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Abstract—In this paper, we investigate a discrete-time neural
network model with multiple delays. By analyzing the cor-
responding characteristic equation of the system, we discuss
the stability and the existence of Neimark-Sacker bifurcation
for the model. Applying the normal form method and the
center manifold theory for discrete time system developed
by Kuznetsov, we derive the explicit formula for determining
the direction of Neimark-Sacker bifurcation and the stability
of bifurcating periodic solution. Some numerical simulations
which are in a good agreement with our theoretical analysis are
carried out. Our results are new and complement previously
known studies.

Index Terms—Neural network, stability, Neimark-Sacker bi-
furcation, time delay.

I. INTRODUCTION

IT is well known that neural networks have potential
applications in many fields such as optimization, image

processing, signal processing, pattern recognition, associative
memory, solving nonlinear algebraic equations and so on.
Thus the dynamical analysis of neural networks has attracted
a great attention in recent years [1-4]. In particular, discrete
time neural networks governed by difference equations are
more appropriate to describe the dynamics of neurons. More-
over, discrete time neural networks can also provide efficient
models of continuous ones for numerical simulations. In
recent years, there are many papers that deal with this
aspect. For example, Yuan et al. [3-4] analyzed the Neimark-
Sacker bifurcation of two classes of discrete neural networks,
He and Cao [5] studied the stability and Neimark-Sacker
bifurcation for a class of discrete-time neural networks, Xiao
and Cao [6] considered the Neimark-Sacker bifurcation of a
discrete-time tabu learning model, Huang et al. [7] discussed
the Neimark-Sacker bifurcation of a discrete-time financial
system, Dobrescu and Opris [8] made a theoretical discussion
on the Neimark-Sacker bifurcation for discrete-delay Kaldor-
Kalecki models. For more related work on the Neimark-
Sacker bifurcation of discrete-time models, one can see [9-
26].

On the other hand, considering the finite speeds of the
switching and the transmission of signals of networks, we
think that it is reasonable to introduce time delays into neural
networks. Inspired by the discussion above, we consider the
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following discrete-time neural networks with multiple delays




u1(n + 1) = αu1(n) + (1− α)f1(βu1(n− τ1))
+ (1− α)f2(γ1u2(n− τ2)),

u2(n + 1) = αu2(n) + (1− α)f3(γ2u1(n− τ3))
+ (1− α)f4(βu2(n− τ4)),

(1)

where ui(t)(i = 1, 2) represents the ith activity of the
neuron; α ∈ (0, 1) denotes internal decay of neurons,
β ≥ 0 and γi(i = 1, 2) represent the gain parameters;
fi : R → R(i = 1, 2, 3, 4) is a continuous transfer function
and fi(0) = 0. τi ≥ 0(i = 1, 2, 3, 4) is a delay.

In this paper, we make an attempt to discuss the Neimark-
Sacker bifurcation of system (1). Here we shall point out that
although there are many articles that investigate the Neimark-
Sacker bifurcation of various neural networks, these papers
are only concerned with neural networks without time delays.
To the best of our knowledge, there are very few papers
that investigate the Neimark-Sacker bifurcation of neural
networks with delays. We believe that our results are new
and complement previously known studies.

The rest of this paper is arranged as follows. In Section
2, we present some sufficient conditions for the asymp-
totical stability of the zero equilibrium and the existence
of Neimark-Sacker bifurcation of (1). In Section 3, the
direction and stability of the Neimark-Sacker bifurcation are
analyzed by applying the normal form theory and the center
manifold theorem. In Section 4, Some computer simulations
are carried out to support the theoretical findings.

II. STABILITY AND EXISTENCE OF NEIMARK-SACKER
BIFURCATION

In this section, we will consider the local stability of
the zero equilibrium and the existence of Neimark-Sacker
bifurcation of system (1). First we make the following
assumptions.

(A1) For i = 1, 2, 3, 4, fi ∈ C1(R) and fi(0) = 0.

The linearization of system (1) near the zero equilibrium
takes the form




u1(n + 1) = αu1(n) + β(1− α)f
′
1(0)u1(n− τ1)

+ γ1(1− α)f
′
2(0)u2(n− τ2),

u2(n + 1) = αu2(n) + γ2(1− α)f
′
3(0)u1(n− τ3)

+ β(1− α)f
′
4(0)u2(n− τ4).

(2)
The characteristic equation of (2) is

det
[

K1 K2

K3 K4

]
= 0, (3)

where K1 = λ− (α + β(1−α)f
′
1(0)e−λτ1),K2 = −γ1(1−

α)f
′
2(0)e−λτ2 ,K3 = −γ2(1−α)f

′
3(0)e−λτ3 ,K4 = λ− (α+
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β(1− α)f
′
4(0)e−λτ4). Then we have

λ2 − 2(α + ν)λ + α2 + 2αν + µ = 0, (4)

where

ν =
1
2
[β(1− α)f

′
1(0)e−λτ1 + β(1− α)f

′
4(0)e−λτ4 ],

µ = β2(1− α)2f
′
1(0)f

′
4(0)e−λ(τ1+τ4)

−γ1γ2(1− α)2f
′
2(0)f

′
3(0)e−λ(τ2+τ3).

For ν ∈ (−1− α, 1− α), we denote

Θ = {(ν, µ) ∈ R2 : P1 < 0, P2 < 0, P3 > 0}, (5)

where

P1 = 2(1− α)ν − (1− α)2 − µ,

P2 = −2(1 + α)ν − (1 + α)2 − µ,

P3 = −2αν + 1− α2 − µ.

Theorem 2.1 Assume that (A1) holds and (ν, µ) ∈ Θ, then
the zero equilibrium of system (1) is asymptotically stable.

Proof We consider two cases.

(1) If ν2 ≥ µ. In this case, it follows from (4) that

λ1 = α + ν +
√

ν2 − µ, λ2 = α + ν −
√

ν2 − µ. (6)

It is easy to see that the eigenvalues λ1,2 of (4) are inside
the unit circle if and only if

(ν, µ) ∈ Θ1 ∩Θ2, (7)

where

Θ1 := {(ν, µ) ∈ R2 : µ > 2(1− α)ν − (1− α)2,
ν < 1− α, ν2 ≥ µ}, (8)
Θ2 := {(ν, µ) ∈ R2 : µ > −2(1 + α)ν − (1 + α)2,
ν > −1− α, ν2 ≥ µ}. (9)

(2) If ν2 < µ. In this case, it follows from (4) that

λ1 = α + ν +
√

µ− ν2i, λ2 = α + ν −
√

µ− ν2i. (10)

It is easy to see that the eigenvalues λ1,2 of (4) are inside
the unit circle if and only if

(ν, µ) ∈ Θ3, (11)

where

Θ3 := {(ν, µ) ∈ R2 : µ < −2αν + 1− α2, ν2 < µ}. (12)

In view of two cases above, we can easily know that Θ =
(Θ1∩Θ2)∪Θ3. Then we can know that λ1 and λ2 are inside
the unit circle if (ν, µ) ∈ Θ. Thus we can conclude that the
zero equilibrium of system (1) is asymptotically stable. The
proof of Theorem 2.1 is completed.

Next we regard µ as the bifurcation parameter to discuss
the Neimark-Sacker bifurcation of zero equilibrium. For
ν2 < µ, we let

λ(µ) = α + ν +
√

µ− ν2i. (13)

Obviously, the eigenvalues of (4) are conjugate complex pair
λ(µ) and λ(µ). Hence we have

|λ| =
√

α2 + 2αν + µ. (14)

Thus we have |λ| = 1 if and only if

µ = µ0 := −2αν + 1− α2. (15)

It is easy to see that for ν2 < µ < µ0, |λ| < 1. Noticing that
|λ(µ0)| = 1, we can conclude that µ0 is a critical value that
destroys the stability of zero equilibrium.

Lemma 2.1. Assume that (A1) holds and −α < ν < 1−α,
then
(i)

[
d|λ(µ)|

dµ

]
µ=µ0

> 0,

(ii) λk(µ0) 6= 1 for k = 1, 2, 3, 4,
where λ(µ) and µ0 are defined by (13) and (15), respectively.

Proof In view of ν ∈ (−α, 1− α), we know that ν2 < µ0.
It follows from (14) and (15) that

[
d|λ(µ)|

dµ

]

µ=µ0

=
1
2

1√
α2 + 2αν + µ

∣∣∣
µ=µ0

=
1
2

> 0.

(16)
Then (i) holds true. Next we consider (ii). λk(µ0) =
1(k = 1, 2, 3, 4) if and only if the argument arg λ(µ0) ∈
{0,±π

2 ,± 2π
3 , π}. In view of ν2 < µ, (15) and

λ(µ0) = α + ν +
√

µ0 − ν2i. (17)

we have

|λ(µ0)| = 1, Reλ(µ0) > 0, Imλ(µ0) > 0. (18)

Then
arg λ(µ0) ∈ {0,±π

2
,±2π

3
, π}

does not hold. Thus we can conclude that λk(µ0) 6= 1
for k = 1, 2, 3, 4. This completes the proof of Lemma 2.1.
According to the analysis above, we have the following
results.
Theorem 2.2. Let µ0 be defined by (15). Assume that (A1)
holds and ν ∈ (−α, 1 − α). Then we have the following
results.
(i) If µ > µ0, then the zero equilibrium of (1) is unstable;
(ii) If ν2 < µ < µ0, then the zero equilibrium of (1) is
asymptotically stable;
(iii) The Neimark-Sacker bifurcation occurs near µ = µ0,
i.e., system (1) has a unique closed invariant curve bifurca-
tion from the zero equilibrium around µ = µ0.

III. PROPERTIES OF NEIMARK-SACKER BIFURCATION

In this section, we will consider the properties of Neimark-
Sacker bifurcation by applying the normal form method
and the center manifold theory for discrete-time system
developed by Kuznetsov [15]. In order to obtain our main
results, we make the following assumption.
(A2) For i = 1, 2, 3, 4, fi ∈ C(3)(R, R), fi(0) = f

′′
i (0) = 0

and f
′
i (0)f

′′′
i (0) 6= 0.

We can rewrite system (1) as
[

u1

u2

]
→

[
α + β(1− α)f

′
1(0)e−λτ1 γ1(1− α)f

′
2(0)e−λτ2

γ2(1− α)f
′
3(0)e−λτ3 α + β(1− α)f

′
4(0)e−λτ4

]

[
u1

u2

]
+

[
G1(u, µ)
G2(u, µ)

]
, (19)
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where u = (u1, u2)T ∈ R2 and

G1(u, µ) =
1
6
f
′′′
1 (0)(1− α)β3u3

1

+
1
6
f
′′′
2 (0)(1− α)γ3

1u3
2 + O(||u||4),

G2(u, µ) =
1
6
f
′′′
3 (0)(1− α)γ3

2u3
1

+
1
6
f
′′′
4 (0)(1− α)γ3

2u3
2 + O(||u||4).

Let B(µ) =
[

α + β(1− α)f
′
1(0)e−λτ1 γ1(1− α)f

′
2(0)e−λτ2

γ2(1− α)f
′
3(0)e−λτ3 α + β(1− α)f

′
4(0)e−λτ4

]
,

%1 = ν +
√

µ− ν2i− β(1− α)f
′
1(0)e−λτ1 ,

%2 = ν +
√

µ− ν2i− β(1− α)f
′
4(0)e−λτ4 .

In view of the definition of ν, we get %̄1 = %2. Let q(µ) ∈ C2

be an eigenvector of B(µ) corresponding to eigenvalue λ(µ),
then we have

B(µ)q(µ) = λ(µ)q(µ). (20)

Let p(µ) ∈ C2 be an eigenvector of the transposed matrix
BT (µ) corresponding to its eigenvalue, then we get

BT (µ)p(µ) = λ(µ)p(µ). (21)

Then

q ∼
(

1,
γ2(1− α)f

′
3(0)e−λτ3

%2

)T

, (22)

p ∼
(

1,
γ1(1− α)f

′
2(0)e−λτ2

%̄2

)T

, (23)

Let

q =

(
1,

γ2(1− α)f
′
3(0)e−λτ3

%2

)T

, (24)

p =
r̄2

r̄2 − r2

(
1,

γ1(1− α)f
′
2(0)e−λτ2

%̄2

)T

. (25)

Then we get 〈p, q〉 = 1, where 〈., .〉 means the standard scalar
product in C2 : 〈p, q〉 = p̄1q1 + p̄2q2. any vector u ∈ R2 can
be represented as

u = wq(µ) + wd(µ), (26)

for some complex w. Clearly,

w = 〈p(µ), u〉. (27)

Then (19) can be transformed into the following form

w → λ(µ)w + g(w, w̄, µ), (28)

where λ(µ) can be written as λ(µ) = (1+ϕ(µ))eiθ(µ), ϕ(µ)
is a smooth function with ϕ(µ0 = 0 and

g(w, w̄, µ) =
∑

k+l≥2

1
k!l!

gkl(µ)wkw̄l. (29)

By (H2), we have

G1(ξ, µ) =
1
6
f
′′′
1 (0)(1− α)β3ξ3

1

+
1
6
f
′′′
2 (0)(1− α)γ3

1ξ3
2 + O(||ξ||4), (30)

G2(ξ, µ) =
1
6
f
′′′
3 (0)(1− α)γ3

2ξ3
1

+
1
6
f
′′′
4 (0)(1− α)γ3

2ξ3
2 + O(||ξ||4). (31)

Then

Bi(σ, ς) :=
2∑

j,k=1

∂2Gi(ξ, µ0)
∂ξj∂ξk

∣∣∣
ξ=0

×σjςk = 0, i = 1, 2, (32)

C1(σ, ς, ι) :=
2∑

j,k,L=1

∂3G1(ξ, µ0)
∂ξj∂ξk∂ξl

∣∣∣
ξ=0

σjςkιl

= β(1− α)f
′′′
1 (0)σ1ς1ι1 + γ1(1− α)f

′′′
2 (0)

×σ2ς2ι2, (33)

C2(σ, ς, ι) :=
2∑

j,k,L=1

∂3G2(ξ, µ0)
∂ξj∂ξk∂ξl

∣∣∣
ξ=0

σjςkιl

= γ2(1− α)f
′′′
3 (0)σ1ς1ι1 + β(1− α)f

′′′
4 (0)

×σ2ς2ι2. (34)

According to (29)-(34) and the following formulae

g20(µ0) = 〈p,B(q, q)〉, g11(µ0) = 〈p,B(q, q̄)〉,
g01(µ0) = 〈p,B(q̄, q̄)〉, g21(µ0) = 〈p, C(q, q, q̄)〉,

we have

g20(µ0) = g11(µ0) = g02(µ0) = 0,

g21(µ0) = p̄1C1(q, q, q̄) + p̄2C2(q, q, q̄).

In view of e−iθ(µ0) = λ(µ0), we get

a(µ0) = Re
[
e−iθ(µ0)g21

2

]

−Re
[
(1− 2e−iθ(µ0))e−2iθ(µ0)

2(1− e−iθ(µ0))
g20g11

]
,

−1
2
|g11|2 − 1

4
|g02|2 = Re

[
e−iθ(µ0)g21

2

]
.

Based on the analysis above, we get the following theorem.
Theorem 3.1. Assume that (A2) and ν ∈ (−α, 1 − α) are
satisfied. Then the direction and stability of Neimark-Sacker
bifurcation of system (1) can be determined by sign(a(µ0)).
If sign(a(µ0)) > 0, then the Neimark-Sacker bifurcation of
system (1) at µ = µ0 is supercritical, moreover, the unique
closed invariant curve bifurcating from the zero equilibrium
for µ = µ0 is asymptotically stable. If sign(a(µ0)) < 0,
then the Neimark-Sacker bifurcation of system (1) at µ = µ0

is subcritical, moreover, the unique closed invariant curve
bifurcating from the zero equilibrium for µ = µ0 is asymp-
totically unstable.

IV. COMPUTER SIMULATIONS

In this section, we present some numerical results to illustra-
tive the feasibility and effectiveness of our results obtained
in the previous section.
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Fig. 1. Dynamical behavior of system (35) with γ1 = 0.23 and γ2 = 0.16.
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Fig. 2. Dynamical behavior of system (35) with γ1 = 0.23 and γ2 = 0.31.

Example 4.1. Consider the following system





u1(n + 1) = αu1(n) + (1− α)f1(βu1(n− τ1))
+ (1− α)f2(γ1u2(n− τ2)),

u2(n + 1) = αu2(n) + (1− α)f3(γ2u1(n− τ3))
+ (1− α)f4(βu2(n− τ4)),

(35)
where α = 0.3, β = 0.35, γ1 = 0.23, γ2 = 0.28, f(u) =
tanhu, τ1 = τ2 = 0.24, τ3 = τ4 = 0.35. Then fi(0) =
0, f

′
i (0) = 1 > 0, f

′′
i (0) = 0, f

′′′
i (0) = −2 < 0. From (15),

we get µ0 = 0.83. It is easy to check that all the conditions
in Theorem 2.1 and Theorem 3.1 are fulfilled. Thus we can
conclude that the zero equilibrium of (35) is asymptotically
stable. When µ crosses the critical value µ0 = 0.83, the
zero equilibrium of (35) is unstable and an asymptotically
invariant cycle bifurcating from the zero equilibrium will
appear. These results are shown in Fig. 1-2.
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Fig. 3. Dynamical behavior of system (36) with γ1 = 0.32 and γ2 = 0.31.
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Fig. 4. Dynamical behavior of system (36) with γ1 = 0.32 and γ2 = 0.45.

Example 4.2. Consider the following system




u1(n + 1) = αu1(n) + (1− α)f1(βu1(n− τ1))
+ (1− α)f2(γ1u2(n− τ2)),

u2(n + 1) = αu2(n) + (1− α)f3(γ2u1(n− τ3))
+ (1− α)f4(βu2(n− τ4)),

(36)
where α = 0.452, β = 0.463, γ1 = 0.32, γ2 = 0.41, f(u) =
tanhu, τ1 = τ2 = 0.31, τ3 = τ4 = 0.25. Then fi(0) =
0, f

′
i (0) = 1 > 0, f

′′
i (0) = 0, f

′′′
i (0) = −2 < 0. From (15),

we get µ0 = 0.76. It is easy to check that all the conditions
in Theorem 2.1 and Theorem 3.1 are fulfilled. Thus we can
conclude that the zero equilibrium of (36) is asymptotically
stable. When µ crosses the critical value µ0 = 0.76, the
zero equilibrium of (36) is unstable and an asymptotically
invariant cycle bifurcating from the zero equilibrium will
appear. These results are shown in Fig. 3-4.

V. CONCLUSIONS

In the present paper, we consider a discrete-time neural
network model with multiple delays. By choosing suitable
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bifurcation parameter, we investigate the stability and the ex-
istence of Neimark-Sacker bifurcation. The explicit formulae
for determining the direction of Neimark-Sacker bifurcation
and the stability of bifurcating periodic solution are given by
applying the normal form method and the center manifold
theory for discrete time system developed by Kuznetsov [17].
Some computer simulations are carried out to support our
theoretical findings. Our results are new and complement
previously known studies in [3-4]. The obtained results in
this paper play an important in designing neural networks.
Up to now, there are only few papers that deal with the
Neimark-Sacker bifurcation for neural networks with three
neurons or more neurons. We will left them for future work.

ACKNOWLEDGMENT

This work is supported by General Project for Teaching
and Research of Hunan Institute of technology (JY201551).
The authors would like to thank the anonymous referees for
their helpful comments and valuable suggestions, which led
to the improvement of the manuscript.

REFERENCES

[1] S.P. Wen, T.W. Huang, Z.G. Zeng, Y.R. Chen and P. Li, ”Circuit design
and exponential stabilization of memristive neural networks,” Neural
Networks, vol. 63, pp. 48-56, 2015.

[2] S. Dharani, R. Rakkiyappanand J.D. Cao, ”New delay-dependent stabil-
ity criteria for switched Hopfield neural networks of neutral type with
additive time-varying delay components,” Neurocomputing, vol. 151,
pp. 827-834, 2015.

[3] Z.H. Yuan, D.W. Hu and L.H. Huang, ”Stability and bifurcation analysis
on a discrete-time neural network,” Journal of Computational and
Applied Mathematics, vol. 177, no. 1, pp. 89-100, 2005.

[4] Z.H. Yuan, D.W. Hu and L.H. Huang, ”Stability and bifurcation analysis
on a discrete-time system of two neurons,” Applied Mathematics Letters,
vol. 17, no. 11, pp. 1239-1245, 2004.

[5] W.L. He and J.D. Cao, ”Stability and bifurcation of a class of discrete-
time neural networks, Applied Mathematical Modelling, vol. 81, no. 10,
pp. 2111-2122, 2007.

[6] M. Xiao and J.D. Cao, ”Bifurcation analysis on a discrete-time tabu
learning model,” Journal of Computational and Applied Mathematics,
vol. 220, no. 1-2, pp. 725-738, 2008.

[7] B.G. Xin, T. Chen and J.H. Ma, ”Neimark-Sacker bifurcation in
a discrete-time financial system,” Discrete Dynamics in Nature and
Society, Vol. 2010, pp. 1-12, 2010.

[8] L.I. Dobrescu and D. Opris, ”Neimark-Sacker bifurcation for the
discrete-delay Kaldor-Kalecki model,” Chaos, Solitons & Fractals, vol.
41, no. 5, pp. 2405-2413, 2009.

[9] L.I. Dobrescu and D. Opris, ”Neimark-Sacker bifurcation for the
discrete-delay Kaldor model,” Chaos, Solitons & Fractals, vol. 40, no.
5, pp. 2462-2468, 2009.

[10] Z.M. He, X. Lai and A.Y. Hou, ”Stability and Neimark-Sacker
bifurcation of numerical discretization of delay differential equations,”
Chaos, Solitons & Fractals, vol. 41, no. 4, pp. 2010-2017, 2009.

[11] X.W. Jiang, X.S. Zhan, Z.H. Guan, X.H. Zhang and L. Yu, ”Neimark-
Sacker bifurcation analysis on a numerical discretization of Gause-type
predator-prey model with delay,” Journal of the Franklin Institute, vol.
352, no. 1, pp. 1-15, 2015.

[12] Q.T., Rui Xu, W.H. Hu and Pi.H. Yang, ”Bifurcation analysis for a tri-
neuron discrete-time BAM neural network with delay,” Chaos, Solitons
& Fractals, vol. 42, no. 4, pp. 2502-2511, 2009.

[13] K. Murakami, ”Stability and bifurcation in a discrete-time predator-
prey model,” Journal of Difference Equations and Applications, vol. 13,
no. 10, pp. 911-925, 2007.

[14] H.Y. Zhao and L. Wang, ”Stability and bifurcation for discrete-time
Cohen-Grossberg neural network,” Applied Mathematic and Computa-
tion, vol. 179, no. 2, pp. 787-798, 2006.

[15] E. Kaslik and S. Balint, ”Bifurcation analysis for a two-dimensional
delayed discrete-time Hopfield neural network,” Chaos, Solitons &
Fractals, vol. 34, no. 4, pp. 1245-1253, 2007.

[16] X.W. Jiang, X.S. Zhan and B. Jiang, ”Stability and Neimark-Sacker
bifurcation analysis for a discrete single genetic negative feedback
autoregulatory system with delay,” Nonlinear Dynamics, vol. 76, no.
2, pp. 1031-1039, 2014.

[17] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112 of
Applied Mathematical Sciences, Springer, New York, NY, USA, 2nd
edition, 1998.

[18] Y.G. Li, ”Dynamics of a discrete internet congestion control model,
Discrete Dynamics in Nature and Society, Vol. 2011, pp. 1-12, 2011.

[19] Y.G. Li, ”Dynamics of a discrete food-limited population model with
time delay,” Applied Mathematics and Computation, vol. 218, no. 12,
pp. 6954-6962, 2012.

[20] X.W. Jiang, L. Ding, Z.H. Guan and F.S. Yuan, ”Bifurcation and
chaotic behavior of a discrete-time Ricardo-Malthus model,” Nonlinear
Dynamics, vol. 71, no. 3, pp. 437-446, 2013.

[21] G. Mircea and D. Opris, ”Neimark-Sacker and flip bifurcation in a
discrete-time dynamic system for internet congestion,”WSEAS Transac-
tions on Mathematics, vol. 8, no. 2, pp. 63-72, 2009.
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