
 

  
Abstract—This research investigated numerical solutions of 

generalized variable order fractional partial differential 
equations by using Bernstein polynomials. In addition, the 
Caputo differential derivative was adopted. Among fractional 
operational matrices, which contained x or t, of Bernstein 
polynomials were derived and utilized to transform the initial 
equation into the solution of algebraic equations after dispersing 
the variable.  By solving algebraic equations, numerical 
solutions were acquired. The method, in general, is easy to 
implement and yields good results. Numerical examples are 
provided to demonstrate the validity and applicability of the 
method. 
 

Index Terms—Bernstein polynomials; generalized variable 
order fractional differential equation; operational matrix; 
numerical solution; convergence analysis 

I. INTRODUCTION 
RACTIONAL differential equations, advantageous due 
to their capability of simulating natural physical process 

and more accurate dynamic system, are obtained by replacing 
integer order derivatives with fractional ones[1, 2]. In general, 
it is difficult to derive analytical solutions for most fractional 
differential equations. Therefore, it is important to develop 
reliable and efficient techniques to solve fractional 
differential equations. The most commonly used techniques 
are Variational Iteration Method [3, 4], Adomian 
Decomposition Method [5], Block pulse function method [6], 
Wavelet method [7], and other methods [8-11].  

In recent years, numerous researchers have found many 
important dynamic problems exhibit fractional order 
behaviour, which may be related to space and time. It is an 
evident fact that illustrates variable order calculus provides 
effective mathematical framework for complex dynamic 
phenomena. The concept of a variable order operator is new 
in science. Regarding variable order differential operators, 
various authors created different definitions with specific 
meanings to suit desired goals. Variable order operator 
definitions are classified by the following: Riemann-Liouvile 
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definition, Caputo definition, Marchaud definition, Coimbra 
definition and Grünwald definition [12-17]. 

Since the kernel of variable order operators is they have a 
variable-exponent, numerical solutions of variable order 
fractional differential equations are quite difficult to obtain, 
therefore not attracting much attention. To the best of the 
authors’ knowledge, few references addressed the discussion 
of numerical variable order fractional differential equations. 

This research investigated the numerical solution of the 
variable order fractional partial equation with Bernstein 
polynomials. Given its simple structure and perfect properties 
[18-20], Bernstein polynomials play a vital role in 
computational mathematics. These polynomials have been 
widely applied in finding solutions for fractional equations 
[18-25]. 

Similar to the classical fractional partial differential 
equation [26], this study focused on a class of generalised 
variable order fractional partial differential equation, as 
follows: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
[ ] [ ] [ ]

1 2, , , , , ,

, 0, 0, .

x tD u x t k x t D u x t k x t f x t

x t X T

α β+ =

∈ ×
          (1) 

Subject to the initial conditions: 

 ( ) ( ) [ ]
( ) ( ) [ ]

,0 0,

0, t 0, .

u x g x x X

u h t t T

= ∈

= ∈
                                                (2) 

where ( ) ( ) ( )( )1, ,xD u x t k x tα and ( ) ( ) ( )( )2, ,tD u x t k x tβ are 
fractional derivatives of Caputo sense. 
When ( ) ( )1, ,u x t k x t= or ( ) ( )2, ,u x t k x t= , the initial problem 
was changed to a nonlinear equation. 

( ) ( ) ( ) ( )1 2, , , , , , ,f x t k x t k x t u x t were assumed to be casual 
functions of time and space on the 
domain ( ) [ ] [ ], 0, 0,x t X T∈ × . ( ) ( ) ( )1 2, , , , ,f x t k x t k x t was known 
and ( ),u x t was the unknown, ( ) ( )0 , 1x tα β< ≤ .  

This research paper is organized as follows: Section 2 
provides basic definitions and properties of the variable order 
fractional order calculus. Section 3 explains the definition of 
Bernstein polynomials and function approximation. Section 4 
derives fractional operational matrices of Bernstein 
polynomials, which were utilised to solve the equation 
provided. Section 5 presented numerical examples to 
demonstrate the efficiency of the proposed method. Section 6 
summarised concluding remarks. 
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II. BASIC DEFINITIONS AND PROPERTIES OF VARIABLE 
ORDER FRACTIONAL INTEGRALS AND DERIVATIVES 

This section provides basic definitions and properties of 
variable order fractional order calculus [12-17]. 
(1) Riemann-Liouville fractional integral with order ( )tα  

( ) ( )
( )( ) ( )

( )
( )

( )( )

11 ,

0 Re 0 .

ttt
a a
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t t
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 > > 

∫
                                    (3) 

(2) Riemann-Liouville fractional derivate with order ( )tα  
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(3) Caputo’s fractional derivate with order ( )tα  
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where ( )0 1tα< ≤ . If the starting time is assumed to be in a 
perfect situation, the definition is as follows: 

( ) ( )
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( )
( )
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0

1 ,
1

0 1.

tttD u t t u d
t
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α t t t
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∫                             (6) 

Generally, (6) is adopted as the definition of fractional 
derivate in Captuo sense. 
Given the aforementioned definition, the formula is as 
follows ( )( )0 1tα< ≤ :

( ) ( )
( )( )

( )

0 0
1

1,2,3 .
1

t
a tD x

x
t

α β
β

β
β

β
β α

−∗

=
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           (7) 

 

III. BERNSTEIN POLYNOMIALS AND THEIR PROPERTIES 

A. Basis for the Definition of Bernstein Polynomials 
The Bernstein Polynomials of degree n in [ ]0, R are defined 

by the formula: 

( ) ( )
, .

n ii

i n n

n x R x
B x

i R

−− 
=  

 
                                                         (8) 

By using the binomial expansion of ( )n kR x −− , (8) can be 
expressed as: 
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Furthermore, the following is defined: 
( ) ( ) ( ) ( )0, 1, ,, , , .

T
n n n nx B x B x B x=   Φ                                 (10) 

where 
( ) ( ).nx x=Φ AT                                                                    (11) 
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( ) 21, , , , .
Tn

n x x x x =  T                                                              (13) 
It is obvious that 

( ) ( )1 .n x x−=T A Φ                                                                (14) 

B. Function Approximation 
Suppose 2 0, ,f ff L t t R ∈ ∈  , 

let 0, 1, 2, ,{ , , , }n n n n nY Span B B B B=   be the set of Bernstein 
Polynomials of n th degree. Let f be an arbitrary element in Y . 
Since Y is a finite dimensional vector space, f has a unique 
best approximation from Y . That 
is, 0 0 2 2

, ,y y Y f y f y∃ ∀ ∈ − ≤ − , where 
2

,f f f= . 
Since 0y Y∈ , there exist unique coefficients 0 1, , , nc c c such 
that  
 , , .T f=c Φ Φ Φ                                                        (15)
 where 
 ( ) ( ) 0, 1, ,0

, , , , , , .ft T
n n n nf f t t dt f B f B f B = =  ∫ Φ Φ    (16)

 And ( ) ( ),t tΦ Φ is an ( ) ( )1 1n n+ × + matrix which is said to 
be the dual matrix of Φ , denoted by Q . Therefore, 

 ( ) ( ) ( ) ( )
0

, .ft Tt t t t dt= = ∫Q Φ Φ Φ Φ                                      (17)

 And  

( ) ( )( ) 1

0
.ftT Tf t t dt −= ∫c Φ Q                                                     (18) 

The function ( ) [ ] [ ]( )2, 0, 0,u x t L X T∈ × is approximated as 
follows: 

( ) ( ) ( ) ( ) ( ), , ,
0 0

, .
n n

T
i j i n j n

i j
u x t u B x B t x t

= =

=∑∑. Φ UΦ                       (19) 

where 

 

00 01 0

10 11 1

0 1

.

n

n

n n nn

u u u
u u u

u u u

 
 
 =
 
 
 





   



U                                                   (20) 

And U can be obtained as the following: 
( ) ( ) ( )( )( )1 1, , , .x t u x t− −=U Q Φ Φ Q                                             (21) 

C. Convergence Analysis  
Suppose the function 1 0,m

ff C t+  ∈   , and if ( )Tc tΦ is the 
best approximation of f out of Y , then the mean error bound 
is presented as follows: 

IAENG International Journal of Applied Mathematics, 46:4, IJAM_46_4_05

(Advance online publication: 26 November 2016)

 
______________________________________________________________________________________ 



 

 
( )

2 3
2

2

2 .
1 ! 2 3

m

T MSf c
m m

+

− ≤
+ +

Φ                                              (21)

 where ( ) ( ) { }1
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Proof: Consider Taylor polynomials 
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since ( )Tc tΦ is the best approximation of f , so  
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Taking square roots provides the above bound. 
 

IV. ANALYSIS OF THE NUMERICAL METHOD 
Consider (1). If the function ( ) ( ) ( )1 2, , , , ,u x t k x t k x t is 

approximated with the basis of Bernstein Polynomials, it can 
be written 
as ( ) ( ) ( ), Tu x t x t= Φ UΦ ,

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2, , ,T Tk x t x t k x t x t= =Φ K Φ Φ K Φ , where only 
U is unknown, then 
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where
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Also, 
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M , N are the fractional operational matrices which contain 
the variable x or t  with Bernstein polynomials. 
So the initial equation is transformed to the following: 

( ) ( ) ( ) ( )
( )

1 1 1 2 2 2

, .

T T T T T Tt t x x

f x t

+

=

Φ U A MA K Φ Φ UA NA K Φ
               (29) 

Dispersing (29) with ( ) ( ), , 1,2, , ; 1,2, ,i j x tx t i n j n= =   using 
Mathematica 9.0 U  is obtained. Thus, the numerical solution 
of the original problem is ultimately obtained. 
 

V. NUMERICAL EXAMPLES 
To demonstrate the efficiency and practicability of the 

proposed method, the following examples are presented and 
related solutions were found through the method described in 
Section 4. 
 
Example 1: 

( ) ( ) ( )
[ ] [ ] [ ] ( ) ( )
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2 2

, , , ,
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x t x x x
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. 

The exact solution of the above equation is ( ) 2 2,u x t x t= + . 
The problem was solved by adopting the technique described 
in Section 4 using Mathematica 9.0. 
Taking 2n = , 

dispersing ( )1 1, 1,2,3; 1,2,3
3 6 3 6

ji
i j i j

kkx t k k= − = − = = , the 

matrix U is displayed as follows: 
10 0
4
10 0 .
4

1 1 13
9 9 36

 
 
 
 
 
 
 
  

U =  

The numerical solution is ( ) ( ) ( ),u x t x t=Φ UΦ , as matrix U is 
given above, and 

( ) ( ) ( )
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2 2

2 2

2 2 2 ,

3 2 3 .
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T

x x x x x

t t t t t

 = − − 

 = − − 

Φ

Φ
 

The numerical solution for 2n = and the exact solution are 
shown in Figure 1 and Figure 2, respectively. The absolute 
errors between the numerical solution and exact solution are 
displayed in Figure 3. 

 
Fig. 1. The numerical solution for Example 1 of 2n = . 

 
Fig. 2. The exact solution for Example 1 of 2n = . 
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Fig. 3. The absolute error for Example 1 of 2n = . 
Taking 3n = , 

dispersing ( )1 1, 1,2,3,4; 1,2,3,4
4 8 4 8

ji
i j i j

kkx t k k= − = − = = , the 

matrix U is displayed as follows: 
1 10 0

72 24
1 10 0

72 24
1 1 13 31

162 162 648 648
1 1 7 13

54 54 216 216

 
 
 
 
 

=  
 
 
 
 
 

U . 

The numerical solution is ( ) ( ) ( ),u x t x t=Φ UΦ , as the 
matrix U is given above, and 

( ) ( ) ( ) ( )3 2 2 32 3 2 3 2 ,
T

x x x x x x x = − − − Φ and

( ) ( ) ( ) ( )3 2 2 33 3 3 3 3
T

t t t t t t t = − − − Φ . The absolute 

error between the exact solution and numerical solution is 
displayed in Figure 4: 

 
Fig. 4. The absolute error for Example 1 of 3n = . 
Taking 4n = , 

dispersing ( )1 1, 1,2, 5; 1,2, 5
5 10 5 10

ji
i j i j

kkx t k k= − = − = =  , 

the matrix U is displayed as follows: 
1 1 10 0

864 288 144
1 1 10 0

864 288 144
1 1 13 31 29 .

1944 1944 7776 7776 3888
1 1 7 13 11

648 648 2592 2592 1296
1 1 11 17 13

324 324 2592 2592 1296

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

U  

The numerical solution is ( ) ( ) ( ),u x t x t=Φ UΦ , as the 
matrix U is given above, and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4 3 2 2 3 4

4 3 2 2 3 4

1 4 2 6 2 4 2 ,

3 4 3 6 3 4 3 .

T

T

x x x x x x x x x

t t t t t t t t t

 = − − − − 

 = − − − − 

Φ

Φ
 

The absolute errors between the exact solution and the 
numerical solution are displayed in Figure 5. 

 
Fig. 5. The absolute error for Example 1 of 4n = . 
 
Example 2: 

( )( ) ( ) ( )
[ ] [ ] [ ] ( ) ( )

sin
32
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2 192 sin 104 24 18sin sin
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=

The exact solution of the problem is ( ) 3,u x t x t= + . 
Taking 3n = , 

dispersing ( )1 1, 1,2,3,4; 1,2,3,4
4 8 4 8

ji
i j i j

kkx t k k= − = − = = , the 

matrix U is displayed as follows: 
1 1 10

1728 864 576
1 1 10

1728 864 576
1 1 10

1728 864 576
1 65 11 67
27 1728 288 1728

 
 
 
 
 

=  
 
 
 
 
 

U  

The numerical solution is ( ) ( ) ( ),u x t x t=Φ UΦ , as the 
matrix U is given above, and 

( ) ( ) ( ) ( )3 2 2 34 3 2 3 4 ,
T

x x x x x x x = − − − Φ  

( ) ( ) ( ) ( )3 2 2 33 3 3 3 3 .
T

t t t t t t t = − − − Φ Thus, the 

absolute error was obtained, shown in TableⅠ. 
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Taking 4n = , 

dispersing ( )1 1, 1,2, 5; 1,2, 5
5 10 5 10

ji
i j i j

kkx t k k= − = − = =  , 

the matrix U is displayed as follows: 
1 1 1 10

27648 13824 9216 6912
1 1 1 10

27648 13824 9216 6912
1 1 1 10

27648 13824 9216 6912
1 67 35 73 19

1296 82944 41472 82944 20736
1 259 131 265 67

324 82944 41472 82944 20736

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

U  

The absolute error was obtained, shown in Table Ⅱ. 
 
Example 3: 

( ) ( ) ( )
[ ] [ ] [ ] ( ) ( )

2 23 2

2 2

, , , ,

, 0,2 0,2 , ,0 , 0, .

x t

D u x t D u x t f x t

x t u x x u t t

   + =   
∈ × = =

 

where 
( )

( )( )

( )( )( )( )

( )( )

( )( )( )( )

2 2 22

2 2 23

16 24 8 6

8 6 4 2 1
2

36 12 9 54
.

12 9 6 3 1
3

,
t

x

t t t t x
tt t t t

x t x x x

f x t

xx x x x

−

−

+ − −

 − − − − Γ − 
 

− − +
+

 − − − −

  =

 

−




Γ 


 

The exact solution is ( ) 2 2,u x t x t= + .  
Taking 2n = , 

dispersing ( )1 1, 1,2,3; 1,2,3
3 6 3 6

ji
i j i j

kkx t k k= − = − = = , 

matrix U is displayed as follows: 
10 0
4
10 0
4

1 1 1
4 4 2

 
 
 
 
 
 
 
  

U =  

The numerical solution is ( ) ( ) ( ),u x t x t=Φ UΦ , as the 
matrix U is given above, and 

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2 2 2 ,

2 2 2 .

T

T

x x x x x

t t t t t

 = − − 

 = − − 

Φ

Φ  

The numerical solution is shown in Figure 6 and the exact 
solution is given by Figure 7 for 2n = . The absolute error 
between the numerical solution and exact solution is 
displayed in Figure 8. 

 
Fig. 6. The numerical solution for Example 3 of 2n = . 

 
Fig. 7. The exact solution for Example 3 of 2n = . 

 
Fig. 8. The absolute errors for Example 3 of 2n = . 
Taking 3n = , 

dispersing ( )1 1, 1,2,3,4; 1,2,3,4
4 8 4 8

ji
i j i j

kkx t k k= − = − = = , the 

matrix U is displayed as follows: 
1 10 0
48 16
1 10 0
48 16 .

1 1 1 1
48 48 24 12
1 1 1 1

16 16 12 8

 
 
 
 
 

=  
 
 
 
 
 

U  

The numerical solution is ( ) ( ) ( ),u x t x t=Φ UΦ , as the 
matrix U is given above, and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 2 2 3

3 2 2 3

2 3 2 3 2 ,

2 3 2 3 2 .

T

T

x x x x x x x

t t t t t t t

 = − − − 

 = − − − 

Φ

Φ
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Fig. 9. The absolute error for Example 3 of 3n = . 
The absolute error between the exact solution and the 
numerical solution is displayed as Figure 9. 

Figures1-9 and TablesⅠandⅡ  illustrated the absolute 
error was very small and only a small number of Bernstein 
polynomials were needed to obtain satisfactory results. 

Examples 1-3conveyedthe conclusion that the approach 
proposed in this paper could be effectively used to identify the 
numerical solution of the generalised variable order fractional 
partial differential equation. At the same time, it also proved 
the feasibility of the method. From the aforementioned 
examples, numerical solutions were in good agreement with 
the exact solution. Furthermore, the proposed method was 
more convenient in computation than the method in [27]. 
 

VI. CONCLUSION 
This research derived the fractional operational matrix with 

variable x and t  of Bernstein polynomials, which were 
utilised to identify the numerical solution of generalised 
fractional partial equations. The operational matrix 
transformed the initial equation into products of matrices, 
which could also be viewed as the system of algebraic 
equations after dispersing the variable. Solving the algebraic 
equations, the numerical solutions could be obtained. 

There are many methods to solve fractional differential 
equations. The method proposed in this article is simple in 
theory and easy in computation. Therefore, this method has 
deserving applications in solving various fractional 
differential equations. 
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TABLE Ⅰ The absolute error of different values of ( ),i jx t when 3n = . 

ix jt  0.5t =  1.0t =  1.5t =  2.0t =  2.5t =  

0.0x =  0 0 0 0 0 

0.5x =  7.87476E-14 3.55271E-14 6.68754E-14 3.13163E-14 9.30926E-14 

1.0x =  4.89498E-15 1.77636E-14 4.26485E-14 4.79776E-14 5.94209E-14 

1.5x =  1.66316E-15 7.10543E-14 9.30926E-14 4.93099E-14 1.10862E-14 

2.0x =  8.78271E-15 1.46549E-14 7.73195E-14 4.13163E-14 7.24265E-14 

2.5x =  5.29856E-14 7.99361E-15 6.15463E-14 6.46549E-14 5.50990E-14 

3.0x =  2.76636E-14 5.32907E-15 5.21725E-15 9.10543E-15 3.32747E-15 

3.5x =  9.34527E-14 3.55271E-15 1.77636E-15 5.77636E-15 8.88178E-16 

4.0x =  6.88178E-16 2.13658E-15 3.66454E-15 6.55271E-15 2.44089E-16 

 
TABLE Ⅱ The absolute error of different values of ( ),i jx t when 4n = . 

ix jt  0.5t =  1.0t =  1.5t =  2.0t =  2.5t =  

0.0x =  0 0 0 0 0 

0.5x =  2.20476E-15 8.65983E-15 2.26589E-15 5.79315E-16 2.85631E-15 

1.0x =  4.88498E-15 1.02991E-15 2.78526E-15 2.13469E-16 2.24265E-15 

1.5x =  5.42816E-15 1.89621E-15 2.96385E-15 2.13163E-16 3.10862E-15 

2.0x =  3.55271E-15 3.69874E-15 1.27412E-15 2.10574E-15 2.24265E-15 

2.5x =  6.39836E-15 3.74236E-15 1.23654E-15 1.54946E-16 5.62489E-15 

3.0x =  3.56686E-15 5.33669E-15 6.85236E-16 5.54396E-15 6.32697E-15 

3.5x =  1.55747E-15 7.44156E-16 1.75369E-16 2.63677E-15 8.58638E-16 

4.0x =  8.88178E-16 1.66887E-16 9.84265E-16 2.52715E-15 7.32747E-16 
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