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Abstract—The spectral properties of a class of block 2× 2
matrix are studied, which arise in the numercial solutions
of PDE-constrained optimization problems. Based on the
Schur complement approximate approach and inexact Uzawa
preconditioner, the eigenvalues distribution of preconditioned
matrix is discussed by the similarity transformation. Moreover,
The numerical experiments originated in PDE-constrained
optimization problem are presented to show that the theo-
retical bound of the eigenvalues is in good agreement with its
practical bound.

Index Terms—block two-by-two linear systems, schur com-
plement approach, inexact Uzawa preconditioner, eigenvalues
distribution, PDE-constrained optimization problems.

I. INTRODUCTION

IN this paper, we investigate spectral properties of block
2×2 matrix in following linear systems:

A x ≡
�

W T
T −W

��

x
y

�

=

�

f
g

�

≡b , (1)

where W, T ∈ Rn×n are symmetric positive semi-definite
(SPSD) and one of them is symmetric positive definite
(SPD). Without loss of generality, we assume W is SPD.
The matrix A is nonsingular if and only if null(W ) ∩
null(T ) = {0} [10]. Thus, the linear system (1) has a unique
solution when the (1, 1)-block in matrix A is nonsingular.

The linear system (1) can be formally regard as a
special case of the saddle point problems [5]–[7]. They fre-
quently arise from finite element discretizations of PDE-
constrained optimization problems [7], [10], [23], [31],
complex symmetric linear systems [2], [8], [9], [11], finite
element discretizations of first-order linearization of the
two-phase flow problems based on Cahn-Hilliard equation
[4], [16], matrix completions problems [18], and so on
[6], [12], [24], [26]. A large variety of applications and
numerical solution methods of linear system (1) have been
comprehensively reviewed by Benzi, Golub, and Liesen
[12].

In recent years, the eigenvalue distribution of block 2×2
linear systems has been deeply studied [1], [13], [14], [22],
[29]. On the one hand, the bounds for eigenvalues of
A in (1) can be used to analyze the spectral properties
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of preconditioners such as symmetric indefinite precon-
ditioners, inexact constraint preconditioners and primal-
based penalty preconditioners for linear systems (1); see
[13]–[15], [21], [28]. On the other hand, the estimates for
eigenvalues of A in (1) can give theoretical basis for the
CG method solving linear system (1) in a nonstandard
inner product; see [20], [27], [28].

Our focus is on an important block lower triangu-
lar preconditioner, called inexact Uzawa preconditioner,
which exploit the knowledge of a good approximation for
the (negative) Schur complement. The aim of this paper
is to investigate the spectral properties and provide the
eigenvalues distribution of preconditioned matrix.

The remainder of this paper is organized as follows. In
Section II, an new Schur approximation with parameter
is presented and the approximate degree is studied. In
Section III, an inexact Uzawa preconditioner is introduced
and the eigenvalues distribution of preconditioned matrix
are analyzed by the use of a similarity transformation. In
Section IV, the numerical experiments are given to show
that the theoretical bound of eigenvalues distribution is
in good agreement with the practical bound though PDE-
constrained optimization problems. Finally, in Section V
we end this paper with some conclusions.

II. SCHUR COMPLEMENT APPROXIMATE

IN this section, we consider the approximate degree
between the Schur complement S := W + T W −1T of

the matrix A and its approximate

S(α) = (W +αT )W −1(W +α∗T ),

where Re (α)> 0 and αα∗ = 1.
As W − 1

2 T W − 1
2 is symmetric positive semi-definite, then

an orthogonal matrix Q ∈Rn×n and a diagonal matrix Σ=
(σi i )n×n , σi i ≥ 0 are exist to such that

W − 1
2 T W − 1

2 =QTΣQ ,

so the following expression is true:

S(α)−1 = (W +α∗T )−1W (W +αT )−1

=W − 1
2 (I +2Re (α)QTΣQ +QTΣ2Q)−1W − 1

2

= (QW − 1
2 )−1(I +2Re (α)Σ+Σ2)−1(QW − 1

2 ).

It is obvious that S=S(i), where i=
p
−1 is the imaginary

unit. Thus,

S =W
1
2 QT (I +Σ2)QW − 1

2 .

Then

S(α)−1S = (QW − 1
2 )−1H (QW − 1

2 ), (2)
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where H = (1+Re (α)Σ+Σ2)−1(I +Σ2) is a diagonal matrix
and its diagonal elements

h i i =
1+σ2

i i

1+2Re (α)σi i +σ2
i i

≤ 1,

and the equality hold up if and only if Re (α) = 0.
It can be found from (2) that S(α)−1S and H have the

same eigenvalues. According

h i i =
1+σ2

i i

1+2Re (α)σi i +σ2
i i

≥
1

1+
2Re (α)σi i

1+σ2
i i

≥
1

1+Re (α)
(1≤ i ≤ n ),

we easily have

λ(S(α)−1S)∈
h 1

1+Re (α)
, 1
i

. (3)

Similarly, an approximation cW can be found for W , and
λ(cW −1W )∈ [µ, µ̄], where µ> 0, µ̄ < 1.

III. PRECONDITIONER AND EIGENVALUES DISTRIBUTION

THERE are many “indefinite" preconditioner with
block 2×2 form are presented, whose indefiniteness

is tailored to compensate for the indefiniteness of sys-
tems matrix, and in this sense that the preconditioned
matrix has only eigenvalues with positive real part. The
eigenvalue distribution for this type preconditioners with
Schur complement are also widely discussed. Theses in-
clude indefinite block diagonal preconditioners [13], [19],
block triangular preconditioners [30], for inexact Uzawa
preconditioners [17], and block approximate factorization
preconditioners [3].

Our focus is on the inexact Uzawa preconditioner

cM =

�

cW 0
T −S(α)

�

=

�

In 0
T cW −1 In

��

cW
−S(α)

�

, (4)

which is considered in [24]. The eigenvalues distribution
of the preconditioned matrix cM−1A are discussed in this
section.

When cW =W and S(α) = S , it is well known that the
preconditioner (4) is such that the preconditioned matrix
has all eigenvalues equal to 1 and minimal polynomial of
degree at most 2 [12].

However, using these “ideal" preconditioners requires
exact solves with W and S, which is often impractical,
just the computation of S can be prohibitive [24]. Here we
investigate the effect of using approximations S(α) instead
Schur complement S. We analyze how the eigenvalue
distributions are affected by providing bounds, where
“bounds” for non-real eigenvalues, have to be understood
as combinations of inequalities proving their clustering in
a confined region of the complex plane.

Assume Y ∈ Rn×n is an orthogonal matrix, V < I (V =
diag(v1, v2, · · · , vn ), v1 ≤ v2 ≤ · · · ≤ vn < 1 ) is a diagonal
matrix such that Y T W

1
2 cW −1W

1
2 Y =V . Then

cM−1A =
�

cW
−S(α)

�−1�
In 0

−T cW −1 In

��

W T
T −W

�

=

�

cW −1

S(α)−1

��

W T
−T (I −cW −1W ) (W +T cW −1T )

�

.

As Y T W
1
2 cW −1W

1
2 Y =V , we have

�

Y T W
1
2

S(α)
1
2

�

�

cW −1

S(α)−1

�

�

W − 1
2 Y

S(α)
1
2

�

�
�

Y T W − 1
2

S(α)−
1
2

�

�

W T
−T (I −cW −1W ) (W +T cW −1T )

�

�
�

W − 1
2 Y

S(α)−
1
2

�

=
�

V
I

�

�

Y T W − 1
2 −Y T W − 1

2 T

−S(α)−
1
2 T (I −cW −1W ) S(α)−

1
2 (W +T cW −1T )

�

�
�

W − 1
2 Y

S(α)−
1
2

�

=
�

V
I

��

I G T

−G (I −V ) ( bC +G VG T )

�

=: J ,

where G =S(α)−
1
2 T W − 1

2 Y , bC =S(α)−
1
2 W S(α)−

1
2 .

It is evident that bC +G VG T =S(α)−
1
2 SS(α)−

1
2 , i.e.,

λ( bC +G VG T )∈
h 1

1+Re (α)
, 1
i

.

According the assumption V < I , V
1
2 and (I−V )

1
2 exist. Taking

a similar transformation with respect to blkdiag((I −V )
1
2 V −

1
2 , I )

on J , we have

�

(I −V )
1
2 V −

1
2

I

�

J

�

V
1
2 (I −V )−

1
2

I

�

=

�

V (V −V 2)
1
2 G T

−G (V −V 2)
1
2 ( bC +G VG T )

�

¬:

�

A B T

−B C

�

= K

(5)

where A =V and C = bC +G VG T are all SPD, B =G (Σ−Σ2)
1
2 .

Such matrices are nonnegative definite in Rn . Hence, their
eigenvalues have positive real part [24]. Thus, if the precondi-
tioned matrix is similar to a matrix of the above form (5), the
indefiniteness of the original matrix (1) is lost. However, we must
note that this is at the expense of the loss of the symmetry,
meaning that a portion of the eigenvalues will be in general
complex.

According the above discuss, cM−1A is similar to the matrix of
the form K , thus the eigenvalue analysis of the preconditioned
matrix cM−1A can be reduced to that of the matrix of the form K .
Nextly the eigenvalues distribution of the preconditioned matrix
is discussed and the main results is given.

Lemma 1. ( [24]) Define

K =
�

A B T

−B C

�

,

where A ∈Rn×n is SPD, C ∈Rm×m is positive semi-definite, m ≤ n.
Assume B has full rank or C is positive definite in null space of
B T . Let SC =C+BA−1 B T , and SA = A+B T C−1 B when C is positive
definite, then the real eigenvalues λ of K satisfies the following
condition:

min
�

λmin(A), λmin(SC )
�

≤λ≤max
�

λmax(A), λmax(C )
�

.

The non-real eigenvalues of K satisfies the following condition:

1

2

�

λmin(A)+λmin(C )
�

≤Re (λ)≤
1

2

�

λmax(A)+λmax(C )
�

�

�Im (λ)
�

�≤
�

λmax(B B T )
�

1
2

, and
�

�λ−ξ
�

�≤ ξ,

where

ξ=







λmax(SA ) λmax(SC )
λmax(SA )+λmax(SC )

, C is positive definite,

λmax(SC ), otherwise.
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Theorem 2. The real eigenvalues λ of the inexact Uzawa precon-
ditioned matrix cM−1A satisfy

min

�

v1,
1

1+Re (α)

�

≤λ≤ 1.

The non-real eigenvalues λ of the inexact Uzawa preconditioned
matrix cM−1A satisfy

1

2

�

v1+
1

1+Re (α)

�

≤Re (λ)≤
1

2

�

vn +1
�

,

�

�

�Im (λ)
�

�

�≤
1

2

�

σ2
n

1+2Re (α)σn +σ2
n

�
1
2

,

and
�

�

�λ−
1

2

�

�

�≤
1

2
.

Here, v1, vn is the minimum and maximum diagonal element
of matrix V mentioned above respectively, σn is the maximum
diagonal element of matrix Σ mentioned above.

Proof. As A and C are all positive definite matrices, the
condition in Lemma 1 is satisfied. Now we consider

σmax(B ) =
�

λmax(B B T )
�

1
2

.

As B =G (V −V 2)
1
2 , we have

λmax(B B T ) =λmax
�

G (V −V 2)G T �≤
1

4
λmax(GG T )

≤
1

4

σ2
n

1+2Re (α)σn +σ2
n

.

Then we have

�

�Im (λ)
�

�≤
1

2

�

σ2
n

1+Re (α)σn +σ2
n

�
1
2

.

Because A = V < I , W > cW , i.e., cW −1 > W −1. Thus the
following expression is true:

C =S(α)−
1
2
�

W +T cW −1T
�

S(α)−
1
2 ≥S(α)−

1
2 SS(α)−

1
2 ≥

1

1+Re (α)
I .

As C = bC +G VG T < bC +GG T < I , we have

1

1+Re (α)
≤λ< 1.

Next the eigenvalues distribution of SC , SA is discussed. To
analyze the Schur complement SC , one firstly has to obtain it
explicitly. One way is to consider the Schur complement,

SC =C + BA−1 B T = bC +G VG T +G (V −V 2)V −1G T = bC +GG T ,

then λ(SC ) =λ
�

S(α)−1S
�

holds. As seen in formula (3), we have

λ(SC )∈
h 1

1+Re (α)
, 1
i

.

Because

SA = A + B T C−1 B

=V
1
2 (I +(I −V )

1
2 G T ( bC +G VG T )−1G (I −V )

1
2 )V

1
2

=V
1
2 RV

1
2 ,

we obtain the following result by using the Sherman-Morrisson-
Woodbury formula (SMW):

R−1 = I − (I −V )
1
2 G T ·

h

bC +G VG T +G (I −V )G T
i−1

G (I −V )
1
2

= I − (I −V )
1
2 G T ( bC +GG T )−1G (I −V )

1
2 .

As G T ( bC +GG T )−1G and GG T ( bC +GG T )−1 have the same set
of nonzero eigenvalues and they are banded by

max
x

x T GG T x

x T ( bC +GG T )x
≤ 1.

One then finds R−1 ≥ I − (I − V )
1
2 (I − V )

1
2 = V , i.e., H ≤ V −1.

Further, we have λ(SA )≤ 1.
Thus,

ξ=
λmax(SA )λmax(SC )
λmax(SA )+λmax(SC )

=
1

2
.

Indeed, when W is trivial, more special conclusion can be
reached.

Corollary 3. If cW =W then V = I , the matrix

K =
�

I
C +GG T

�

has only real eigenvalues, and the distribution of eigenvalues is

λ(K )∈
�

1

1+Re (α)
, 1

�

.

IV. NUMERICAL RESULTS

IN this section, it is illustrated by using numerical examples
that the theoretical bound for eigenvalues of preconditioned

matrix are agreement with its practical bound. All the tests are
performed in MATLAB R2013a with machine precision 10−16.

we consider the distributed control problem which consists
of a cost functional (6) to be minimized subject to a partial
differential equation (PDE) problem posed on a domain Ω⊂R2

[25], [31]:

min
u , f

1

2
‖u −u ∗‖2

2+β‖ f ‖2
2, (6)

subject to −∇2u = f , in Ω= [0, 1]2, (7)

with u = u ∗, on ∂ Ω, (8)

where the function

u ∗ =

¨

(2x −1)2(2y −1)2, (x , y )∈
�

0, 1
2

�2,

0, otherwise,

β is a regularization parameter, ∂ Ω is the regions boundaries of
Ω. Such problems is firstly introduced by Lions in [32].

There are two approaches to obtain the solution of the PDE-
constrained optimization problems (6 – 8). The one is discretize-
then-optimize and the other is optimize-then-discretize. By using
the discretize-then-optimize approach and the Q1 finite element
discretize in this paper, the following linear systems can be
obtained:







2βM 0 −M
0 M K T

−M K 0













f
u
λ






=







0
b̃
d






,

where M , K ∈Rn×n is the mass matrix and stiffness matrix (the
discrete Laplacian) respectively. They are all SPD matrices. d ∈
Rn is the terms coming from the boundary values, b̃ ∈ Rn is
the discrete Galerkin projection of u ∗, λ is the Laplace operator
vector.

As M is a symmetric matrix, λ= 2β f and the following linear
systems of the form

A z =

 

M
p

2βK
p

2βK −M

!

�

µ
p

2β f

�

=

�

b̃
p

2βd

�

, (9)

can be obtained. we note that this system of linear equations
have saddle point structure.

The eigenvalues distribution of the preconditioned matrix
cM−1A with cW = 1.1 W and V = 10

11
I < I are listed in Tables I

– III, The symbol “–" denotes that the case is not exist.
From these Tables, we can find that the practical eigenvalues

just fall in the interval theoretical eigenvalues, the theoretical
bound of image are good agreement with the practical bound of
image. To further illustrate this, The eigenvalues distribution of
the preconditioned matrix cM−1A is given in Fig. 1.

V. CONCLUSIONS
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IN this paper, our focus is directed at the spectral property
of the block 2 × 2 linear systems, which frequently arise

from saddle point problems and PDE-constrained optimization
problems. Based on the Schur complement approximate ap-
proach, an inexact Uzawa preconditioner is introduced and the
eigenvalues distribution of preconditioned matrix is discussed
by the similarity transformation. The results of our numerical
experiments utilizing test matrices from PDE-constrained opti-
mization problems demonstrate that the theoretical bound for
eigenvalues of the preconditioned matrix is good agreement with
its practical bound.
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TABLE I: Bound of Eigenvalues of cM−1A for cW = 1.1W, h = 2−4 .

β Re (α)
real eigenvalues complex eigenvalues

Theoretical Practical Theoretical real Practical real Theoretical image Practical image

10−1 1/3 [0.7500, 1] – [0.8295, 0.9545] [0.9618, 0.9544] [-0.3061, 0.3061] [-0.2980 0.2980]

1/4 [0.8000, 1] – [0.8545, 0.9545] [0.9257, 0.9544] [-0.3162, 0.3162] [-0.2980, 0.2980]

1/5 [0.8333, 1] – [0.8712, 0.9545] [0.9312, 0.9545] [-0.3227, 0.3227] [-0.2981, 0.2981]

1/6 [0.8571, 1] – [0.8831, 0.9545] [0.9349, 0.9545] [-0.3273, 0.3273] [-0.2981, 0.2981]

10−2 1/3 [0.7500, 1] – [0.8295, 0.9545] [0.8612, 0.9541] [-0.3061, 0.3061] [-0.2980, 0.2980]

1/4 [0.8000, 1] – [0.8545, 0.9545] [0.8811, 0.9542] [-0.3161, 0.3161] [-0.2980, 0.2980]

1/5 [0.8333, 1] – [0.8712, 0.9545] [0.8940, 0.9543] [-0.3227, 0.3227] [-0.2980, 0.2980]

1/6 [0.8571, 1] – [0.8831, 0.9545] [0.9030, 0.9543] [-0.3273, 0.3273] [-0.2980, 0.2980]

TABLE II: Bound of Eigenvalues of cM−1A for cW = 1.1W, h = 2−5 .

β Re (α)
real eigenvalues complex eigenvalues

Theoretical Practical Theoretical real Practical real Theoretical image Practical image

10−1 1/3 [0.7500, 1] – [0.8295, 0.9545] [0.9167, 0.9545] [-0.3062, 0.3062] [-0.2981, 0.2981]

1/4 [0.8000, 1] – [0.8545, 0.9545] [0.9256, 0.9545] [-0.3162, 0.3162] [-0.2981, 0.2981]

1/5 [0.8333, 1] – [0.8712, 0.9545] [0.9311, 0.9545] [-0.3227, 0.3227] [-0.2981, 0.2981]

1/6 [0.8571, 1] – [0.8831, 0.9545] [0.9349, 0.9545] [-0.3273, 0.3273] [-0.2981, 0.2981]

10−2 1/3 [0.7500, 1] – [0.8295, 0.9545] [0.8610, 0.9544] [-0.3062, 0.3062] [-0.2980, 0.2980]

1/4 [0.8000, 1] – [0.8545, 0.9545] [0.8810, 0.9545] [-0.3162, 0.3162] [-0.2981, 0.2981]

1/5 [0.8333, 1] – [0.8712, 0.9545] [0.8939, 0.9545] [-0.3227, 0.3227] [-0.2981, 0.2981]

1/6 [0.8571, 1] – [0.8831, 0.9545] [0.9030, 0.9545] [-0.3273, 0.3273] [-0.2981, 0.2981]

TABLE III: Bound of Eigenvalues of cM−1A for cW = 1.1W, h = 2−6 .

β Re (α)
real eigenvalues complex eigenvalues

Theoretical Practical Theoretical real Practical real Theoretical image Practical image

10−1 1/2 [0.6667, 1] – [0.7879, 0.9545] [0.8998, 0.9545] [-0.2887, 0.2887] [-0.2981, 0.2981]

1/3 [0.7500, 1] – [0.8295, 0.9545] [0.9167, 0.9545] [-0.3062, 0.3062] [-0.2981, 0.2981]

1/4 [0.8000, 1] – [0.8545, 0.9545] [0.9256, 0.9545] [-0.3162, 0.3162] [-0.2981, 0.2981]

1/5 [0.8333, 1] – [0.8712, 0.9545] [0.9311, 0.9545] [-0.3227, 0.3227] [-0.2981, 0.2981]

1/6 [0.8571, 1] – [0.8831, 0.9545] [0.9349, 0.9545] [-0.3273, 0.3273] [-0.2981, 0.2981]

10−2 1/2 [0.6667, 1] – [0.7879, 0.9545] [0.8262, 0.9535] [-0.2887, 0.2887] [-0.2981, 0.2981]

1/3 [0.7500, 1] – [0.8295, 0.9545] [0.8610, 0.9545] [-0.3062, 0.3062] [-0.2981, 0.2981]

1/4 [0.8000, 1] – [0.8545, 0.9545] [0.8809, 0.9545] [-0.3162, 0.3162] [-0.2981, 0.2981]

1/5 [0.8333, 1] – [0.8712, 0.9545] [0.8939, 0.9545] [-0.3227, 0.3227] [-0.2981, 0.2981]

1/6 [0.8571, 1] – [0.8831, 0.9545] [0.9029, 0.9545] [-0.3273, 0.3273] [-0.2981, 0.2981]
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Fig. 1: Eigenvalues distribution of preconditioned matrix cM−1A (β = 10−2, h = 2−5).
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