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Abstract—In this paper, we focus on multiobjective fuzzy
random programming problems with simple recourse through
a fractile optimization model, in which fuzzy random variables
coefficients are involved in equality constraints, and random
variables coefficients are involved in the objective functions. In
the proposed method, equality constraints with fuzzy random
variables are defined on the basis of a possibility measure and
a two-stage programming method. To deal with the objective
functions involving random variable coefficients, a fractile op-
timization model is applied. For a given permissible possibility
level and/or permissible probability levels specified by the
decision maker, several kinds of Pareto optimality concepts are
introduced. Interactive decision making methods are proposed
to obtain a satisfactory solution from among a Pareto optimal
solution set. The proposed method is applied to a farm planning
problem in the Philippines, in which it is assumed that the
amount of water resource in dry season is represented as a
fuzzy random variable.

Index Terms—multiobjective programming, simple recourse
programming, a possibility measure, fuzzy random variables,
a satisfactory solution.

I. INTRODUCTION

During the past six decades, various types of stochastic
programming approaches have been proposed to deal with
mathematical programming problems with random variable
coefficients. Such approaches can be classified into two
groups, one is two-stage programming methods [2], [4], [7],
[18], [20] and the other is chance constraints methods [3],
[15], [16]. In two-stage programming problems, the first-
stage is to minimize the penalty cost for the violation of the
equality constraints under the assumption that the decision
variables are fixed, and the second-stage is to minimize the
original objective function and the corresponding penalty
cost. For chance constraint programming problems, a proba-
bility maximization model and a fractile optimization model
were proposed. In a probability maximization model, the
probability that the objective function is smaller than a cer-
tain target value is maximized. A fractile optimization model
can be regarded as a complementary to the corresponding
probability maximization model, in which a target variable
is optimized under the condition that the decision maker
specifies the probability level that the objective function is
smaller than the target variable.

Two-stage programming methods have been applied to
various types of water resource allocation problems with
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random inflow in future [17], [19]. However, if probability
density functions of random variables are unknown or the
problem is a large scale one with random variables, it may
be extremely hard to solve the corresponding two-stage
programming problem. From such a point of view, inexact
two-stage programming methods have been proposed [6],
[12].

As an extension for multiobjective programming problems,
Sakawa et al. [14] proposed an interactive fuzzy decision
making method for multiobjective stochastic programming
problems with simple recourse. However, in the real world
decision making situations, it seems to be natural to consider
that the uncertainty is expressed by not only fuzziness but
also randomness simultaneously. From such a point of view,
interactive decision making methods for multiobjective fuzzy
random programming problems have been proposed [9], [10],
in which chance constraint methods and a possibility measure
are applied to deal with fuzzy random variable coefficients
[11].

In this paper, we focus on multiobjective fuzzy random
programming problems with simple recourse through a frac-
tile optimization model, where the coefficients of equality
constraints are defined by LR-type fuzzy random variables
[9], [10], and the coefficients of the objective functions
are defined by random variables. We propose interactive
decision making methods to obtain a satisfactory solution
from among a Pareto optimal solution set. In section II, we
focus on multiobjective programming problems, in which
the coefficients of equality constraints are fuzzy random
variables. After the decision maker specifies a permissible
possibility level for fuzzy random variables, multiobjective
fuzzy random simple recourse programming problems are
formulated, and the corresponding Pareto optimal solution
concept is defined. To obtain a satisfactory solution from
among a Pareto optimal solution set, an interactive algorithm
(Algorithm 1) is developed [22]. In section III, we further
focus on multiobjective programming problems, in which
the coefficients of equality constraints are fuzzy random
variables while the coefficients of the objective functions are
random variables. After the decision maker specifies not only
a permissible possibility level for fuzzy random variables but
also permissible probability levels for the objective functions,
multiobjective fuzzy random simple recourse programming
problems through a fractile optimization model are formu-
lated, and the corresponding Pareto optimal solution concept
is defined. To obtain a satisfactory solution from among a
Pareto optimal solution set, an interactive algorithm (Algo-
rithm 2) is developed. From a view point that permissible
probability levels and the corresponding objective functions
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conflict with each other, the another interactive algorithm
(Algorithm 4) is also developed, in which the decision maker
is requested to specify not permissible probability levels but
the membership functions of permissible probability levels.
In Algorithm 3, permissible probability levels are automat-
ically set as appropriate values through the fuzzy decision
[1], [13], [24]. In section IV, to show the efficiency of the
proposed method, we apply Algorithm 2 to a farm planning
problem in the Philippines [23], in which it is assumed that
the amount of water resource in dry season is represented as
a fuzzy random variable and the profit coefficients of seven
crops are represented as random variables.

II. MULTIOBJECTIVE FUZZY RANDOM PROGRAMMING
PROBLEMS WITH SIMPLE RECOURSE

In this section, we focus on multiobjective programming
problems involving fuzzy random variable coefficients in the
right-hand sides of the equality constraints.
[MOP1]

min
x∈X

(c1x, · · · , ckx) (1)

subject to
Ax = d̃ (2)

where cℓ = (cℓ1, · · · , cℓn), ℓ = 1, · · · , k are n dimen-
sional coefficient row vectors of objective function, x =
(x1, · · · , xn)

T ≥ 0 is an n dimensional decision variable
column vector, X is a linear constraint set with respect
to x. A is an (m × n) dimensional coefficient matrix,

d̃ = (d̃1, · · · , d̃m)
T

is an m dimensional coefficient column
vector whose elements are fuzzy random variables [11]
(The symbols ”-” and ”˜” mean randomness and fuzziness
respectively).

In order to deal with fuzzy random variables efficiently,
Katagiri et al. [9], [10] defined a special type of a fuzzy
random variable based on the concept of LR fuzzy numbers
[5], which is called an LR-type fuzzy random variable.
Under the occurrence of each elementary event ω, d̃i(ω) is
a realization of an LR-type fuzzy random variable d̃i, which
is an LR fuzzy number [5] whose membership function is
defined as follows.

µ
d̃i(ω)

(s) =

 L
(

bi(ω)−s
αi

)
, s ≤ bi(ω)

R
(

s−bi(ω)
βi

)
, s > bi(ω)

(3)

where the function L(t)
def
= max{0, l(t)} is a real-valued

continuous function from [0,∞) to [0, 1], and l(t) is a
strictly decreasing continuous function satisfying l(0) = 1.
Also, R(t)

def
= max{0, r(t)} satisfies the same conditions.

αij(> 0) and βij(> 0) are called left and right spreads [5].
The mean value bi is a random variable, whose probability
density function and cumulative distribution function are
defined as hi(·) and Hi(·) respectively. It is assumed that
random variables bi, i = 1, · · · ,m are independent with each
other.

Since it is difficult to deal with MOP1 directly, we
introduce a permissible possibility level γ(0 < γ ≤ 1) based
on a concept of a possibility measure [5] for the equality
constraints (2),

Pos(aix = d̃i(ω)) ≥ γ, i = 1, · · · ,m, (4)

where ai = (ai1, · · · , ain), i = 1, · · · ,m are n-dimensional
row vectors of A. From the property of LR fuzzy numbers,
the i-th inequality condition (4) can be transformed into the
following two inequalities.

bi(ω)− L−1(γ)αi ≤ aix ≤ bi(ω) +R−1(γ)βi (5)

For the above two inequalities (5), we introduce two vectors

y+ = (y+1 , · · · , y+m)
T ≥ 0,y− = (y−1 , · · · , y−m)

T ≥ 0,

where (y+i , y
−
i ) represent the shortage and the excess for the

interval (5), and the following relations hold [21].
(1) For the case bi(ω) − L−1(γ)αi > aix, it holds that
y+i = bi(ω)− L−1(γ)αi − aix > 0, y−i = 0.
(2) For the case bi(ω) + R−1(γ)βi < aix, it holds that
y+i = 0, y−i = aix− (bi(ω) +R−1(γ)βi) > 0.
(3) For the case bi(ω) − L−1(γ)αi ≤ aix ≤ bi(ω) +
R−1(γ)βi, it holds that y+i = 0, y−i = 0.

Yano [21] has already formulated fuzzy random simple re-
course programming problems using (y+,y−). In this paper,
as a extension of [21], we formulated a multiobjective fuzzy
random simple recourse programming problem (MOP2) as
follows.
[MOP2]

min
x∈X

c1x+ E

[
min
y+,y−

(
q+
1 y

+ + q−
1 y

−)]
· · · · · · · · · · · · · · · · · · · · · · · ·

min
x∈X

ckx+ E

[
min
y+,y−

(
q+
k y

+ + q−
k y

−)]
 (6)

subject to

aix+ y+i ≥ bi(ω)− L−1(γ)αi, i = 1, · · · ,m
aix− y−i ≤ bi(ω) +R−1(γ)βi, i = 1, · · · ,m
x ∈ X,y+ ≥ 0,y− ≥ 0

where

q+
ℓ = (q+ℓ1, · · · , q

+
ℓm) ≥ 0, ℓ = 1, · · · , k (7)

q−
ℓ = (q−ℓ1, · · · , q

−
ℓm) ≥ 0, ℓ = 1, · · · , k (8)

are m dimensional weighting row vectors for y+ and y−

respectively. For the ℓ-th objective function of (6), the second
term can be transformed into follows [21].

E

[
min
y+,y−

(
q+
ℓ y

+ + q−
ℓ y

−)]
=

m∑
i=1

q+ℓi

(
E[b̄i]− aix− L−1(γ)αi

)
+

m∑
i=1

q+ℓi
{
(aix+ L−1(γ)αi)Hi(aix+ L−1(γ)αi)

−
∫ aix+L−1(γ)αi

−∞
bihi(bi)dbi

}

+
m∑
i=1

q−ℓi
{
(aix−R−1(γ)βi)Hi(aix−R−1(γ)βi)

−
∫ aix−R−1(γ)βi

−∞
bihi(bi)dbi

}
def
= dℓ(x, γ) (9)
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In the following, we define the objective functions as:

zℓ(x, γ)
def
= cℓx+ dℓ(x, γ), ℓ = 1, · · · , k. (10)

Then, a multiobjective programming problem (1) can be
reduced to a multiobjective fuzzy random simple recourse
programming problem, in which a permissible possibility
level γ is a parameter specified by the decision maker.
[MOP3(γ)]

min
x∈X

(z1(x, γ), · · · , zk(x, γ)) (11)

Now, we can define a Pareto optimal solution concept for
(11).
Definition 1
x∗ ∈ X is said to be a γ-Pareto optimal solution to
MOP3(γ), if and only if there does not exist another x ∈ X
such that zℓ(x, γ) ≤ zℓ(x

∗, γ), ℓ = 1, · · · , k with strict
inequality holding for at least one ℓ.

For generating a candidate of a satisfactory solution which
is also a γ-Pareto optimal solution, the decision maker is
asked to specify a permissible possibility level γ and the
reference objective values ẑℓ, ℓ = 1, · · · , k [13]. Once γ
and ẑℓ, ℓ = 1, · · · , k are specified, the corresponding γ-
Pareto optimal solution, which is in a sense close to his/her
requirement or better than that if the reference objective
values are attainable, is obtained by solving the following
minmax problem [13].
[MINMAX1(ẑ,γ)]

min
x∈X,λ∈R1

λ (12)

s.t. zℓ(x, γ)− ẑℓ ≤ λ, ℓ = 1, · · · , k (13)

The relationships between the optimal solution (x∗, λ∗) of
MINMAX1(ẑ,γ) and γ-Pareto optimal solutions to MOP3(γ)
can be characterized by the following theorem.
Theorem 1
(1) If x∗ ∈ X,λ∗ ∈ R1 is a unique optimal solution of
MINMAX1(ẑ,γ), then x∗ ∈ X is a γ-Pareto optimal solution
to MOP3(γ).
(2) If x∗ ∈ X is a γ-Pareto optimal solution to MOP3(γ),
then x∗ ∈ X λ∗ def

= zℓ(x
∗, γ)−ẑℓ, ℓ = 1, · · · , k is an optimal

solution of MINMAX1(ẑ,γ) for some reference objective
values ẑ = (ẑ1, · · · , ẑk).
(Proof)
(1) Assume that x∗ ∈ X is not a γ-Pareto optimal solution
to MOP3(γ). Then, there exists x ∈ X such that zℓ(x, γ) ≤
zℓ(x

∗, γ), ℓ = 1, · · · , k with strict inequality holding for at
least one ℓ. This means that zℓ(x, γ)− ẑℓ ≤ zℓ(x

∗, γ)− ẑℓ ≤
λ∗, ℓ = 1, · · · , k, which contradicts the fact that x∗ ∈ X is
a unique optimal solution to MINMAX1(ẑ,γ).
(2) Assume that x∗ ∈ X,λ∗ ∈ R1 is not an optimal solution
to MINMAX1(ẑ, γ) for any reference objective values ẑ =
(ẑ1, · · · , ẑk), which satisfy the equalities λ∗ = zℓ(x

∗, γ) −
ẑℓ, ℓ = 1, · · · , k. Then, there exists some x ∈ X,λ < λ∗

such that zℓ(x, γ) − ẑℓ ≤ λ, ℓ = 1, · · · , k. This means that
zℓ(x, γ) < zℓ(x

∗, γ), ℓ = 1, · · · , k, which contradicts the
fact that x∗ ∈ X is a γ-Pareto optimal solution to MOP3(γ).

Unfortunately, it is not guaranteed that (x∗, λ∗) is a γ-
Pareto optimal solution to MOP3(γ), if (x∗, λ∗) is not
unique. In order to guarantee γ-Pareto optimality, we solve
a γ-Pareto optimality test problem for (x∗, λ∗).
Theorem 2

Let x∗ ∈ X , λ∗ ∈ R1 be an optimal solution to
MINMAX1(ẑ,γ), in which λ∗ = zℓ(x

∗, γ) − ẑℓ, ℓ =
1, · · · , k. Corresponding to the optimal solution x∗ ∈ X ,
solve the following γ-Pareto optimality test problem.

max
x∈X,ϵ=(ϵ1,··· ,ϵk)≥0

k∑
ℓ=1

ϵℓ (14)

subject to

zℓ(x, γ)− ẑℓ + ϵℓ ≤ λ∗, ℓ = 1, · · · , k
Let x̌ ∈ X, ϵ̌ℓ ≥ 0, ℓ = 1, · · · , k be an optimal solution to
(14). If

∑k
ℓ=1 ϵ̌ℓ = 0, then x∗ ∈ X is a γ-Pareto optimal

solution to (11).
On the other hand, the partial differentiation of

zℓ(x, γ), ℓ = 1, · · · , k for xs, s = 1, · · · , n and xt, t =
1, · · · , n can be calculated as follows.

∂zℓ(x, γ)

∂xs∂xt

=
m∑
i=1

q+ℓiaisaithi(aix+ L−1(γ)αi)

+

m∑
i=1

q−ℓiaisaithi(aix−R−1(γ)βi) (15)

The Hessian matrix for zℓ(x, γ) can be written as:

∇2zℓ(x, γ)

=
m∑
i=1

q+ℓihi(aix+ L−1(γ)αi) ·Ai

+
m∑
i=1

q−ℓihi(aix−R−1(γ)βi) ·Ai, (16)

where Ai, i = 1, · · · ,m are (n × n)-dimensional matrices
defined as follows.

Ai
def
=

 a2i1 · · · ai1ain
...

. . .
...

ainai1 · · · a2in

 , i = 1, · · · ,m (17)

Because of the property of the Hessian matrix for
zℓ(x, γ), ℓ = 1, · · · , k, the following theorem holds.
Theorem 3
MINMAX1(ẑ, γ) is a convex programming problem.
(Proof)
From the definition (17), it holds that Ai = aT

i ·ai. Therefore,
the following relation holds for any n-dimensional column
vector y ∈ R1.

yTAiy = yT · (aT
i · ai) · y

= (yT · aT
i ) · (ai · y)

= (ai · y)T · (ai · y) ≥ 0

This means that matrices Ai, i = 1, · · · ,m are positive
semidefinite. Because of the assumptions that probability
density functions hi(·) ≥ 0, i = 1, · · · ,m, and q+ℓi ≥ 0, q−ℓi ≥
0, ℓ = 1, · · · , k, i = 1, · · · ,m, the following relation holds
for each of the Hessian matrices ∇2zℓ(x, γ), ℓ = 1, · · · , k.

yT∇2zℓ(x, γ)y

=
m∑
i=1

q+ℓihi(aix+ L−1(γ)αi) · yTAiy

+
m∑
i=1

q−ℓihi(aix−R−1(γ)βi) · yTAiy ≥ 0
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This means that MINMAX1(ẑ, γ) is a convex programming
problem.

The relationship between a permissible possibility level
γ and the optimal objective function value zℓ(x

∗, γ) of
MINMAX1(ẑ, γ) can be characterized by the following
theorem.
Theorem 4
For the optimal solution x∗ ∈ X of MINMAX1(ẑ, γ), the
following relation holds.

∂zℓ(x
∗, γ)

∂γ

= −
m∑
i=1

q+ℓi
∂L−1(γ)

∂γ
αi

+

m∑
i=1

q+ℓi
∂L−1(γ)

∂γ
αiHi(aix

∗ + L−1(γ)αi)

−
m∑
i=1

q−ℓi
∂R−1(γ)

∂γ
βiHi(aix

∗ −R−1(γ)βi)

(18)

Now, following the above discussions, we can present an
interactive algorithm to derive a satisfactory solution from
among a γ-Pareto optimal solution set to (11).
[Algorithm 1]
Step 1: Set a permissible possibility level γ = 1.
Step 2: The decision maker sets the initial reference
objective values ẑℓ for zℓ(x, γ), ℓ = 1, · · · , k.
Step 3: Solve MINMAX1(ẑ, γ) and obtain the correspond-
ing optimal solution (x∗, λ∗). For the optimal solution x∗,
a γ-Pareto optimality test problem is solved.
Step 4: If the decision maker is satisfied with the cur-
rent value of the γ-Pareto optimal solution zℓ(x

∗, γ), ℓ =
1, · · · , k, then stop. Otherwise, the decision maker updates
his/her reference objective values ẑℓ, ℓ = 1, · · · , k, and/or a
permissible possibility level γ, and return to Step 3.

III. MULTIOBJECTIVE FUZZY RANDOM PROGRAMMING
PROBLEMS WITH SIMPLE RECOURSE THROUGH A

FRACTILE MODEL

In this section, we further consider multiobjective pro-
gramming problems, in which the coefficients of equality
constraints are fuzzy random variables while the coefficients
of the objective functions are random variables.
[MOP4]

min
x∈X

(c̄1x, · · · , c̄kx) (19)

subject to
Ax = d̃ (20)

where c̄ℓ = (c̄ℓ1, · · · , c̄ℓn), ℓ = 1, · · · , k is an n dimensional
random variable coefficient row vectors of the objective
function c̄ℓx. x = (x1, · · · , xn)

T ≥ 0 is an n dimensional
decision variable column vector, X is a linear constraint set
with respect to x. A is an (m × n) dimensional coefficient

matrix, d̃ = (d̃1, · · · , d̃m)
T

is an m dimensional coefficient
column vector whose element is an LR-type fuzzy random
variable d̃i [9], [10] defined by (3).

In the following, let us assume that the each element c̄ℓj
is a Gaussian random variable :

c̄ℓj ∼ N(E[c̄ℓj ], σℓjj),

and the positive definite variance covariance matrices Vℓ, ℓ =
1, · · · , k between Gaussian random variables c̄ℓj , j =
1, · · · , n are given as:

Vℓ =


σℓ11 σℓ12 · · · σℓ1n

σℓ21 σℓ22 · · · σℓ2n

· · · · · · · · · · · ·
σℓn1 σℓn2 · · · σℓnn

 , i = 1, · · · , k. (21)

We denote the vectors of the expectation for the random
variable row vector c̄ℓ as E[c̄ℓ] = (E[c̄ℓ1], · · · , E[c̄ℓn]), ℓ =
1, · · · , k. Then, using the variance covariance matrix Vℓ, the
objective function c̄ℓx becomes a Gaussian random variable.

c̄ℓx ∼ N(E[c̄ℓ]x,x
TVℓx), ℓ = 1, · · · , k (22)

According to the discussion in the previous section, for a
permissible possibility level, MOP4 can be reduced to the
following multiobjective stochastic programming problem.
[MOP5(γ)]

min
x∈X

(c̄1x+ d1(x, γ), · · · , c̄kx+ dk(x, γ)) (23)

where dℓ(x, γ), ℓ = 1, · · · , k are penalty costs defined by
(9). If the decision maker specifies permissible probability
levels p̂ℓ, ℓ = 1, · · · , k for c̄ℓx, the multiobjective stochastic
problem (23) can be transformed into the following multiob-
jective programming problem through a fractile optimization
model [15], [16].
[MOP6(γ, p̂)]

min
x∈X

(f1(x, γ, p̂1), · · · , fk(x, γ, p̂k)) (24)

where fℓ(x, γ, p̂ℓ) is defined as follows.

fℓ(x, γ, p̂ℓ)
def
= E[c̄ℓ]x+Φ−1(p̂ℓ) ·

√
xTVℓx

+dℓ(x, γ) (25)

In MOP6(γ, p̂), it is assumed that Φ−1(·) is an inverse
function of a cumulative distribution function for N(0,1) and
0.5 < p̂ℓ < 1, ℓ = 1, · · · , k. It should be noted here that
the problem (24) can be regarded as a generalized version
of (11), since fℓ(x, γ, 0.5) is equivalent to zℓ(x, γ) if E[c̄ℓ]
is replaced by cℓ, and fℓ(x, γ, p̂ℓ), ℓ = 1, · · · , k are convex
functions with respect to x ∈ X because of Theorem 3.

Similar to Definition 1, we can define a Pareto optimal
solution concept to (24).
Definition 2
x∗ ∈ X is said to be a (γ, p̂)-Pareto optimal solution to
MOP6(γ, p̂), if and only if there does not exist another x ∈
X such that fℓ(x, γ, p̂ℓ) ≤ fℓ(x

∗, γ, p̂ℓ), ℓ = 1, · · · , k with
strict inequality holding for at least one ℓ.

For the reference objective values f̂ℓ, ℓ = 1, · · · , k speci-
fied by the decision maker, the corresponding (γ, p̂)-Pareto
optimal solution is obtained by solving the following mini-
max problem [13].
[MINMAX2(f̂ , γ, p̂)]

min
x∈X,λ∈R1

λ (26)

s.t. fℓ(x, γ, p̂)− f̂ℓ ≤ λ, ℓ = 1, · · · , k (27)

Similar to Theorem 3, MINMAX2(f̂ , γ, p̂) becomes a
convex programming problem.

The relationships between the optimal solution (x∗, λ∗) of
MINMAX2(f̂ , γ, p̂) and (γ, p̂)-Pareto optimal solutions to
MOP6(γ, p̂) can be characterized by the following theorem.
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Theorem 5
(1) If x∗ ∈ X,λ∗ ∈ R1 is a unique optimal solution of
MINMAX2(f̂ , γ, p̂), then x∗ ∈ X is a (γ, p̂)-Pareto optimal
solution to MOP6(γ, p̂).
(2) If x∗ ∈ X is a (γ, p̂)-Pareto optimal solution to
MOP6(γ, p̂), then x∗ ∈ X λ∗ def

= fℓ(x
∗, γ, p̂), ℓ = 1, · · · , k

is an optimal solution of MINMAX2(f̂ , γ, p̂) for some
reference objective values f̂ = (f̂1, · · · , f̂k).

We can present the interactive algorithm to obtain a
satisfactory solution from among a (γ, p̂)-Pareto optimal
solution set.
[Algorithm 2]
Step 1: The decision maker sets a permissible possibility
level γ and permissible probability levels p̂ℓ, (0.5 < p̂ℓ <
1), ℓ = 1, · · · , k.
Step 2: The decision maker sets the initial reference objec-
tive values f̂ℓ, ℓ = 1, · · · , k for fℓ(x, γ, p̂), ℓ = 1, · · · , k.
Step 3: Solve MINMAX2(f̂ , γ, p̂) and obtain the corre-
sponding optimal solution (x∗, λ∗). For the optimal solution
x∗, a (γ, p̂)-Pareto optimality test problem is solved.
Step 4: If the decision maker is satisfied with the current
value fℓ(x

∗, γ, p̂), ℓ = 1, · · · , k then stop. Otherwise, the
decision maker updates his/her reference objective values
f̂ℓ, ℓ = 1, · · · , k, a permissible possibility level γ, and/or
permissible probability levels p̂ℓ, ℓ = 1, · · · , k, and return to
Step 3.

In order to deal with MOP6(γ, p̂), the decision maker
must specify permissible probability levels p̂ in advance.
However, in general, the decision maker seems to prefer
not only the less value of the objective function fℓ(x, γ, p̂ℓ)
but also the larger value of the permissible probability level
p̂ℓ. From such a point of view, we consider the following
multiobjective programming problem which can be regarded
as a natural extension of MOP6(γ, p̂).
[MOP7(γ)]

min
x∈X,p̂ℓ∈(0,1),ℓ=1,··· ,k

(f1(x, γ, p̂1), · · · , fk(x, γ, p̂k),

−p̂1, · · · ,−p̂k)

where permissible probability levels p̂ℓ, ℓ = 1, · · · , k are not
fixed values but decision variables.

Considering the imprecise nature of the decision maker’s
judgment, we assume that the decision maker has a fuzzy
goal for each objective function in MOP7(γ). Such a fuzzy
goal can be quantified by eliciting the corresponding mem-
bership function. Let us denote a membership function of
an objective function fℓ(x, γ, p̂ℓ) as µfℓ(fℓ(x, γ, p̂ℓ)), and
a membership function of a permissible probability level p̂ℓ
as µp̂ℓ

(p̂ℓ) respectively. Then, MOP7(γ) can be transformed
into the following problem.
[MOP8(γ)]

max
x∈X,p̂ℓ∈(0,1),ℓ=1,··· ,k

(µf1(f1(x, γ, p̂1)), · · · ,

µfk(fk(x, γ, p̂k)),

µp̂1(p̂1), · · · , µp̂k
(p̂k)) (28)

In the following, we make the following assumptions
with respect to the membership functions µfℓ(fℓ(x, γ, p̂ℓ)),
µp̂ℓ

(p̂ℓ), ℓ = 1, · · · , k.
Assumption 1

µp̂ℓ
(p̂ℓ), ℓ = 1, · · · , k are strictly increasing and continuous

with respect to p̂ℓ ∈ Pℓ
def
= [p̂ℓmin, p̂ℓmax] ⊂ (0.5, 1), where

µp̂ℓ
(p̂ℓ) = 0 if 0 ≤ p̂ℓ ≤ p̂ℓmin, and µp̂ℓ

(p̂ℓ) = 1 if p̂ℓmax ≤
p̂ℓ ≤ 1.
Assumption 2
µfℓ(fℓ(x, γ, p̂ℓ)), ℓ = 1, · · · , k are strictly decreasing and
continuous with respect to fℓ(x, γ, p̂ℓ) ∈ [fℓmin, fℓmax],
where µfℓ(fℓ(x, γ, p̂ℓ)) = 0 if fℓ(x, γ, p̂ℓ) ≥ fℓmax, and
µfℓ(fℓ(x, γ, p̂ℓ)) = 1 if fℓ(x, γ, p̂ℓ) ≤ fℓmin.

In order to determine these membership functions appro-
priately, let us assume that the decision maker sets p̂ℓmin,
p̂ℓmax, fℓmin and fℓmax as follows.

At first, the decision maker specifies p̂ℓmin(> 0.5) and
p̂ℓmax in his/her subjective manner, where p̂ℓmin is an accept-
able minimum value and p̂ℓmax is a sufficiently satisfactory
minimum value, and sets the intervals :

Pℓ
def
= [p̂ℓmin, p̂ℓmax], ℓ = 1, · · · , k.

Corresponding to the interval Pℓ, let us denote the inter-
val of µfℓ(fℓ(x, γ, p̂ℓ)) as [fℓmin, fℓmax], where fℓmin is
a sufficiently satisfactory maximum value and fℓmax is an
acceptable maximum value. fℓmin can be obtained by solving
the following problem.

fℓmin
def
= min

x∈X
fℓ(x, γ, p̂ℓmin) (29)

In order to obtain fℓmax, we first solve the following k pro-
gramming problems, minx∈X fℓ(x, γ, p̂ℓmax), ℓ = 1, · · · , k.
Let xℓ, ℓ = 1, · · · , k be the corresponding optimal solution.
Using the optimal solutions xℓ, ℓ = 1, · · · , k, fℓmax can be
obtained as follows.

fℓmax
def
= max

ℓ=1,··· ,k,ℓ̸=i
fℓ(xℓ, γ, p̂ℓmax) (30)

It should be noted here that, from (25), µfℓ(fℓ(x, γ, p̂ℓ))
and µp̂ℓ

(p̂ℓ) perfectly conflict each other with respect to
p̂ℓ. Here, let us assume that the decision maker adopts the
fuzzy decision [1], [13], [24] in order to integrate both the
membership functions µfℓ(fℓ(x, γ, p̂ℓ)) and µp̂ℓ

(p̂ℓ). Then,
the integrated membership function µDfℓ

(x, γ, p̂ℓ) can be
defined as follows.

µDfℓ
(x, γ, p̂ℓ)

def
= min{µp̂ℓ

(p̂ℓ), µfℓ(fℓ(x, γ, p̂ℓ))} (31)

Using the integrated membership functions µDfℓ
(x, γ, p̂ℓ),

ℓ = 1, · · · , k, MOP8(γ) can be transformed into the follow-
ing form.
[MOP9(γ)]

max
x∈X,p̂ℓ∈Pℓ,ℓ=1,··· ,k

(
µDf1

(x, γ, p̂1), · · · , µDfk
(x, γ, p̂k)

)
In order to deal with MOP9(γ), we introduce an M-γ-Pareto
optimal solution concept.
Definition 3
x∗ ∈ X, p̂∗ℓ ∈ Pℓ, ℓ = 1, · · · , k is said to be an M-γ-
Pareto optimal solution to MOP9(γ), if and only if there
does not exist another x ∈ X, p̂ℓ ∈ Pℓ, ℓ = 1, · · · , k such
that µDfℓ

(x, γ, p̂ℓ) ≥ µDfℓ
(x∗, γ, p̂∗ℓ ) ℓ = 1, · · · , k, with

strict inequality holding for at least one ℓ.
For generating a candidate of a satisfactory solution which

is also M-γ-Pareto optimal, the decision maker is asked to
specify the reference membership values [14]. Once the ref-
erence membership values µ̂ = (µ̂1, · · · , µ̂k) are specified,
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the corresponding M-γ-Pareto optimal solution is obtained
by solving the following minmax problem.
[MINMAX3(µ̂, γ)]

min
x∈X,p̂ℓ∈Pℓ,ℓ=1,··· ,k,λ∈Λ

λ (32)

subject to

µ̂ℓ − µfℓ(fℓ(x, γ, p̂ℓ)) ≤ λ, ℓ = 1, · · · , k (33)
µ̂ℓ − µp̂ℓ

(p̂ℓ) ≤ λ, ℓ = 1, · · · , k (34)

where
Λ

def
= [ max

i=1,··· ,k
µ̂i − 1, min

i=1,··· ,k
µ̂i].

Because of Assumption 2, the constraints (33) can be trans-
formed as follows.

p̂ℓ ≤ Φ

(
µ−1
fℓ

(µ̂ℓ − λ)−E[c̄ℓ]x− dℓ(x, γ)√
xTVℓx

)
(35)

From the constraints (34) and Assumption 1, it holds that
p̂ℓ ≥ µ−1

p̂ℓ
(µ̂ℓ − λ). Therefore, the constraint (35) can be

reduced to the following inequality where a permissible
probability level p̂ℓ is disappeared.

µ−1
fℓ

(µ̂ℓ − λ)−E[c̄ℓ]x− dℓ(x, γ)

≥ Φ−1(µ−1
p̂ℓ

(µ̂ℓ − λ)) ·
√
xTVℓx, ℓ = 1, · · · , k (36)

Then, MINMAX3(µ̂, γ) can be equivalently reduced to the
following problem.
[MINMAX4(µ̂, γ)]

min
x∈X,λ∈Λ

λ (37)

subject to

µ−1
fℓ

(µ̂ℓ − λ)−E[c̄ℓ]x− dℓ(x, γ)

≥ Φ−1(µ−1
p̂ℓ

(µ̂ℓ − λ)) ·
√
xTVℓx, ℓ = 1, · · · , k (38)

In order to solve MINMAX4(µ̂, γ), which is a nonlinear
programming problem, we first define the following function
for the constraints (38).

gℓ(x, γ, λ)
def
= µ−1

f̂ℓ
(µ̂ℓ − λ)−E[c̄ℓ]x− dℓ(x, γ)

−Φ−1(µ−1
pℓ

(µ̂ℓ − λ)) ·
√

xTVℓx,

ℓ = 1, · · · , k (39)

It should be noted here that gℓ(x, γ, λ), ℓ = 1, · · · , k are
concave functions for any fixed λ ∈ Λ. Under Assumption
3, it is clear that the constraint set G(λ, γ) is a convex set
for any λ ∈ [0, 1], which is defined as follows.

G(λ, γ)
def
= {x ∈ X | gℓ(x, γ, λ) ≥ 0, ℓ = 1, · · · , k} (40)

The constraint set G(λ, γ) satisfies the following property
for λ ∈ Λ.
Property 1
If λ1, λ2 ∈ Λ and λ1 < λ2, then it holds that G(λ1) ⊂
G(λ2).
(Proof)
From Assumptions 1 and 2, it holds that µ−1

fℓ
(µ̂ℓ − λ1) <

µ−1
fℓ

(µ̂ℓ − λ2), Φ−1(µ−1
p̂ℓ

(µ̂ℓ − λ1)) > Φ−1(µ−1
p̂ℓ

(µ̂ℓ − λ2)).
This means that gℓ(x, γ, λ1) < gℓ(x, γ, λ2) for any x ∈ X .
Therefore, G(λ1, γ) ⊂ G(λ2, γ) for any λ1 < λ2.

From Property 1, we can easily obtain the optimal so-
lution (x∗, λ∗) of MINMAX4(µ̂, γ) by using the bisection

method for λ ∈ Λ, where it is assumed that G(λmax, γ) ̸=
ϕ,G(λmin, γ) = ϕ.
[Algorithm 3]
Step 1: Set λ0 = λmax, λ1 = λmin and λ← (λ0 + λ1)/2.
Step 2: Solve the following convex programming problem
for λ ∈ Λ, and let us denote the optimal solution as x∗ ∈ X .

max
x∈X

gj(x, γ, λ) (41)

subject to

gℓ(x, γ, λ) ≥ 0, ℓ = 1, · · · , k, i ̸= j (42)

Step 3: If | λ1 − λ0 |< ϵ, then go to Step 4, where ϵ is
a sufficiently small positive constant. If gj(x

∗, λ) < 0 or
there exists the index i ̸= j such that gℓ(x∗, λ) < 0, then set
λ1 ← λ, λ ← (λ0 + λ1)/2, and go to Step 2. Otherwise, if
gj(x

∗, λ) ≥ 0 and gℓ(x
∗, λ) ≥ 0 for any ℓ = 1, · · · , k, i ̸= j,

then set λ0 ← λ, λ← (λ0 + λ1)/2, and go to Step 2.
Step 4: Set λ∗ ← λ, and the optimal solution (x∗, λ∗) to
MINMAX4(µ̂, γ) is obtained.

The relationship between the optimal solution (x∗, λ∗) of
MINMAX4(µ̂, γ) and M-γ-Pareto optimal solutions can be
characterized by the following theorem.
Theorem 6
(1) If x∗ ∈ X,λ∗ ∈ Λ is a unique optimal solution to
MINMAX4(µ̂, γ), then x∗ ∈ X, p̂∗ℓ = µ−1

p̂ℓ
(µ̂ℓ − λ∗) ∈

Pℓ, ℓ = 1, · · · , k is an M-γ-Pareto optimal solution to
MOP9(γ).
(2) If x∗ ∈ X, p̂∗ℓ ∈ Pℓ, ℓ = 1, · · · , k is an M-γ-
Pareto optimal solution to MOP9(γ), then x∗ ∈ X, λ∗ =
µ̂ℓ − µp̂ℓ

(p̂∗ℓ ) = µ̂ℓ − µfℓ(fℓ(x
∗, p̂∗ℓ )), ℓ = 1, · · · , k is an

optimal solution to MINMAX4(µ̂, γ) for some reference
membership values µ̂ = (µ̂1, · · · , µ̂k).

Now, following the above discussions, we can present the
interactive algorithm in order to derive a satisfactory solution
from among an M-γ-Pareto optimal solution set.
[Algorithm 4]
Step 1: The decision maker specifies p̂ℓmin > 0.5 and
p̂ℓmax < 1, ℓ = 1, · · · , k in his/her subjective manner. On the
interval Pℓ = [p̂ℓmin, p̂ℓmax], the decision maker sets his/her
membership functions µp̂ℓ

(p̂ℓ), ℓ = 1, · · · , k according to
Assumption 1.
Step 2: Corresponding to the interval Pℓ, compute fℓmin

and fℓmax by solving the problems (29) and (30). On the
interval [fℓmin, fℓmax], the decision maker sets his/her mem-
bership functions µfℓ(fℓ(x, p̂ℓ)), ℓ = 1, · · · , k according to
Assumption 2.
Step 3: Set the initial reference membership values as µ̂ℓ =
1, ℓ = 1, · · · , k.
Step 4: Solve MINMAX4(µ̂, γ) to obtain the M-γ-Pareto
optimal solution.
Step 5: If the decision maker is satisfied with the current
values of the M-γ-Pareto optimal solution µDfℓ

(x∗, p̂∗ℓ ), ℓ =

1, · · · , k, where p̂∗ℓ = µ−1
p̂ℓ

(µ̂ℓ−λ∗), then stop. Otherwise, the
decision maker must update his/her reference membership
values µ̂ℓ, ℓ = 1, · · · , k and/or a permissible possibility level
γ, and return to Step 4.

IV. A CROP PLANNING PROBLEM IN THE PHILIPPINES

In this section, we apply Algorithm 2 to a second crop
planning problem of paddy fields in the Philippines [23]
under the hypothetical decision maker, in which the water
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TABLE I
PROFIT COEFFICIENTS ctj , t = 1, · · · , 5, j = 1, · · · , 7

j 1 2 3 4 5 6 7
t year ct1 ct2 ct3 ct4 ct5 ct6 ct7
1 1989 4.5 32.6 4.0 72.6 7.3 2.7 10.9
2 1990 5.7 22.7 29.5 13.6 6.3 4.3 24.5
3 1991 3.8 26.3 42.3 42.9 5.1 1.2 13.3
4 1992 3.5 21.3 20.1 35.7 5.2 2.5 26.1
5 1993 4.4 26.2 39.3 22.5 8.4 2.2 26.6

availability constraint in the dry season is expressed as a
equality constraint with a fuzzy random variable. In the
model farm, only rice (x1) is grown in the wet season (May
to October), and tobacco(x2), tomatoes(x3), garlic(x4), mung
beans(x5), corn(x6) and sweet peppers(x7) are grown in
the dry season (November to April), where xj means the
cultivation area (unit: 1 ha) for each crop j = 1, · · · , 7. It is
assumed that the farmer has only two persons of available
family labor, but he does not have access to hired labor. The
farmer must decide the planting ratio among seven kinds of
crops (xj , j = 1, · · · , 7) in his/her farmland to maximize
his/her total income and minimize total work hours.

Table I shows the profit coefficients ctj of seven crops
j (j = 1, · · · , 7) in each year [23]. From Table I, we can
compute the expected values as

(E[c̄1], E[c̄2], E[c̄3], E[c̄4], E[c̄5], E[c̄6], E[c̄7])

= (4.38, 25.82, 27.04, 37.46, 6.46, 2.58, 20.28),

and the variance covariance matrix V .

V1 =



0.717 0.1005 −0.504 −7.296
0.1005 19.13 −30.13 79.39
−0.504 −30.13 242.06 −239.13
−7.296 79.39 −239.13 515.2
0.4565 2.994 −1.993 −0.217
0.787 −1.250 −5.924 −9.626
0.8745 −26.015 39.27 −143.3



V2 =



0.4565 0.787 0.8745
2.994 −1.250 −26.01
−1.993 −5.924 39.27
−0.217 −9.626 −143.3
1.983 0.2665 1.467
0.2665 1.257 3.225
1.467 3.225 57.08


V = (V1 | V2)

In the following, we assume that the profit coefficients
for seven kinds of crops can be regarded as normal random
variables :

c̄j ∼ N(E[c̄j ], σjj), j = 1, · · · , 7.

Then, the first objective function z̄1(x) (total profit, unit:
1000 pesos) can be defined as follows.

z̄1(x)
def
=

7∑
j=1

c̄jxj = c̄x ∼ N(E[c̄]x,xTV x)

where x
def
= (x1, · · · , x7). The second objective function is

total working hours. Table II shows the required working
hours Lℓj for each crop (j = 1, · · · , 7) and each period (from

TABLE II
THE REQUIRED WORKING HOURS FOR EACH PERIOD Lℓj

period : ℓ Lℓ1 Lℓ2 Lℓ3 Lℓ4 Lℓ5 Lℓ6 Lℓ7

2-May : 1 26
1-Jun : 2 16
2-Jun : 3 160
1-Jul : 4 16
2-Jul : 5 6
2-Aug : 6 8
3-Sep : 7 140
1-Oct : 8 32 8
3-Oct : 9 46 6
1-Nov : 10 36 174 8
2-Nov : 11 100 10 44 12 54 50
3-Nov : 12 22 16 12 8 20
1-Dec : 13 8 38 16 10 16 108
2-Dec : 14 16 94 16 72
3-Dec : 15 8 32 16 24
1-Jan : 16 8 14 64
2-Jan : 17 36 14 12 16
3-Jan : 18 70 6
1-Feb : 19 70 6 180 48
2-Feb : 20 36 14 60 56
3-Feb : 21 36 6 48
1-Mar : 22 36 56
2-Mar : 23 30 32
3-Mar : 24 30
1-Apr : 25 38 56
2-Apr : 26 30
3-Apr : 27 26

the middle ten days in May to the last ten days in April,
ℓ = 1, · · · , 27) [23]. Then, the second objective function (a
total number of working hours, unit: 1 hour) can be expressed
as :

z2(x)
def
=

27∑
ℓ=1

7∑
j=1

Lℓjxj .

Since the upper limit of the working hours for each period
(ℓ = 1, · · · , 27) can be computed as 8 (hours) × 2 (persons)
× 10 (days) = 160 (hours), the constraints :

7∑
j=1

Lℓjxj ≤ 80, ℓ = 1, · · · , 27

must be satisfied. As two land area constraints (unit: 1 ha)
for the wet and dry season,

x1 ≤ 1,
7∑

j=2

xj ≤ 1, xj ≥ 0, j = 1, · · · , 7

must be satisfied. We assume that the water availability
constraint in the dry season is expressed as :

7∑
j=2

wjxj = d̃,

where the water demand coefficients wj for the crops
(j = 2, · · · , 7) are set as (w2, w3, w4, w5, w6, w7) =
(264.6, 232.3, 352.8, 88.2, 44.1, 220.5) [23], and the water
supply possible amount is defined as a following LR-type
fuzzy random variable d̃ (unit : 1000 gallons).

µ
d̃(ω)

(s) =

 L
(

b(ω)−s
α

)
, s ≤ b(ω)

R
(

s−b(ω)
β

)
, s > b(ω)
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where b̄ ∼ N(300, 52), α = β = 30, and L(t) = R(t) =
1− t, 0 ≤ t ≤ 1.

Since the penalty cost arises only for the shortage of
water resource, it is assumed that q+1 = 0, q−1 = 10 and
q+2 = q−2 = 0. Then, for the reference objective value ẑℓ, ℓ =
1, 2 specified by the decision maker, the corresponding γ-
Pareto optimal solution is obtained by solving the following
minimax problem.
[MINMAX5(f̂ , γ, p̂)]

max
x∈X,λ∈R1

λ

subject to

f1(x, γ, p̂)− f̂1 ≤ λ
27∑
ℓ=1

7∑
j=1

Lℓjxj − f̂2 ≤ λ

where f1(x, γ, p̂) is defined as follows.

f1(x, γ, p̂)
def
= −

7∑
j=1

E[c̄j ]xj +Φ−1
0 (p̂) ·

√
xTV x

+d(x, γ)

d(x, γ)
def
= q−1

(

7∑
j=2

wjxj −R−1(γ)β)

·Φ(
7∑

j=2

wjxj −R−1(γ)β)

−
∫ ∑7

j=2 wjxj−R−1(γ)β

−∞
bϕ(b)db

}
where ϕ(·) and Φ(·) mean the probability density function
and the cumulative distribution one for N(300, 52), and Φ0(·)
means the cumulative distribution function for N(0, 1).

Under the hypothetical decision maker, we apply Algo-
rithm 2 in section III to the crop planning problem described
above. In Step 1, the decision maker sets a permissible
possibility level γ = 1 and a permissible probability level
p̂ = 0.8. In Step 2, the decision maker sets the initial
reference objective values (f̂1, f̂2) = (−33, 680). In Step
3, MINMAX5(f̂ , γ, p̂) is solved by using Mathematica and
the corresponding (γ, p̂)-Pareto optimal solution is obtained.
In Step 4, the decision maker is not satisfied with the current
value of the (γ, p̂)-Pareto optimal solution, he/she updates
his/her reference objective values as (f̂1, f̂2) = (−33, 620),
and return to Step 3. The interactive processes under the
hypothetical decision maker is shown in Table III. In this
example, a satisfactory solution is obtained at the third
iteration, in which a permissible possibility level γ = 1 and
a permissible probability level p̂ = 0.8 are fixed at each
iteration. For comparison, Table IV shows the interactive
processes under the same conditions except that a permissible
possibility level is set as γ = 0.5. By comparing Table III
for γ = 1 with Table IV for γ = 0.5, it is clear that any (γ,
p̂)-Pareto optimal solution for γ = 0.5 is superior to (γ, p̂)-
Pareto optimal solution for γ = 1 because of the definition of
a possibility measure. In any (γ, p̂)-Pareto optimal solution
of Table III and Table IV, only tomatoes (x3) and garlic
(x4) in the dry season and rice (x1) in the wet season are
cultivated. The larger value of a permissible possibility level
γ gives the larger planting ratio of tomatoes (x3) and the

TABLE III
INTERACTIVE PROCESSES FOR γ = 1

1 2 3
ẑ1 -33 -33 -30
ẑ2 680 620 620
ẑ1 -33 -33 -30
ẑ2 680 620 620
z1(x∗) -27.934 -27.238 -27.204
z2(x∗) 685.07 625.76 622.80
x∗
1 0.57343 0.42734 0.42000

x∗
2 0.000 0.000 0.000

x∗
3 0.55289 0.555327 0.55535

x∗
4 0.44465 0.44466 0.44465

x∗
5 0.000 0.000 0.000

x∗
6 0.000 0.000 0.000

x∗
7 0.00246 0.000 0.000

TABLE IV
INTERACTIVE PROCESSES FOR γ = 0.5

1 2 3
ẑ1 -33 -33 -30
ẑ2 680 620 620
z1(x∗) -28.001 -27.305 -27.270
z2(x∗) 685.00 625.70 622.73
x∗
1 0.57306 0.42628 0.41894

x∗
2 0.000 0.000 0.000

x∗
3 0.53228 0.53249 0.53250

x∗
4 0.46772 0.46751 0.46750

x∗
5 0.000 0.000 0.000

x∗
6 0.000 0.000 0.000

x∗
7 0.000 0.000 0.000

smaller one of garlic (x4) because of the difference of the
water demand coefficients of tomatoes (x3) and garlic (x4).

V. CONCLUSIONS

In this paper, we formulate three types of multiobjec-
tive fuzzy random simple recourse programming problems,
in which fuzzy random variables coefficients are involved
in equality constraints. In the proposed methods, equality
constraints with fuzzy random variables are defined on the
basis of a possibility measure and and a two-stage program-
ming method. For a given permissible possibility level and
reference objective values specified by the decision maker,
corresponding minimax problem is solved to obtain a Pareto
optimal solution. The proposed method (Algorithm 2) is
applied to a farm planning problem in the Philippines, in
which an amount supplied of water resource in dry season
is represented as a fuzzy random variable and the profit
coefficients are represented as random variables. In the near
future. we will apply Algorithm 4 to a farm planning problem
in the Philippines, in which permissible probability levels are
automatically computed through the fuzzy decision.
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