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Abstract—This paper is concerned with the boundedness of 

the following symmetric system of max-type difference 
equations 
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I. INTRODUCTION 
iff
an

erence equation appear naturally as discrete analogues 
d as numerical solutions of differential and delay 

differential equations, which have been applied in biology, 
ecology, physics, and so forth (see, [1-7]). Many researchers 
have studied the asymptotic behavior of the difference 
equation, for example, in [8, 9] and relevant references cited 
therein. Recently, the scholars have begun to pay more 
attention on the studying of so-called max-type difference 
equations. In the initial study, experts focused on studying 
the behavior of the following difference equation 
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where , k N∈ ( ) , 1,2, ,i
nA i = " k , are real sequences (mostly 

constant or periodic) and the initial values 1 2, , , kx x x− − −"  are 
different from zero (see, [10, 11], as well as the references 
therein). 

Elsayed et al. [12] have proved that every positive solution 
of the following third-order nonautonomous max-type 
difference equation 
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is periodic with period three when nA is a three-periodic 
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sequence of positive numbers. 

   In [13], Xiao et al. have shown that every well-defined 
solution of the following difference equation 

  1 1max{ , },n n
n

0x x n N
x
β

+ −= ∈                        (3) 

is eventually periodic with period two, where the initial 
conditions 1 0,x x−  are arbitrary non-zero real numbers 
and Rβ ∈ . 

In 2008, S. Stević [14] proposed some open problem and 
suggested investigation of positive solutions to the following 
difference equation 
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where ,i ip q are natural numbers such that 1 2 kp p p< < <" , 

1 2 kq q q< < <"  , ,i ir s R+∈ ,  is a sequence of positive 
numbers,

( )i
nB

1,2, ,i k= " and k N∈ . 
As a special case of Equation (4), S. Stević studied the 

boundedness character of positive solutions to the following 
max-type difference equation 

1
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where , the parameters  and  are positive  
and  is a nonnegative real number (see, [15]).  

\{1}k N∈ A r
p

In view of a natural extension of the model (5), S. Stević 
continuously investigated the behavior of positive solutions 
to the following max-type system of differences 
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d
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where the parameters c  an p are positive real numbers. 
And who proved that all positive solutions of system (6) are 
bounded when and so forth (see [16]). In addition, 
related research can also be seen in papers [17-20] and the 
references therein. 

 

(0, 4)p ∈

In this paper, based on the idea of works [14-16], we study 
the boundedness character of the following max-type 
difference equations 

1 1
1 1

max{ , }, max{ , },
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n nq q
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x y+ +
− −

= = N∈       (7) 

where , , (0, )c p q ∈ +∞  and the initial conditions 1 0 1, , ,x x y− −  

0y are arbitrary positive real numbers. 

II. BOUNDEDNESS CHARACTER OF SOLUTIONS 
In this section, we will analyze the boundedness of the 

D 
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positive solutions to system (7). 
Theorem 1. Assume that 2( )f p qλ λ λ= − +  and (a) there 

is 1 1λ > such that 1( ) 0f λ = , or (b) there is 1 2 1λ λ= =  such 
that 1 2( ) ( ) 0f fλ λ= = , then the system (7) has positive 
unbounded solutions with the positive initial conditions 

1 1 0, , , 0x y x y− −  such that . 0 0 1 1 0x y x y− −> >
Proof. Obviously, from (7), we can easily see that 
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By taking logarithm in (8), for any , we obtain 0n N∈

1 1 1ln ln ln , ln ln lnn n n n nx p y q x y p x q y+ − +≥ − ≥ − −

−
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0
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Moreover, it follows that 

     .         (10) 1 1 1 1ln ln ln , 1n n n n n nx y p x y q x y n+ + − −≥ − ≥

Let , then inequality (10) becomes lnn nz x=

1 1,n n nz pz qz n N+ −≥ − ∈ .                  (11) 
By hypothesis (a), we have that  and . 1( ) 0f λ = 1 1λ >

Let 
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λ λ
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−

λ + ,                    (12) 

then it follows that 
1( ) ( )( )f aλ λ λ λ= + − .                   (13) 

Comparing Eq. (12) with Eq. (13), we can obtain 1a pλ= −   
and 1q aλ= − . 

Set 
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Then inequation (11) can be written in the following form 
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That is 

                        1 1nu λ+ ≥ .                                  (16) 
Let  be chosen such that 1 0,z z−

0 | || |z a z−≥ 1

0

                                (17) 
This, along with (16), yields to 

1 1
n

nu uλ+ ≥ , and .                       (18) 0 0u >

Letting in (18), from assumption n → ∞ 1 1λ >  and , 
it follows that 

0 0u >

-1n n nu z az= + → +∞   as .         (19) n → +∞

Hence is unbounded. As , it follows that { } 1n n
z

≥−
lnn nz x= ny

n

n nx y → ∞   as ,                  (20) n → ∞

which along with 2 2 2n n nx y x y+ ≥  implies 
2 2
n nx y+ → +∞ ,                       (21) 

from which it follows that the sequence { } 1
( , )n n n
x y

≥−
 is 

unbounded. 
By hypothesis (b), we have 2, 1p q= = . Then from (8) we 

get 
1 1
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,n n n
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If we choose the initial conditions 1 1 0, , ,x y x y− −  such 
that , then we obtain (20) and (21), which 

implies that the sequence
0 0 1 1 0x y x y− −> >

{ } 1
( , )n n n
x y

≥−
is unbounded. The 

proof of the theorem is finished. 
Next, we study the different cases concerning with the 

boundedness of positive solutions to the system (7). 
Theorem 2. If , and , then all positive 

solutions to system (7) are bounded. 
0c > 0p > 2 4p < q

Proof. Assume that  is a positive solution to 
system (7). Then the following estimate obviously holds 

1( , )n n nx y ≥−

0min{ , } , .n nx y c n N≥ ∈                     (25) 
Due to the symmetry between { }nx and{ }ny , as long as we 

prove the boundedness of { }nx , another sequence { }ny  can 
be proved as well. 

From system (7) and iterative method, it follows that 
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Case1. When 2p ≤  , we get 

                  21
1 1max{ , , }n q p pq p q

x c
c c

+ − − +
≤ .             (27) 

Thus, the sequence  is bounded. 1{ }n nx ≥−

Case2. When , let sequence {2p q> } 0l l
a

≥
 be defined as 

follows 
 .                   (28) 1 0/ ( ) 0,l la q p a a l N+ = − = ∈, 0

From (7), (28) and iterative method, we have 
2

1
1

1 1 2

( / )1
/ /( / )
1 2

/( / )
( / ) ( / )2

/ /( / )
1 2 3

/ /
1 2

max{ , } max{ , , }

max{ ,( ) ,( ) }

max{ ,( ) ,( ) ,( ) }

max{ ,( ,(

p p qp
n n

n q q pq
n n n

p p q p pn
q p q p q p
n n

p q p q p
p p q p p p q p pn

q p q p q p q
n n n

q p q
n n

y xcx c c
x x y

xcc
x y

yc cc
x y x

c cc
x y

−
−

+
− − −

−−
−

− −

− −
− −−

−
− − −

− −

= =

=

=

=

=

""
2

2k-1

22
2k-1

( / )2
( / )

(2 1)

( )
(2 1) ( / )

/ /( / )
1 2 (2 1) (2 1)

(2 1)
/ /( / )
1 2

, ,( ) ) ) }

max{ ,( ,( , ,( , ) ) ) }

max{ ,( ,( , ,(

k

kk

p a
p a p q p pn k

p q p q
n k

p a p qp a
n k p a p q p p

q p q p q p q q
n n n k n k

n k
q p q p q p
n n

y
x

xc c cc
x y x y

xc cc
x y

−
− −−

−
− +

− −−
− + − −

−
− − − + − +

− +
−

− −

=

=

" "

" "

"

，

，

2 1

2k ( / )

(2 2)

) ) ) }.
kp a

p a p q p p
q
n ky

+−
− −

− +

"，

   

(29) 
From the monotonicity of ( ) / ( )g x q p x= − on the interval 

 along with the fact , it follows that 

the sequence

(0, )p 0 10 a a q p= < = /

{ }la is increasing as far as la p≤  for nx y y x
y x x y

+ +

− −

≥ ≥ .                  (22) 
. Hence, we have , *liml la x→+∞ = * (0, ]x p∈   every 0l ∈ Ν
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and *x is the wing equation 
            (30) 

However, the equation (30) has no rea
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If l  (2.25) 29), it follows that 

 solution of the follo
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l roots existing in 
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For , from which the boundedness of 2 3n k≥ + { } 1n n

x
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follows in this case. 

Combined case 1 2p q≤  and case 2 , we 

obtain that the sequence  when p q

2 4q p q< <

1≥−  is bounded 4< . 
In the same way, we can prove that the sequence

{ }n nx 2

 { }ny   i
 (7

 Assum tha  and 

s 
bounded as well. Hence, every solution to system ) is 
bounded when 2 4p q< . 

Theorem 3. e t 0c > , 0q > 1p =  , then 
th  boun d. e solutions of system (7) are de

Proof. Assume that {( , )}n nx y  is any positive solution of 
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2 ,k k N= ∈ , we can obtain that 2{ }nz is bounded. 

Similarly,  is bounded as we Hence, the 

boundedne
2 1{ nz − }

ss of
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 { } 1n≥−
 follows in this case. 

(c). If 2
1
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1+
− ≤ 2 1

0
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obtain that
of, we c
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(d 2 1
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). If 

 nz ≥ any n

+
− > and 2 1

0
qz c +≤ , from above proof, we can 

obtain that 2 1{ }nz −  is monotonically decreasing and 2nz c=  . 
Additionally c  for any 2 1,n k k N= − ∈  , we can get 
that{ }nz  is bou  in this ca

Due to the boundedness of {

, nz ≥

nded
and 

se.  
}nz n nx z≤ , we can 

obtain the boundedness of { }nx . Similarly, { }ny  is bounded 
as well. Hence, every positive solution to system (7) is 
bounded. 

Case 2. 0 1c< ≤  . 
(a) If q ≥ ct 1 , in fa nx c≥ , from (7) and iterative method 

it  thatfollows  
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for

nx

n N∈ , which means that { }nx   is bounded. 

b) If ( 0 1q< <  , let sequence { } 0l l
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≥
be defined as follows 
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Thus, from (7) and iterative method we have 
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for every l N∈ . 
From (3 e 7), w can deduce 

l l N−1l la a qa+ 1 0,− +
It is easy to se

= ∈ .                    (39) 
e that the general solu

equation (39) is 

l

tion of difference 

1 1 2 2 1 2, ,l la c c c c Rλ λ= + ∈                      (40) 

1,2 (1 1 4 ) / 2qλ = ± −  . The fact 1,where 2 1<  along with λ

plies that the sequen = . F(40) im ce liml la→+∞ rom this and 
(37) we get lim 0l lb→+∞

0
= .  
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≤ "             (41) By employing Matlab R2013b, we solve the numerical 
solutions of the above equations, which are shown 
respectively in the following Figures. 1

1

0
1

1 2 1

max{ , , , , }
n

n

aa

n q b b
n n

yccx c
x y x+

− − −

≤ "            (42) 

The convergence of sequences { } 1l l
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with (41)-(42) implies the boundedness of { } 1n n
x

≥−
 . Since 

system (7) is symmetric, the boundedness of   imply 

the boundedness of {
{ } 1n n

x
≥−

} 1n n
y

≥−
 , as claimed. 

III. NUMERICAL SIMULATIONS 
In this secti  are given to 

su

differenc

on, some numerical simulations
pport our theoretical analysis. When the parameters 
, ,c p q  take different values, we have the following 
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and 

More precisely, the initial conditions of (43) are that 
( 1) 0.5, (0) 0.8, ( 1) 0.8x x y− = = − =  and . It is easy 

to show that the equations (43) satisfy the conditions of 
Theorem 1. Fig.1 shows that the solutions of the equations 
(43) are unbounded. The initial conditions of (44) are that 

(0) 1.2y =

( 1) 0.2, (0) 0.4, ( 1) 0.8x x y− = = − = and It is not 
difficult to find that the equations (44) satisfy the conditions 
of Theorem 2 and 

(0) 0.7.y =

2p q≤ . Fig.2 shows that the solutions of 
the equations (44) are bounded. The initial conditions of 
equations (45) are that ( 1) 0.5, (0) 0.8, ( 1) 1.2x x y− = = − =  
and . It is obvious that equations (45) satisfy the 
condition of Theorems 2 and . Fig.3 shows that the 
solutions of the equations (45) are bounded. The initial 
condition of (46) is that  
and

(0) 1.8y =
24q p q> >

( 1) 1.2, (0) 1.4, ( 1) 1.5x x y− = = − =

(0) 1.2.y =  It is easy to prove that equations (46) satisfy 
the conditions of Theorems 3 and . Fig.4 shows that the 
solutions of the equations (46) are bounded. The initial 
conditions of (47) are that   
and

1c >

( 1) 1.5, (0) 1.2, ( 1) 0.5x x y− = = − =

(0) 0.8y = . It is easy to find that equations (47) satisfy 
the conditions of Theorem 3 and . Fig.5 shows that 
the solutions of the equations (47) are bounded. 

0 c< ≤1
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Fig. 1. The solutions of the equation (43) with the initial conditions ( 1) 0.5, (0) 0.8, ( 1) 0.8, (0) 1.2x x y y− = = − = =  
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Fig. 2. The solutions of the equation (44) with the initial conditions ( 1) 0.2, (0) 0.4, ( 1) 0.8, (0) 0.7x x y y− = = − = =  
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Fig. 3. The solutions of the equation (45) with the initial conditions ( 1) 0.5, (0) 0.8, ( 1) 1.2, (0) 1.8x x y y− = = − = =   
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Fig. 4. The solutions of the equation (46) with the initial conditions ( 1) 1.2, (0) 1.4, ( 1) 1.5, (0) 1.2x x y y− = = − = =  
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Fig. 5. The solutions of the equation (47) with the initial conditions ( 1) 1.5, (0) 1.2, ( 1) 0.5, (0) 0.8x x y y− = = − = =  
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IV   CONCLUSIONS 
In this paper, we have dealt with the problem of 

boundedness character for a class of max-type difference 
system. And we have obtained some sufficient conditions 
which ensure the boundedness character of the max-type 
system. The sufficient conditions that we obtained are very 
simple, which provide flexibility for the application and 
analysis of max-type difference system. These results 
generalize and improve some previous works. In addition, we 
present the use of a new iteration method for symmetric 
systems of max-type difference equations. This technique is a 
powerful tool for solving various difference equations and it 
can be applied to other nonlinear differential equations in 
mathematical physics. Computations are performed using the 
software package Matlab R2013b. In particular, some 
numerical examples are given to show the validity of the 
obtained theoretic results 
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