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Abstract—This paper investigates the global output feedback
stabilization for a class of nonholonomic systems in chained
form with communication delay in the input. A particular linear
transformation is introduced to convert the original time-delay
system into a delay-free form. Then, by using input-state-scaling
technique and the integrator backstepping approach based on
observer, a constructive design procedure for output feedback
control is given. It is shown that the proposed controller can
guarantee that all the system states globally converge to the
origin. An practical example is provided to demonstrate the
effectiveness of the proposed scheme.

Index Terms—nonholonomic systems, networked control,
input-state-scaling, linear transformation, global asymptotic
regulation.

I. I NTRODUCTION

Over the past decade, nonholonomic systems have attract-
ed much attention because they can be used to model many
real systems, such as mobile robots, car-like vehicle and
under-actuated satellites, see, e.g., [1-4] and the references
therein. An important feature of a nonholonomic system is
that the number of its inputs is less than the number of its
degree of the freedom, which makes the control problems
of a nonholonomic system challenging. As pointed out by
Brockett in [5], this class of nonlinear systems cannot be sta-
bilized by stationary continuous state-feedback, although it is
controllable. As a consequence, the well-developed smooth
nonlinear control theory and methodology cannot be directly
used to such systems. To overcome this obstruction, a num-
ber of intelligent approaches have been proposed including
discontinuous time-invariant stabilization[6,7], smooth time-
varying stabilization[8,9] and hybrid stabilization[10], see the
recent survey paper [4] for more details. Mainly thanks to
these valid approaches, the robust issue of nonholonomic
systems has been well-studied and a number of interesting
results have been established over the last years, for example,
one can see [11-17] and the references therein.

It should be mentioned that most results in the existing
literatures are based on point-to-point design. Recently, with
the rapid development of computer technology, networked
control systems (NCSs), wherein the control loops are closed
through a real-time network, has been one of the main
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direction of current control technology development and
innovation[18-22]. The main feature of a NCS is that the
components (sensors, controller and actuators) of the system
are not connected directly by wires but using a network. The
primary advantages of NCSs are low cost, reduced system
wiring, simple installation and maintenance, high reliability
and ease of system diagnosis and maintenances. As a result,
NCSs have been widely applied to many complicated control
systems, such as aviation and aerospace fields, and airplane
manufacture [23].

With the aforementioned background, naturally, the fol-
lowing interesting and important problem is proposed: how
do we to design a networked feedback controller for non-
holonomic systems? Recently, in [24], the authors consid-
ered the state feedback stabilization problem for networked
nonholonomic control systems (NNCSs). Nevertheless, the
above-mentioned control method require that the whole state
vector is measurable, which may be impossible in some
situations. Therefore, a more meaningful problem is how to
design an output feedback stabilizing controller for NNCSs
when only partial state vector is measurable. To the best
of our knowledge, this problem has not been solved in the
literature.

Motivated by the above discussion, we shall address this
problem here. The contributions of this paper are highlighted
as follows. (i) The networked output feedback stabilization
problem of the nonholonomic systems is studied for the first
time. (ii) Based on a combined application of input-state-
scaling technique and the integrator backstepping approach,
a new systematic output feedback control design procedure
is proposed to solve the networked stabilization problem for
all plants in the considered class (iii) An application example
for tricycle-type mobile robot is modeled and solved by the
proposed method.

The rest of this paper is organized as follows. In Section
II, preliminary knowledge and the problem formulation are
given. Section III presents the input-state-scaling technique
and the main results. Section IV gives a simulation example
to illustrate the theoretical finding of this paper. Finally,
concluding remarks are proposed in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Since many nonlinear mechanical systems with nonholo-
nomic constraints can be transformed to a canonical chained
form representation[15]. In this paper, we consider the fol-
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lowing chained system:














ẋ0(t) = u0(t)
ẋi(t) = u0(t)xi+1(t), i = 1, · · · , n− 1
ẋn(t) = u1(t)
y(t) = (x0(t), x1(t))

T

(1)

where(x0(t), x(t))
T = (x0(t), x1(t), · · · , xn(t))

T ∈ Rn+1 ,
u(t) = (u0(t), u1(t))

T ∈ R2, y(t) ∈ R2 are the system state,
control input and system measurable output,respectively.

Since the introduction of the network in the feedback
control loop makes that network-induced delay happens
inevitably during information transmission. To simplify the
analysis, based on actual engineering background, in this
paper we make the following assumption regarding system
(1).

Assumption 1. The sensor is time driven; the controller
and actuator are event driven. We useτsc andτca to represent
the sensor-controller and controller-actuator delay, respec-
tively, constant delayτ = τsc + τca is bounded.

Considering the effect of delayτ , the above plant model
is transformed into an NNCS model















ẋ0(t) = u0(t− τ)
ẋi(t) = u0(t− τ)xi+1(t), i = 1, · · · , n− 1
ẋn(t) = u1(t− τ)
y(t) = (x0(t), x1(t))

T

(2)

The control objective is to find a networked output feedback
controller which makes the closed-loop system be globally
asymptotical-regulated at origin.

Before the analysis of system(2), we first introduce follow-
ing technical linear transformation, which will be the base
of the coming control design and performance analysis.

Consider the following linear system with control-delay

ẋ(t) = Ax(t) +Bu(t− τ) (3)

wherex ∈ Rn is the state vector;u ∈ Rm is the control
input; τ is bounded constant delay andA,B are system
matrices with appropriate dimensions.

For system (3) contains the control-delay, now we make
some transformation that the system with delayed control is
transformed into a non-control-delayed system.

Let

z(t) = x(t) +

∫ t

t−τ

eA(t−τ−θ)Bu(θ)dθ (4)

Taking the derivative of (4) with respect to timet and, we
obtain

ż(t) = ẋ(t) +A

∫ t

t−τ

eA(t−τ−θ)Bu(θ)dθ

+e−AτBu(t)−Bu(t− τ)

(5)

Substituting (3) into (5), yields

ż(t) = Āz(t) + B̄u(t) (6)

where Ā = A, B̄ = e−AτB. If (A,B) is completely
controllable, it can be proved that(Ā, B̄) is also completely
controllable. So the the following lemma is obtained.

Lemma 1. If there exist a feedback controller in the form
u(t) = Kz(t) such that system (6) is asymptotically stable,
then system (3) is also asymptotically stable.

Proof. From the linear transformation (4), we have

‖x(t)‖ = ‖z(t)−

∫ t

t−τ

eA(t−τ−θ)Bu(θ)dθ‖

≤ ‖z(t)‖+ ‖

∫ t

t−τ

eA(t−τ−θ)Bu(θ)dθ‖

≤ ‖z(t)‖+ τ max
−τ≤θ≤0

∥

∥

∥
eAθ

∥

∥

∥
‖B‖‖u(t+ θ)‖

≤ ‖z(t)‖+ τ max
−τ≤θ≤0

∥

∥

∥eAθ

∥

∥

∥‖B‖‖K‖‖z(t+ θ)‖

(7)
Since system (6) is asymptotically stable, it follows that

lim
t→∞

z(t) = 0 (8)

Putting together (7) and (8), we have

lim
t→∞

x(t) = 0 (9)

which means that system (3) is asymptotically stable. This
completes the proof of Lemma 1.

III. M AIN RESULTS

In this section, we present a systematic controller design
procedure for the NNCS (2). The inherently triangular struc-
ture of system (2) suggests that we should design the control
inputsu0 andu1 in two separate stages.

A. Design u0 for x0−subsystem

For x0−subsystem, we introduce linear transformation

z0(t) = x0(t) +

∫ t

t−τ

et−τ−θu0(θ)dθ (10)

So thex0-subsystem is transformed into

ż0(t) = e−τu0(t) (11)

Consider the control inputu0 as

u0(t) =

{

k0sgn
(

x0(0)
)

+ u∗
0, t < ts

−k0z0(t), t ≥ ts
(12)

where k0, u
∗
0 are positive design constants and satisfy the

inequalityk0 > u∗
0 and ts > 0 is a given time.

Remark 1. Because of the particular selection of control
inputu0 in (12),z0(0) 6= 0 andz0(t) not crossing zero for all
t ∈ [0, ts] are guaranteed irregardless of the value ofx0(0).

We now present the first result of this paper, which is
crucial for the input-state-scaling transformation in the next
subsection.

Theorem 1.For any initial conditionx0(0) ∈ R, the solu-
tion x0 satisfieslimt→∞ x0(t) = 0. Furthermore, the control
u0 given by (12) does not cross zero for allt ∈ [−τ,∞) and
satisfieslimt→∞ u0(t) = 0.

Proof. Obviously, it suffices to prove the statement in the
case wheret ≥ ts. In this case, substituting (12) into (11),
we have

z0(t) = z0(ts)e
−k0(t−ts) (13)

from above equation, we can see thatz0(t) exponentially
tends to zero ast → ∞. Furthermore, by using Lemma 1,
we have

limt→∞ x0(t) = 0 (14)

Since the equation (13) implies thatz0(t) does not cross zero
for all t ∈ [ts,∞). Putting together it, (12) and Remark 1,
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we have theu0 does not cross zero for allt ∈ [−τ,∞) and
limt→∞ u0(t) = 0.

Hence, we can obtain that theu0(t − τ) does also not
cross zero for allt ∈ (0,∞) and limt→∞ u0(t − τ) = 0
independent of thex-subsystem.

B. Input-state-scaling transformation and observer design

The above design can assure thatx0-state in (2) can be
globally regulated to zero viau0 in (12) ast → ∞. However,
it is troublesome in controlling thex−subsystem via the
control input u1, because, in the limit (i.e.,u0 = 0), the
x-subsystem is uncontrollable. This problem can be avoided
by utilizing the following discontinuous input-state-scaling
transformation

ηi(t) =
xi(t)

un−i

0 (t− τ)
, i = 1, · · · , n (15)

Under the newη-coordinates, thex-subsystem is trans-
formed into







η̇1(t) = η2(t) + (n− 1)k0e
−τη1(t)

η̇i(t) = ηi+1(t) + (n− i)k0e
−τηi(t)

η̇n(t) = u1(t− τ)
(16)

It should be noted that the measurement of stateη1(t)
can be obtained if the to-be-designed controlu0(t) is only
dependent on outputy(t).

We design the following observer for the system (16)






















˙̂η1(t) = η̂2(t)− (n− 1)k0e
−τ η̂1(t)

+k1(η1(t)− η̂1(t))
˙̂ηi(t) = η̂i+1(t)− (n− i)k0e

−τ η̂i(t)
+ki(η1(t)− η̂1(t))

˙̂ηn = u1(t− τ) + kn(η1(t)− η̂1(t))

(17)

where k1, · · · , kn are design parameters to be determined
later.

The estimation error̃η(t) = η(t) − η̂(t) satisfies the
dynamical equation






˙̃η1(t) = η̃2(t)− (n− 1)k0e
−τ η̃1(t)− k1η̃1(t)

˙̃ηi(t) = η̃i+1(t)− (n− i)k0e
−τ η̃i(t)− kiη̃1(t)

˙̃ηn(t) = −knη̃1(t)

(18)

The differential equation (18) can be rewritten into the
compact form

˙̃η(t) = A1η̃(t) (19)

where

A1 =























−k1 −m1 1 · · · 0 0
−k2 −m2 · · · 0 0

... 0
. . . 0 0

...
...

. . .
. . .

...

−kn−1

...
. . . −mn−1 1

−kn 0 · · · 0 0























(20)

wheremi = (n− i)k0e
−τ .

About matrixA1 defined by (20), there exists the following
lemma.

Lemma 2. The eigenvalues of the matrixA1 defined by
(20) can be arbitrarily assigned by a proper selection of the
design parametersk1, · · · , kn.

Proof. The similar proof can be found in [11] and thus
omitted here.

In view of (17) and (19), the overall system to be con-
trolled can be expressed as














˙̃η(t) = A1η̃(t)
˙̂η1(t) = η̂2(t)− (n− 1)k0e

−τ η̂1(t) + k1η̃1(t)
˙̂ηi(t) = η̂i+1(t)− (n− i)k0e

−τ η̂i(t) + kiη̃1(t)
˙̂ηn = u1(t− τ) + knη̃1(t)

(21)

which can be rewritten as

ℵ̇(t) = Aℵ(t) +Bu1(t− τ) (22)

where ℵ(t) =

(

η̃(t)
η̃(t)

)

, A =

(

A1 0
A3 A4

)

, B =
(

0
B2

)

,

A3 =























−m1 1 · · · 0 0
0 −m2 · · · 0 0
... 0

. . . 0 0
...

...
. . .

. . .
...

0
...

. . . −mn−1 1
0 0 · · · 0 0























A4 =



















−k1
−k2
−k3

...
−kn−1

−kn



















andB2 =



















0
0
0
...
0
1



















Obviously, the system (22) is completely controllable.
Now, we introduce linear transformation

z(t) = ℵ(t) +

∫ t

t−τ

eA(t−τ−θ)Bu1(θ)dθ (23)

Putting together (22) and (23), yields

ż(t) = Āz(t) + B̄u1(t) (24)

whereĀ = A, B̄ = e−AτB.
From Lemma 1, we can see that the system is also

completely controllable. So the control problem for system
(22) with delayed control is transformed into a control
problem for delay free system (24).

C. Lyapunov method for u1

Based on Lemma 1 and input-state-scaling transformation,
the following useful result can be easily established.

Theorem 2. The x-subsystem is globally asymptotically
regulated at origin by a state feedback controller in the form

u1(t) = Kz(t) (25)

If there exist a positive definite matrixP such that the
following inequality hold.

(Ā+ B̄K)TP + P (Ā+ B̄K) < 0 (26)

Proof. For given symmetric positive-definite matrixP , we
consider the Lyapunov function

V (z(t)) = zT (t)Pz(t) (27)
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Fig. 1. A tricycle-type mobile robot.

with u1(t) = Kz(t), the time derivative ofV along the
trajectories of system (24) is given by

V̇ (z) = zT (t)
[

(Ā+ B̄K)TP + P (Ā+ B̄K)
]

z(t) (28)

From condition (26), we have

V̇ (z(t)) < 0 (29)

which implies thatz(t) asymptotically tends to zero ast →
∞. By Lemma 1, we can obtain

lim
t→∞

ℵ(t) = 0 (30)

Noting the input-state-scaling transformation (15), we con-
clude that

lim
t→∞

x(t) = 0 (31)

This completes the proof of Theorem 2.
From the Theorems 1 and 2, the main theorem of our

paper can be easily obtained.
Theorem 3.System (2) is globally asymptotically regulat-

ed at origin by the output feedback controllersu0, u1 given
by (12) and (25). If there exist a positive definite matrixP
such that (26) hold.

IV. SIMULATION EXAMPLE

Consider a tricycle-type mobile robot, as shown in Fig. 1.
Its bilinear model with delayed control can be given by







ẋc(t) = v(t− τ)
ẏc(t) = v(t− τ)θ(t)

θ̇(t) = ω(t− τ)
(32)

where(xc, yc) denotes the position of the center of mass of
the robot,θ is the heading angle of the robot,v is the forward
velocity andω is the angular velocity of the robot.

It is evident that, whenτ = 0, system (32) collapses into a
third-order chained form system which has been extensively
studied in the literature. However, whenτ 6= 0, the existing
feedback design methods may cause the instability of the
closed-loop system.

Here, we show that the control strategy advocated in
this paper permits the design of a nonlinear control law to
globally asymptotically regulate all trajectories of system
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(a) Time history of system states.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

t/s

 

 
the estimation of η

1
 

the estimation of η
2
 

(b) Time history of observer states.

Fig. 2. States of the closed-loop system.

(32) to the equilibrium. Using the following change of
coordinates and feedback:























x0 = xc

x1 = yc
x2 = θ

u0 = v

u1 = ω

(33)

system (32) was transformed into the following form






ẋ0(t) = u0(t− τ)
ẋ1(t) = u0(t− τ)x2(t)
ẋ2(t) = u1(t− τ)

(34)

Clearly, system (34) is a simple of (2). Hence our proposed
control design procedure is straightforward to apply.

Assumeτ = 0.1, and the design parameters are chosen as
k0 = k1 = −3, k2 = −2 respectively. The simulation results
for initial conditions(x0(0), x1(0), x2(0)) = (2, 1,−1) and
(η̂1(0), η̂2(0)) = (1,−1) are shown in Fig.2. From the
figure, it is clear to see that that our control scheme achieves
satisfactory performances.

V. CONCLUSION

In this paper, we consider the stabilization problem for
a class of nonholonomic systems in chained form via net-
worked output feedback. First, a particular linear transforma-
tion is introduced to convert the original time-delay system

IAENG International Journal of Applied Mathematics, 46:3, IJAM_46_3_12

(Advance online publication: 26 August 2016)

 
______________________________________________________________________________________ 



into a delay-free form. Then, by using input-state-scaling
technique and the integrator backstepping approach based on
observer to design control laws, global asymptotic regulation
of the closed-loop system is guaranteed. Simulation results
demonstrate the effectiveness of the proposed scheme.
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