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Global Output Feedback Stabilization of
Nonholonomic Chained Form Systems with
Communication Delay

Yanling Shang, Deheng Hou and Fangzheng Gao

Abstract—This paper investigates the global output feedback direction of current control technology development and
stabilization for a class of nonholonomic systems in chained innovation[18-22]. The main feature of a NCS is that the
form with communication delay in the input. A particular linear components (sensors, controller and actuators) of the system

transformation is introduced to convert the original time-delay ¢ ted directly by wi but Usi work_Th
system into a delay-free form. Then, by using input-state-scaling are not connected directly by wires but using a network. fhe

technique and the integrator backstepping approach based on Primary advantages of NCSs are low cost, reduced system
observer, a constructive design procedure for output feedback wiring, simple installation and maintenance, high reliability
control is given. It is shown that the proposed controller can and ease of system diagnosis and maintenances. As a result,
guarantee that all the system states globally converge to the NCSs have been widely applied to many complicated control

origin. An practical example is provided to demonstrate the 2 . .
effectiveness of the proposed scheme. systems, such as aviation and aerospace fields, and airplane
manufacture [23].

Index Terms—nonholonomic systems, networked control, . .
input-state-scaling, linear transformation, global asymptotic ~ With the aforementioned background, naturally, the fol-
regulation. lowing interesting and important problem is proposed: how

do we to design a networked feedback controller for non-
I. INTRODUCTION holonomic systems? Recently, in [24], the authors consid-

Over the past decade, nonholonomic systems have attraecrgd the state feedback stabilization problem for networked
ed much attention becal'Jse they can be used to model mgonholonomic control systems (NNCSs). Nevertheless, the
real systems, such as mobile robots, car-like vehicle a8 ve-mentioned control method require that the whole state

. vector is measurable, which may be impossible in some
under-actuated satellites, see, e.g., [1-4] and the refereng? y P

S .. . .
therein. An important feature of a nonholonomic system i uations. Therefore, a more meaningful problem is how to

o . design an output feedback stabilizing controller for NNCSs
that the number of its inputs is less than the number of i : .
. when only partial state vector is measurable. To the best
degree of the freedom, which makes the control problem§ : :
. . . of our knowledge, this problem has not been solved in the
of a nonholonomic system challenging. As pointed out tm
. . . erature.
Brockett in [5], this class of nonlinear systems cannot be sta- ) ) )
bilized by stationary continuous state-feedback, although it isMotivated by the above discussion, we shall address this
controllable. As a consequence, the well-developed smodtipPlem here. The contributions of this paper are highlighted
nonlinear control theory and methodology cannot be directp follows. (i) The networked output feedback stabilization
used to such systems. To overcome this obstruction, a nuproblem of the nonholonomic systems is studied for the first
ber of intelligent approaches have been proposed includifige- (i) Based on a combined application of input-state-
discontinuous time-invariant stabilization[6,7], smooth time3¢@ling technique and the integrator backstepping approach,
varying stabilization[8,9] and hybrid stabilization[10], see th@ NéW Systematic output feedback control design procedure
recent survey paper [4] for more details. Mainly thanks t5 proposgd to solve.the networke_gl stablllzafuon_ problem for
these valid approaches, the robust issue of nonholonorltPlants in the considered class (iii) An application example
systems has been well-studied and a number of interestR§ tricycle-type mobile robot is modeled and solved by the
results have been established over the last years, for exampf@Posed method.
one can see [11-17] and the references therein. The rest of this paper is organized as follows. In Section
It should be mentioned that most results in the existing preliminary knowledge and the problem formulation are
literatures are based on point-to-point design. Recently, wigiven. Section Il presents the input-state-scaling technique
the rapid development of computer technology, networkedhd the main results. Section IV gives a simulation example
control systems (NCSs), wherein the control loops are closted illustrate the theoretical finding of this paper. Finally,
through a real-time network, has been one of the mag@ncluding remarks are proposed in Section V.
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lowing chained system: Proof. From the linear transformation (4), we have
ot
g0 (t) = uo(t) _ ,/ Alt—-0)
) = e Omes ), imLom—1 lo@l = ll=()) = | e Bu(9)do|
En(t) = ui(t) @) < |lz@®)| + | /.t eA(t*T*H)Bu(Q)dQH
y(t) = (wo(t), z1(t))" - by
A
where(zo (), ()T = (zo(t), z1(t), -+ -, 2n ()T € R, < =@l + 7 _max e f’HIIBHHu(H )l
u(t) = (uo(t),ul(t))T € R?, y(t) € R? are the system state, <|lz@®)| +7 max H‘?ABHHBHHKHHZ“"" 0)]|
control input and system measurable output,respectively. - —7<0<0
Since the introduction of the network in the feedback . ) i i (7)
control loop makes that network-induced delay happer&ice system (6) is asymptotically stable, it follows that
inevitably during information transmission. To simplify the tlim z2(t) =0 (8)
—00

analysis, based on actual engineering background, in this

paper we make the following assumption regarding systentting together (7) and (8), we have

(D). lim z(t) =0 9)
Assumption 1. The sensor is time driven; the controller o0

and actuator are event driven. We useandr,, to represent which means that system (3) is asymptotically stable. This

the sensor-controller and controller-actuator delay, respg@mpletes the proof of Lemma 1.

tively, constant delay = 7. + 7., is bounded.

Considering the effect of delay, the above plant model [1l. M AIN RESULTS
is transformed into an NNCS model In this section, we present a systematic controller design
io(t) = uo(t — 1) procedure for the NNCS (2). The inherently triangular struc-
ii(t) = uog(t — T)xip1(t), i=1,---,n—1 ture of system (2) suggests that we should design the control
B (t) = ur (t —7) 2) inputsuy andw; in two separate stages.

y(t) = (o(t), z1 ()"

The control objective is to find a networked output feedba& Design o for 2o —subsystem
controller which makes the closed-loop system be globally For zo—subsystem, we introduce linear transformation
asymptotical-regulated at origin. t

Before the analysis of system(2), we first introduce follow- zo(t) = wo(t) + / e' "7 %ug(0)df (10)
ing technical linear transformation, which will be the base e
of the coming control design and performance analysis. SO thezg-subsystem is transformed into

Consider the following linear system with control-delay o(t) = e Tuo(t) (11)
i(t) = Az(t) + Bu(t — 7) (3)  Consider the control input, as
wherez € R"™ is the state vectory € R™ is the control wo(t) = kosgn(xo(O)) Fug, t<ts (12)
input; 7 is bounded constant delay andl B are system O —kozo(t), t >t

matrices with approprlafte dimensions, where ko, uj; are positive design constants and satisfy the
For system (3) contains the control-delay, now we malfﬁequalityko > u? andt, > 0 is a given time
0 s .

some transformation that the system with delayed control ISRemark 1. Because of the particular selection of control

transformed into a non-control-delayed system. inputuo in (12), z0(0) # 0 andzo () not crossing zero for all
Let t € [0,t5] are guaranteed irregardless of the valuerg(0).

A(t—7—0) We now present the first result of this paper, which is
2(t) = (t) + /t_T ¢ Bu(0)dd 4 crucial for the input-state-scaling transformation in the next
subsection.

Taking the derivative of (4) with respect to tinteand, we  Theorem 1.For any initial conditionz,(0) € R, the solu-

obtain tion xo satisfieslim; ., zo(t) = 0. Furthermore, the control
ug given by (12) does not cross zero for alk [—7, c0) and

t
. . A(t—7—0

+e~A7Bu(t) — Bu(t — 1) Proof. Obviously, it suffices to prove the statement in the
o ) _ case where > t. In this case, substituting (12) into (11),
Substituting (3) into (5), yields we have
_ _ _ —ko(t—ts
4(t) = Ax(t) + Bul(t) (6) 20(t) = zo(ts el (13)

from above equation, we can see thg{t) exponentially
tends to zero ag — oco. Furthermore, by using Lemma 1,
we have

where A = A, B = ¢ A"B. If (A, B) is completely
controllable, it can be proved théat, B) is also completely
controllable. So the the following lemma is obtained.
Lemma 1. If there exist a feedback controller in the form
u(t) = Kz(t) such that system (6) is asymptotically stableSince the equation (13) implies thaf(¢) does not cross zero
then system (3) is also asymptotically stable. for all ¢t € [ts,00). Putting together it, (12) and Remark 1,

lim; 00 zo(t) =0 (24)
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we have theuy does not cross zero for all€ [—7,00) and Proof. The similar proof can be found in [11] and thus
limy—y 00 uo(t) = 0. omitted here.

Hence, we can obtain that the (¢ — 7) does also not In view of (17) and (19), the overall system to be con-
cross zero for alt € (0,00) and lim; o, ug(t — 7) = 0 trolled can be expressed as
independent of the-subsystem.

77(t) Arn(t)
1t q n — koe” "71(t) + k17
B. Input-state-scaling transformation and observer design 1((t) Hit fiolt )( ) ( (n —)i)(;fo e TlA( (>) i 11{511171( ()) (21)
The above design can assure thatstate in (2) can be 77n =ui(t —7) + ko1 (t)

globally regulated to zero via, in (12) ast — oo. However,
it is troublesome in controlling the—subsystem via the
control inputu;, because, in the limit (i.ey, = 0), the &(t) — AN(t) + Buy(t — 7) (22)
x-subsystem is uncontrollable. This problem can be avoided

which can be rewritten as

by utilizing the following discontinuous input-state- Scalmg/vhere () — 7(t) A = A 0 B -
transformation n(t) )’ As Ag )’
0
it .
m) = 20 oy (15) <B2>’
ug "t —T) . 1 3
Under the news-coordinates, thec-subsystem is trans- 0 —mg - 0 0
formed into 0 0 0
M (t) = n2(t) + (n — 1koe™ "1 (t) Az =
1i(t) = Ni1 () + (n = i)koe™i(1) (16)
in(t) = st =) 0 cma 1
It should be noted that the measurement of statg) 0 U 0 0
can be obtained if the to-be-designed contg(t) is only —kq 0
dependent on output(t). —k2 0
We design the following ob for th tem (16 —k 0
e e5|gr.1 e following observer for the system (16) A, — | 3 and B, —
M (t) = 72(t) = (n = Dkoe™ i1 (t) . :
. +k1(m () — (1)) T (1)
() =i (t — i)k i (t 17 N\ —Ffn /
m(t) = 1:-2?1277)1( )(n ml&))oe (1) (7 Obviously, the system (22) is completely controllable.

;. . Now, we introduce linear transformation

N = wr(t = 7) + kn(m(t) — 71(2)) .

where kq,-- -, k, are design parameters to be determined 2(t) = R(t) +/ eAt=7=0) By, (0)do (23)
later. t—1

The estimation errom(t) = n(t) — 7(t) satisfies the Putting together (22) and (23), yields

dynamical equation _ _
. -~ } 3 2(t) = Az(t) + Buq(t) (24)
11(t) = 12(t) — (n — 1)koe™ "1 (t) — ki (£) _ o
7i() = i (t) — (n = ikoe™ "ii(t) — ki (1) (18) WhereA =4, B =7 5. _
7'7 (t) = *knfh (t) From Lemma 1, we can see that the system is also
" completely controllable. So the control problem for system

compact form _ problem for delay free system (24).
1(t) = Avij(t) (19)
where C. Lyapunov method for u,
—k1 —mq 1 e 0 0 Based on Lemma 1 and input-state-scaling transformation,
—ko —mg - 0 0 the following useful result can be easily established.
Theorem 2. The z-subsystem is globally asymptotically
0 0 0 lated at origin b feedback lier in the f
A = (20) regulated at origin by a state feedback controller in the form
_ ui(t) = Kz(t) (25)
7](3”,1 . —Mp—1 1 . L. .. .
—k, 0 ... 0 0 If there exist a positive definite matri¥ such that the

following inequality hold.
wherem; = (n —i)koe™". o L
About matrix4; defined by (20), there exists the following (A+BE)"P+P(A+BK) <0 (26)
lemma. ) i Proof. For given symmetric positive-definite matrix, we
Lemma 2. The eigenvalues of the matriA, defined by . cider the Lyapunov function
(20) can be arb|trar|ly assigned by a proper selection of the
design parameters,, - - -, k,,. V(z(t)) = 2T (t)Pz(t) (27)

(Advance online publication: 26 August 2016)



TAENG International Journal of Applied Mathematics, 46:3, IJAM_46_3 12

- = =%

- =X

o

(a) Time history of system states.
Fig. 1. A ftricycle-type mobile robot.

T
the estimation of n,

— — — the estimation of n, |

with u;(t) = Kz(t), the time derivative oft’ along the |
trajectories of system (24) is given by

V(z)=2T(t)[(A+ BK)TP + P(A+ BK)|z(t) (28)
From condition (26), we have

V(z(t) <0 (29)

which implies thatz(¢) asymptotically tends to zero as— !

0. By Lemma 1, we can obtain 0 2 4 . 6 8 10
,}HEO N(t) =0 (30) (b) Time history of observer states.

Noting the input-state-scaling transformation (15), we cop:?g 2. States of the closed-loop system
clude that o '
lim z(t) =0 (31)

t—o0

This completes the proof of Theorem 2. (32) t_o the equilibrium. l.Jsmg the following change of
coordinates and feedback:

From the Theorems 1 and 2, the main theorem of oUr

paper can be easily obtained. To = Te
Theorem 3.System (2) is globally asymptotically regulat- T1 = Ye
ed at origin by the output feedback controllefs «; given Ty =10 (33)
by (12) and (25). If there exist a positive definite matfx Uup =v
such that (26) hold. Uy =w

system (32) was transformed into the following form

IV. SIMULATION EXAMPLE .
Zo(t) = up(t — 7)

Consider a tricycle-type mobile robot, as shown in Fig. 1. @1 (t) = up(t — 7)z2(t) (34)
Its bilinear model with delayed control can be given by Bo(t) = uy(t —7)
Te(t) =v(t —T) Clearly, system (34) is a simple of (2). Hence our proposed
y:c(t) =o(t—7)0(t) (32) control design procedure is straightforward to apply.
0(t) =w(t—7) Assumer = 0.1, and the design parameters are chosen as

= k1 = =3, ko = —2 respectively. The simulation results
r initial conditions (xy(0), z1(0),z2(0)) = (2,1,—1) and
(11(0),72(0)) = (1,—1) are shown in Fig.2. From the

Ve:?qty E.igd“f[ ,lf] t?e anguliiroveloi|ty 01‘3t2he r(l)lbot. it figure, it is clear to see that that our control scheme achieves
is evident that, whem = 0, system (32) collapses into A atisfactory performances.

third-order chained form system which has been extensively
studied in the literature. However, when 0, the existing
feedback design methods may cause the instability of the
closed-loop system. In this paper, we consider the stabilization problem for
Here, we show that the control strategy advocated @&class of nonholonomic systems in chained form via net-
this paper permits the design of a nonlinear control law tworked output feedback. First, a particular linear transforma-
globally asymptotically regulate all trajectories of systertion is introduced to convert the original time-delay system

where(z.,y.) denotes the position of the center of mass cﬁf
the roboty is the heading angle of the robetjs the forward

V. CONCLUSION
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into a delay-free form. Then, by using input-state-scaling
technique and the integrator backstepping approach based on
observer to design control laws, global asymptotic regulation
of the closed-loop system is guaranteed. Simulation results
demonstrate the effectiveness of the proposed scheme.
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