1, K = Im1 ⊗
1Tn2

, then

H = LG1 +DG1 −
(
−R 0n1×m1n2

)(
1
2Im1

1
2Im1 ⊗ 1Tn2

1
2Im1 ⊗ 1n2 T

)−1 ( −RT

0m1n2×n1

)
= LG1 +DG1 −

(
−1

2R − 1
2RK

)( −RT

0m1n2×n1

)
= LG1 +DG1 − 1

2RRT = 3
2LG1 .

So, we have H# = 2
3L

#
G1

.

Now we are ready to calculate the −H#BD−1 and
−D−1BTH#.

−H#BD−1 = −H#
(
−R 0n1×m1n2

)(
1
2Im1

1
2Im1 ⊗ 1Tn2

1
2Im1 ⊗ 1n2 Im1 ⊗ (LG2 + In2 − 1

n2+2jn2×n2)
−1

)
=

(
1
2H

#R 1
2H

#RK
)

and
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−D−1BTH# =

−
(

1
2Im1

1
2Im1 ⊗ 1Tn2

1
2Im1 ⊗ 1n2 Im1 ⊗ (LG2 + In2 − 1

n2+2jn2×n2)
−1

)
(

−RT

0m1n2×n1

)
H# =

(
1
2R

TH#

1
2K

TRTH#

)
.

Next we are ready to compute the D−1BTH#BD−1.

D−1BTH#BD−1

=

(
− 1

2R
TH#

−1
2K

TRTH#

)
(
−R 0n1×m1n2

)(
1
2Im1

1
4Im1 ⊗ 1Tn2

1
2Im1 ⊗ 1n2 T

)
=

(
1
4R

TH#R 1
2R

TH#RK
1
4K

TRTH#R 1
4K

TRTH#RK

)
.

Based on Lemma 3 and Lemma 7, the following matrix
N = 2

3L
#
G1

1
3L

#
G1

R 1
3L

#
G1

RK
1
3R

TL#
G1

1
6Q+ 1

2Im1

1
6QK + 1

2K
1
3K

TRTL#
G1

1
6K

TQ+ 1
2K

T 1
6K

TQK + T


(2)

is a symmetric {1}- inverse of L(G1 ⊖G2), where K =
Im1 ⊗ 1Tn2

, T = Im1 ⊗ (LG2 + In2 − 1
n2+2jn2×n2)

−1, Q =

RTL#
G1

R.

For any i, j ∈ V (G1), by Lemma 1 and the Equation (2),
we have

rij(G1 ⊖G2) =
2

3
(L#

G1
)ii +

2

3
(L#

G1
)jj −

4

3
(L#

G1
)ij ,

as stated in (a).

For any i, j ∈ V (G2), by Lemma 1 and the Equation (2),
we have rij(G1 ⊖G2)

= (Im1 ⊗ (LG2 + In2 −
1

n2 + 2
jn2×n2)

−1)ii

+(Im1 ⊗ (LG2 + In2 −
1

n2 + 2
jn2×n2)

−1)jj

−2(Im1 ⊗ (LG2 + In2 −
1

n2 + 2
jn2×n2)

−1)ij ,

as stated in (b).

For any i ∈ V (G1), j ∈ V (G2), by Lemma 1 and the
Equation (2), we have

rij(G1 ⊖G2) =
2

3
(L#

G1
)ii + (Im1 ⊗ (LG2 + In2 −

1

n2 + 2
jn2×n2)

−1)jj − (Im1 ⊗ (LG2 +

In2 −
1

n2 + 2
jn2×n2)

−1)ij ,

as stated in (c).

For any i ∈ I(G1), j ∈ V (G1)∪V (G2), let uivi ∈ E(G1)

denote the edge corresponding to i, by Lemma 4, we have

rij(G) =
1

n2 + 2
(rjui(G1 ⊖G2) + rjvi(G1 ⊖G2) + 1

+
∑

k∈V (G2)

rjk(G1 ⊖G2)

− 1

(n2 + 2)2Kf(G2) +
∑

k∈V (G2)

ruik(G1 ⊖G2) +

ruivi(G1 ⊖G2) +
∑

k∈V (G2)

rvik(G1 ⊖G2)

 ,

as stated in (d).

For any i, j ∈ I(G1), let uivi, ujvj ∈ E(G1) denote the
edges corresponding to i, j respectively. By Lemma 4, we
have

rij(G) =
1

n2 + 2

(
1 + riuj (G1 ⊖G2) + rivj (G1 ⊖G2)

+
∑

k∈V (G2)

rik(G1 ⊖G2)

− 1

(n2 + 2)2Kf(G2) +
∑

k∈V (G2)

rujk(G1 ⊖G2) +

rujvj (G1 ⊖G2) +
∑

k∈V (G2)

rvjk(G1 ⊖G2)

 ,

as stated in (e).

IV. KIRCHHOFF INDEX IN R-VERTEX CORONA AND
R-EDGE CORONA OF TWO GRAPHS

In this section, we will give the formulate for the Kirchhoff
index in G1 ⊙ G2 and G1 ⊖ G2 whenever G1 and G2 are
arbitrary graphs.

Theorem 3. Let G1 be a graph with n1 vertices and m1

edges and G2 be a graph with n2 vertices and m2 edges.
Then
Kf(G1 ⊙G2)

= (n1 +m1 + n1n2)

(
2 + 2n2

3n1
Kf(G1)

l +
1

3
tr(DG1L

#
G1

) + n1

n2∑
i=1

1

µi(G2) + 1

+
3m1 − n1 + 1

6

)
− 1

6
πTL#

G1
π − 1

3

1T (RTL#
G1

K)1− 1

3
1T (KTL#

G1
R)1

−n1n2 −
m1 + 2n1n2

2
,

where π = (d1, d2, · · · , dn1)
T and K = In1 ⊗ 1Tn2

.

Proof Let L
(1)
G1⊙G2

be the symmetric {1}-inverse of
LG1⊙G2 . Then

IAENG International Journal of Applied Mathematics, 46:3, IJAM_46_3_10

(Advance online publication: 26 August 2016)

 
______________________________________________________________________________________ 



tr(L
(1)
G1⊙G2

)

=
2

3
tr(L#

G1
) + tr(

1

2
Im1 +

1

6
RTL#

G1
R) + tr

(In1 ⊗ (LG2 + In2))
−1 +

2

3
tr(KTL#

G1
K)

=
2

3
tr(L#

G1
) +

m1

2
+

1

6

∑
i<j,ij∈E(G1)

[(L#
G1

)ii

+(L#
G1

)jj + 2(L#
G1

)ij ] + n1tr((LG2

+In2)
−1) +

2

3
tr(jn2×n2 ⊗ L#

G1
).

Note that the eigenvalues of (LG2 + In2) are µ1(G2) +
1, ..., µn(G2) + 1, then tr(LG2 + In2)

−1 =
∑n2

i=1
1

µi(G2)+1 .
By Lemma 1 and Lemma 5, we have

tr(L
(1)
G1⊙G2

)

=
2

3n1
Kf(G1) +

m1

2
+

1

6

∑
i<j,ij∈E(G)

[2(L#
G1

)ii + 2(L#
G1

)jj − rij(G1)] +

n1

n2∑
i=1

1

µi(G2) + 1
+

2n2

3n1
Kf(G1)

=
2 + 2n2

3n1
Kf(G1) +

m1

2
+

1

3
tr(DG1L

#
G1

)

−n1 − 1

6
+ n1

n2∑
i=1

1

µi(G2) + 1
.

Next, we calculate the 1T (L
(1)
G1⊙G2

)1. Since L#
G1 = 0, then

1T (L
(1)
G1⊙G2

)1 = 1T (
1

2
Im1 +

1

6
RTL#

G1
R)1 +

1

3
1T

(RTL#
G1

K)1 +
1

3
1T (KTL#

G1
R)1

+1T (In1 ⊗ (LG2 + In2)
−1)1

+
2

3
1T (KTL#

G1
K)1.

Since R1 = π, where π = (d1, d2, · · · , dn1
)T , then

1TRTL#
G1

R1 = πTL#
G1

π.

Let T = 1Tn1n2
(In1 ⊗ (LG2 + In2)

−1)1n1n2 , M = (LG2 +
In2), K = In1 ⊗ 1Tn2

, then

T =
(
1Tn2

1Tn2
· · · 1Tn2

)
M−1

M−1

. . .
M−1




1n2

1n2

· · ·
1n2


= n11

T
n2
(LG2 + In2)

−11n2 = n1n2

and 1T (KTL#
G1

K)1

= 1Tn1n2
(In1 ⊗ 1n2)L

#
G1

(In1 ⊗ 1Tn2
)

1n1n2

=
(
1Tn2

1n2 · · · 1Tn2
1n2

)
L#
G1


1Tn2

1n2

1Tn2
1n2

· · ·
1Tn2

1n2


= n2

21
T
n1
L#
G1

1n1 = 0,

so 1T (L
(1)
G1⊙G2

)1

=
m1

2
+

1

6
πTL#

G1
π +

1

3
1T (RTL#

G1
K)1

+
1

3
1T (KTL#

G1
R)1 + n1n2.

Lemma 5 implies that

Kf(L
(1)
G1⊙G2

) =

(n1 +m1 + n1n2)tr(L
(1)
G1⊙G2

)− 1T (L
(1)
G1⊙G2

)1.

Then plugging tr(L
(1)
G1⊙G2

) and 1T (L
(1)
G1⊙G2

)1 into the e-
quation above, we obtain the required result.

Corollary 1. Let G1 be an r1- regular graph with n1

vertices and m1 edges and G2 be a graph with n2 vertices
and m2 edges. Then

Kf(G1 ⊙G2) = (n1 +m1 + n1n2)

(
2 + 2n2 + r1

3n1

Kf(G1) + n1

n2∑
i=1

1

µi(G2) + 1

+
3m1 − n1 + 1

6

)
− m1 + 2n1n2

2
.

Proof Since R1 = r1 and L#
G1 = 0, then

1TKTL#
G1

R1 = 1T (RTL#
G1

K)1 = 0 and πTL#
G1

π =

r211
TL#

G1
1 = 0. Then the required result is obtained by

plugging 1TKTL#
G1

R1, 1T (RTL#
G1

K)1 and πTL#
G1

π into
Theorem 3.

Theorem 4. Let G1 be a graph with n1 vertices and m1

edges, G2 be a graph with n2 vertices and m2 edges. Then

Kf(G1 ⊖G2)

= (n1 +m2 +m1n2)

(
2

3n1
Kf(G1)

+
1

3
tr(DG1L

#
G1

) +
1

6
tr(KTRTL#

G1
RK)

+ m1

n2∑
i=1

1

µi(G2) + 1
+

3m1 − n1 + 1

6

)
−1 + 3n2

6
πTL#

G1
π − m1 + 4m1n2

2
,

where K = Im1
⊗ 1Tn2

and π = (d1, d2, · · · , dn2
)T .

Proof The proof is similar to that of Theorem 3 and hence
we omit details.

Corollary 2. Let G1 be an r1-regular graph with n1

vertices and m1 edges and G2 be a graph with n2 vertices
and m2 edges. Then

Kf(G1 ⊖G2) = (n1 +m2 +m1n2)

(
2 + r1
3n1

Kf(G1)

+
1

6
tr(KTRTL#

G1
RK) +m1

n2∑
i=1

1

µi(G2) + 1
+

3m1 − n1 + 1

3

)
−m1 + 4m1n2

2
,
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where K = Im1 ⊗ 1Tn2
.

Remark: From Theorem 3.2 and Theorem 4.2, in [13],
one can immediately get the Kirchhoff index of a graph by
computing the Laplacian eigenvalues of the graph. However,
the expression given in Theorem 3.2 and Theorem 4.2 in
[13] are somewhat complicated. In the above, by the result
of Theorem 3 and Theorem 4 in a different way we obtain
a much simpler expression.

V. CONCLUSION

We use the Laplacian generalized inverse approach to
obtain the formulate for the resistance distance and the
Kirchhoff index in G1 ⊙ G2 and G1 ⊖ G2 whenever G1

and G2 are arbitrary graphs. This approach is more simpler
than the computation of the results in [13] and improves and
extends some earlier results.
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