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Abstract—In this paper, we study the fuzzy differential
equations in the quotient space of fuzzy numbers. We deal
with the convergence of successive approximations of the initial
value problem of the fuzzy differential equations under the
general uniqueness assumption of Perron type utilizing the
comparison functions that is rather instructive. We also discuss
the approximate solutions and the error estimates between the
solutions and approximate solutions.

Index Terms—fuzzy number, quotient space, fuzzy differen-
tial equations, convergence of successive approximations.

I. INTRODUCTION

THE fuzzy differential equation is one of the important
part of the fuzzy analysis theory. The Hukuhara dif-

ferentiability (H-derivative) of fuzzy valued mappings were
initially studied by Puri and Ralescu [21]. Subsequently,
using H-derivatives, the fuzzy differential equation and the
initial value problem were regularly treated in [3], [8], [9],
[10], [19], [26], [27]. In particular, Wu and Song [29], [30]
and Song, Wu and Xue [28] established the relationship
between a solution and its approximate solutions to fuzzy
differential equations. In [20], Park and Han obtained the
global existence and uniqueness of fuzzy solution of fuzzy
differential equation using the the properties of Hasegawa’s
function and successive approximation.

However in many applications the Hukuhara difference
appears to have several limitations and to be very restrictive
[1], [2], [8], [22]. In [23], Qiu et al. showed that the method
of finding the inverse operation of fuzzy numbers in the sense
of Mareš [16], [17] is very intuitive. After that, Qiu et al.
[25] investigated that the differentiability and integrability
properties of such functions and given an existence and
uniqueness theorem for a solution to a fuzzy differential e-
quation in the quotient space of fuzzy numbers. In this paper,
we will study the convergence of successive approximations
for fuzzy differential equations in the quotient space of fuzzy
numbers.

II. PRELIMINARIES

A fuzzy set x̃ of R is characterized by a membership
function µx̃ : R → [0, 1]. For each such fuzzy set x̃, we
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denote by [x̃]
α
= {x ∈ R : µx̃(x) ≥ α} for any α ∈ (0, 1],

its α-level set. We define the set [x̃]0 by [x̃]
0
=

∪
α∈(0,1] [x̃]

α,
where A denotes the closure of a crisp set A. A fuzzy
number x̃ is a fuzzy set with non-empty bounded closed
level sets [x̃]

α
= [x̃L(α), x̃R(α)] for all α ∈ [0, 1], where

[x̃L(α), x̃R(α)] denotes a closed interval with the left end
point x̃L(α) and the right end point x̃R(α) [4]. We denote
the class of fuzzy numbers by F .

For any x̃, ỹ ∈ F and a ∈ R, owing to Zadeh’s extension
principle [32], addition and scalar multiplication are defined
for any x ∈ R by

µx̃+ỹ(x) = sup
x1.x2:x1+x2=x

min {µx̃(x1), µỹ(x2)}

and

µa×x̃(x) = µax̃(x) =

{
µ
(x
a

)
, if a ̸= 0,

0̃, if a = 0.

For any x̃ ∈ F , we define the fuzzy number −x̃ ∈ F by
−x̃ = (−1)× x̃, i.e., µ−x̃(x) = µx̃(−x), for all x ∈ R. We
say that a fuzzy number s̃ ∈ F is symmetric [16], if

µs̃(x) = µs̃(−x),

for all x ∈ R, i.e., s̃ = −s̃. The set of all symmetric fuzzy
numbers will be denoted by S .

Definition 2.1: [5] Let x̃, ỹ ∈ F . We say that x̃ is
equivalent to ỹ and write x̃ ∼ ỹ if and only if there exist
symmetric fuzzy numbers s̃1, s̃2 ∈ S such that

x̃+ s̃1 = ỹ + s̃2.

The equivalence relation defined above is reflexive, sym-
metric and transitive [16]. Let ⟨x̃⟩ denote the equivalence
class containing the element x̃ and denote the set of equiv-
alence classes by F/S .

Definition 2.2: [12] Let f : [a, b] → R. f is said be of
bounded variation if there exists a C > 0 such that

n∑
i=1

|f(xi−1)− f(xi)| ≤ C

for every partition a = x0 < x1 < x2 < · · · < xn = b on
[a, b]. The set of all functions of bounded variation on [a, b]
is denoted by BV [a, b].

Definition 2.3: [12] Let f : [a, b] → R be a function of
bounded variation. The total variation of f on [a, b] is defined
by

V b
a (f) = sup

p

n∑
i=1

|f(xi−1)− f(xi)|,

where p represents all partitions of [a, b].

IAENG International Journal of Applied Mathematics, 46:4, IJAM_46_4_15

(Advance online publication: 26 November 2016)

 
______________________________________________________________________________________ 



Definition 2.4: [23] For a fuzzy number x̃, we define a
function x̃M : [0, 1] → R by assigning the midpoint of each
α-level set to x̃M (α) for all α ∈ [0, 1], i.e.,

x̃M (α) =
x̃L(α) + x̃R(α)

2
.

Then the function x̃M : [0, 1] → R will be called the
midpoint function of the fuzzy number x̃.

Lemma 2.1: [23] For any x̃ ∈ F , the midpoint function
x̃M is continuous from the right at 0 and continuous from
the left on [0, 1]. Furthermore it is a function of bounded
variation on [0, 1].

Definition 2.5: [17] Let x̃ ∈ F and let x̂ be a fuzzy
number such that x̃ = x̂+ s̃ for some s̃ ∈ S , if x̂ = ỹ+ s̃1
for some ỹ ∈ F and s̃1 ∈ S , then s̃1 = 0̃. Then the fuzzy
number x̂ will be called the Mareš core of the fuzzy number
x̃.

Definition 2.6: [25] For any ⟨x̃⟩ ∈ F/S , we define a
midpoint function M⟨x̃⟩ : [0, 1] → R by

M⟨x̃⟩(α) = x̂M (α)

for all α ∈ [0, 1], where x̂ is Mareš core of ⟨x̃⟩.
Definition 2.7: [25] For any ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S , we define

⟨x̃⟩+ ⟨ỹ⟩ by

⟨x̃⟩+ ⟨ỹ⟩ = ⟨x̃+ ỹ⟩ .

Remark 2.1: The addition operation defined by Definition
2.7 is a group operation over the set of equivalence classes
F/S up to the equivalence relation in Definition 2.1. It
means that
⟨x̃⟩+ ⟨ỹ⟩ = ⟨ỹ⟩+ ⟨x̃⟩,
(⟨x̃⟩+ ⟨ỹ⟩) + ⟨z̃⟩ = ⟨x̃⟩+ (⟨ỹ⟩+ ⟨z̃⟩),
⟨x̃⟩+ ⟨ỹ⟩ = ⟨x̃⟩ if and only if ⟨ỹ⟩ = ⟨0̃⟩,
⟨x̃⟩+ ⟨ỹ⟩ = ⟨0̃⟩ if and only if ⟨ỹ⟩ = ⟨−x̃⟩ = −⟨x̃⟩,

for any ⟨x̃⟩ , ⟨ỹ⟩ , ⟨z̃⟩ ∈ F/S . For the details of the
discussion, please see [6], [7].

Definition 2.8: [25] Let ⟨x̃⟩ , ⟨ỹ⟩ , ⟨z̃⟩ ∈ F/S . If

M⟨z̃⟩(α) = M⟨x̃⟩(α) ·M⟨ỹ⟩(α)

for all α ∈ [0, 1], then we called ⟨z̃⟩ is the product of ⟨x̃⟩
and ⟨ỹ⟩, i.e., ⟨z̃⟩ = ⟨x̃⟩ · ⟨ỹ⟩.

Definition 2.9: [25] For any ⟨x̃⟩ ∈ F/S and λ ∈ R, we
define λ · ⟨x̃⟩ = λ ⟨x̃⟩ by

λ ⟨x̃⟩ = ⟨λx̃⟩ .

It is obvious that Mλ⟨x̃⟩(α) = M⟨λx̃⟩(α) = λM⟨x̃⟩(α), for
all α ∈ [0, 1] and λx̂ is the Mareš core of λ ⟨x̃⟩ if x̂ is the
Mareš core of ⟨x̃⟩.

Definition 2.10: [25] Define dsup : F/S × F/S →
R+ ∪ {0} by

dsup (⟨x̃⟩ , ⟨ỹ⟩) = sup
α∈[0,1]

∣∣M⟨x̃⟩(α)−M⟨ỹ⟩(α)
∣∣ ,

for all ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S .
(F/S , dsup) is a metric space [23].

III. CONVERGENCE OF SUCCESSIVE APPROXIMATIONS

Definition 3.1: [25] Define d+ : C[J,R] → R by

d+m(t) = lim
h→0+

1

h
(m(t+ h)−m(t)),

for all m(t) ∈ C[J,R], where J = [t0, t0 + a] and a > 0.
Definition 3.2: [25] A mapping F : J → F/S is

differentiable at t ∈ J if there exists an F ′(t) ∈ F/S
such that

lim
h→0

dsup

(
F (t+ h)− F (t)

h
, F ′(t)

)
= 0.

If t = t0 (or t = t0 + a), then we consider only h → 0+

(or h → 0−).
Definition 3.3: [25] A mapping F : J → F/S is

measurable if F is measurable with respect to dsup.
A mapping F : J → F/S is called integrably bounded

if there exists an integrable function h : J → R+ ∪ {0}
such that

∣∣MF (t)(α)
∣∣ ≤ h(t) for all t ∈ J and α ∈ [0, 1]; a

mapping F : J → F/S is said to be of uniformly bounded
variation with respect to α ∈ [0, 1] (for short, of uniformly
bounded variation) if there exists a constant K > 0 such that

V 1
0

(
MF (t)

)
≤ K,

for each t ∈ J [25].
Definition 3.4: [25] Let F : J → F/S be mea-

surable. The integral of F over J , denoted
∫
J
F (t)dt or∫ t0+a

t0
F (t)dt, is a mapping M∫

J
F (t)dt : [0, 1] → R, which

is defined by the equation

M∫
J
F (t)dt(α) =

∫
J

MF (t)(α)dt

for all α ∈ [0, 1]. The mapping F : J → F/S is said to be
integrable over J if there exists an ⟨x̃0⟩ ∈ F/S such that
M∫

J F (t)dt
= M⟨x̃0⟩. In this case, we denote the integral by∫

J

F (t)dt = ⟨x̃0⟩ .

Lemma 3.1: [25] Let F : J → F/S be continuous
with respect to dsup and of uniformly bounded variation and
G(t) =

∫ t

t0
F (s)ds. Then for t0 ≤ t1 ≤ t2 ≤ t0+ a we have

dsup(G(t1), G(t2)) ≤ (t2 − t1) sup
t∈[t1,t2]

dsup

(
F (t), ⟨0̃⟩

)
.

Assume that f : J × F/S → F/S is continuous and
of uniformly bounded variation. We consider the initial value
problem for the fuzzy differential equation

x′(t) = f(t, x(t)), x(t0) = x0. (1)

Lemma 3.2: [25] A mapping x : J → F/S is a solution
to the initial value problem (1) if and only if it is continuous,
of uniformly bounded variation and satisfies the integral
equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ J.

We shall prove an existence and uniqueness result under an
assumption more general than the Lipschitz-type condition
considered in Section 6 in [25] by the method of successive
approximations.

Theorem 3.1: Assume that
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(i) f : R0 → F/S is continuous and of uniformly
bounded variation, where R0 = J × B(x0, b)(b > 0),
B(x0, b) = {⟨x̃⟩ ∈ F/S : dsup(⟨x̃⟩ , x0) ≤ b} and
dsup(f(t, ⟨x̃⟩), ⟨0̃⟩) ≤ M0 on R0;
(ii) g ∈ C1[J × [0, 2b],R+], 0 ≤ g(t, φ) ≤ M1 on J ×

C0[0, 2b], g(t, 0) = 0, g(t, φ) is nondecreasing with respect
to φ for each t ∈ J and φ(t) ≡ 0 is the unique solution of
the scalar differential equation

dφ

dt
= g(t, φ), φ(t0) = φ0 ≥ 0, (2)

on J ;
(iii) dsup (f (t, ⟨x̃⟩) , f (t, ⟨ỹ⟩)) ≤ g (t, dsup (⟨x̃⟩ , ⟨ỹ⟩))

on R0.
Then the successive approximations defined by

xn+1(t) = x0 +

∫ t

t0

f(s, xn(s))ds, n = 0, 1, 2, · · · ,

exist on [t0, t0 + η], where η = min

{
a,

b

M

}
, M =

max{M0,M1} as continuous and of uniformly bounded
variation functions and converge uniformly to the unique
solution x(t) of (1) on [t0, t0 + η].
Proof. We shall define the successive approximations of the
scalar differential equation (2) as follows

φ0(t) = M(t−t0), · · · , φn+1(t) =

∫ t

t0

g(s, φn(s))ds, · · · ,

for each t ∈ [t0, t0 + η]. Since 0 ≤ g(t, φ) ≤ M1 on J ×
C0[0, 2b], we obtain

|φn(t2)− φn(t1)| ≤
∫ t2

t1

|g(s, φn−1(s))| ds ≤ M1(t2 − t1),

n = 1, 2, · · · . Thus, for any ε > 0, there exists a δ =
ε

M1
>

0 such that if |t1 − t2| < δ, then

|φn(t2)− φn(t1)| ≤ M1 |t1 − t2| = ε, n = 1, 2, · · · .

Hence, φn(t) is continuous with respect to t ∈ [t0, t0 + η],
n = 1, 2, · · · , which implies that the family of functions
{φn(t)}∞n=1 is equicontinuous on [t0, t0+η]. Since [t0, t0+η]
is a closed and bounded interval and by the Arzelà-Ascoli
theorem, we get that the family of functions {φn(t)}∞n=1

has a uniformly convergent subsequence {φnk
(t)}∞k=1. We

see that

φ1(t) =

∫ t

t0

g(s, φ0(s))ds ≤ M1(t−t0) ≤ M(t−t0) = φ0(t).

Suppose that φn(t) ≤ φn−1(t), for each t ∈ [t0, t0 + η] and
some given n. Using the monotonicity of g(t, φ) with respect
to φ, we get

φn+1(t) =

∫ t

t0

g(s, φn(s))ds ≤
∫ t

t0

g(s, φn−1(s))ds = φn(t),

for each t ∈ [t0, t0+η]. Thus, by the mathematical induction,
we get

φ0(t) ≥ φ2(t) ≥ · · · ≥ φn(t) ≥ · · · ,

for each t ∈ [t0, t0 + η]. Hence, the family of functions
{φn(t)}∞n=1 that converges uniformly, that is, there exists
φ(t) such that lim

n→∞
φn(t) = φ(t) uniformly on [t0, t0+η]. It

is obvious that φ(t) satisfies the scalar differential equation

(2). Thus, by condition (2), we have φ(t) ≡ 0, for each
t ∈ [t0, t0 + η].

Since the successive approximations defined by

xn+1(t) = x0 +

∫ t

t0

f(s, xn(s))ds, n = 0, 1, 2, · · · ,

for each t ∈ [t0, t0 + η], we have

dsup (x1(t), x0) = dsup

(∫ t

t0

f(s, x0)ds, ⟨0̃⟩
)

≤
∫ t

t0

dsup(f(s, x0), ⟨0̃⟩)ds ≤ M0(t− t0)

≤ M(t− t0) = φ0(t)

≤ Mη ≤ b.

Suppose that

dsup (xn(t), xn−1(t)) ≤ φn−1(t) and dsup (xn(t), x0) ≤ b

for each t ∈ [t0, t0+η] and some given n. Using the condition
(3) and the monotonicity of g(t, φ) with respect to φ for each
t ∈ [t0, t0 + η], we get

dsup (xn+1(t), xn(t))

= dsup

(∫ t

t0

f(s, xn(s))ds,

∫ t

t0

f(s, xn−1(s))ds

)
≤

∫ t

t0

dsup(f(s, xn(s)), f(s, xn−1(s)))ds

≤
∫ t

t0

g(s, dsup(xn(s), xn−1(s)))ds

≤
∫ t

t0

g(s, φn−1(s))ds = φn(t)

and

dsup(xn+1(t), x0)

= dsup

(
x0 +

∫ t

t0

f(s, xn(s))ds, x0

)
= dsup

(∫ t

t0

f(s, xn(s))ds, ⟨0̃⟩
)

≤
∫ t

t0

dsup(f(s, xn(s)), ⟨0̃⟩)ds

≤ M0(t− t0) ≤ M0η ≤ b,

for each t ∈ [t0, t0+η]. Thus, by the mathematical induction,
we get

dsup (xn+1(t), xn(t)) ≤ φn(t)

and
dsup(xn+1(t), x0) ≤ b, n = 0, 1, 2, · · · ,

for each t ∈ [t0, t0 + η], Hence, we obtain {xn(t)}∞n=1 ⊆
B(x0, b) for each t ∈ [t0, t0 + η].

For any positive integer n, let vn(t) =
dsup(xn+1(t), xn(t)) for each t ∈ [t0, t0 + η]. Then
vn(t0) = dsup(xn+1(t0), xn(t0)) ≤ φn(t0) = 0, and for any
fixed t ∈ [t0, t0 + η] and h ̸= 0 with t+ h ∈ [t0, t0 + η], we
have

vn(t+ h)− vn(t)

= dsup(xn+1(t+ h), xn(t+ h))− dsup(xn+1(t), xn(t)).
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Since

dsup(xn+1(t+ h), xn(t+ h))

≤ dsup(xn+1(t+ h), xn+1(t) + hf(t, xn(t)))

+ dsup(xn+1(t) + hf(t, xn(t)), xn(t+ h)),

and

dsup(xn+1(t) + hf(t, xn(t)), xn(t+ h))

≤ dsup(xn(t+ h), xn(t) + hf(t, xn−1(t)))

+ dsup(xn+1(t) + hf(t, xn(t)), xn(t) + hf(t, xn−1(t))

we get

vn(t+ h)− vn(t)

h

≤ 1

h
dsup(xn+1(t+ h), xn+1(t) + hf(t, xn(t)))

+
1

h
dsup(xn(t+ h), xn(t) + hf(t, xn(t)))

+
|h|
h
dsup(f(t, xn(t)), f(t, xn−1(t))),

for each t ∈ [t0, t0 + η]. Thus, by the condition (3) and
Definition 3.1, we have

d+vn(t) = lim
h→0+

1

h
(vn(t+ h)− vn(t))

≤ g(t, dsup(xn(t), xn−1(t))).

By the monotonicity of g(t, φ) with respect to φ for each
t ∈ [t0, t0 + η], we get

d+vn(t) ≤ g(t, dsup(xn(t), xn−1(t))) ≤ g(t, φn−1(t)).

Let n ≤ m and wn(t) = dsup(xn(t), xm(t)) for each
t ∈ [t0, t0 + η]. Then wn(t0) = dsup(xn(t0), xm(t0)) ≤∑m−1

i=n φi(t0) = 0 = φn(t0) and by the similar proof, we
obtain

d+wn(t) ≤ dsup(f(t, xn−1(t)), f(t, xm−1(t))), t ∈ [t0, t0+η].

By the monotonicity of the sequence {φn(t)}∞n=1 and g(t, φ)
with respect to φ for each t ∈ [t0, t0 + η], we have

dsup(f(t, xn−1(t)), f(t, xm−1(t)))

≤ g(t, dsup(xn−1(t), xn(t))) + g(t, dsup(xn(t), xm(t)))

+ g(t, dsup(xm(t), xm−1(t)))

≤ 2g(t, φn−1(t)) + g(t, dsup(xn(t), xm(t))).

Then we obtain

d+wn(t) ≤ 2g(t, φn−1(t)) + g(t, dsup(xn(t), xm(t))).

By Theorem 1.4.1 in [13], we have

wn(t) ≤ rn(t), t ∈ [t0, t0 + η],

where rn(t) is the maximal solution of

drn(t)

dt
= g(t, rn(t)) + 2g(t, φn−1(t)), rn(t0) = 0.

Since as n → ∞, 2g(t, φn−1(t)) → 0 uniformly on [t0, t0+
η] and by Lemma 1.3.1 in [13], we have rn → 0 uniformly
on [t0, t0 + η]. By the definition of wn(t), there exists x(t)
such that xn(t) converges uniformly to x(t), that is,

lim
n→+∞

sup
t∈[t0,t0+η]

dsup(xn(t), x(t)) = 0.

We know that

dsup(x(t), x0) ≤ dsup(xn(t), x(t)) + b.

If as n → ∞, then dsup(x(t), x0) ≤ b, which implies
that x(t) ∈ B(x0, b) for each t ∈ [t0, t0 + η]. Since
dsup(f(t, xn(t)), ⟨0̃⟩) ≤ M0 and

xn+1(t) = x0 +

∫ t

t0

f(s, xn(s))ds,

on [t0, t0 + η], we get dsup(f(t, x(t)), ⟨0̃⟩) ≤ M0 and

x(t) = x0 +

∫ t

t0

f(s, x(s))ds,

on [t0, t0 + η]. Hence, for any α ∈ [0, 1], we have

Mx(t)(α) = Mx0(α) +

∫ t

t0

Mf(s,x(s))(α)ds,

for each t ∈ [t0, t0 + η]. We get that

V 1
0

(
Mx(t)

)
≤ V 1

0 (Mx0) +

∫ t

t0

V 1
0

(
Mf(s,x(s))

)
ds,

for each t ∈ [t0, t0 + η]. Since f is of uniformly bounded
variation, there exists a constant K1 > 0 such that

V 1
0

(
Mf(t,⟨x̃⟩)

)
≤ K1

for each t ∈ J and ⟨x̃⟩ ∈ B(x0, b). Thus we have that there
exists K2 such that V 1

0 (Mx0) ≤ K2. Let K = ηK1 +K2.
Then

V 1
0

(
Mx(t)

)
≤ (t− t0)K1 +K2 ≤ ηK1 +K2 = K,

for each t ∈ [t0, t0 + η]. Thus, x(t) is of uniformly bounded
variation. For any t1, t2 ∈ [t0, t0 + η], t1 ≤ t2, by Lemma
3.1, we have

dsup(x(t1), x(t2)) ≤ (t2 − t1) sup
t∈[t1,t2]

sup
α∈[0,1]

∣∣Mf(t,x(t))(α)
∣∣

= (t2 − t1) sup
t∈[t1,t2]

dsup(f(t, x(t)), ⟨0̃⟩)

≤ M0(t2 − t1).

Thus, x(t) is continuous with respect to t ∈ [t0, t0 + η].
By Lemma 3.2, we know that x(t) is a solution of (1) on
[t0, t0 + η].

Next we shall prove uniqueness, let y(t) be another
solution of (1) and m(t) = dsup(x(t), y(t)). Then m(t0) =
dsup(x0, x0) = 0 ≤ φ0 and

d+m(t) ≤ g(t, dsup(x(t), y(t))) = g(t,m(t)),

for each t ∈ [t0, t0 + η]. By Theorem 4.2 in [25], we get

m(t) ≤ r(t, t0, φ0), t ∈ [t0, t0 + η],

where r(t, t0, φ0) is the maximal solution of (2). By the
assumptions r(t, t0, φ0) ≡ 0, we obtain y(t) = x(t) for each
t ∈ [t0, t0 + η]. 2
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IV. APPROXIMATE SOLUTIONS

In this section, we shall obtain an error estimate between
the solutions and approximate solutions of the initial value
problem (1). Denote by CBV (J,F/S ) the set of all
continuous and of uniformly bounded variation mappings
from J to F/S .

Definition 4.1: A function y(t, t0, y0, ε), ε > 0, is said to
be an ε-approximate solution of (1), if y ∈ CBV (J,F/S ),
y(t0, t0, y0, ε) = y0 and

dsup(y
′(t), f(t, y(t))) ≤ ε, t ∈ J.

In case ε = 0, y(t) is a solution of (1).
Theorem 4.1: Assume that f : J × F/S → F/S is

continuous and of uniformly bounded variation and for t ∈ J ,
⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S ,

dsup (f (t, ⟨x̃⟩) , f (t, ⟨ỹ⟩)) ≤ g (t, dsup (⟨x̃⟩ , ⟨ỹ⟩)) ,

where g ∈ C[R2
+,R+]. Suppose that r(t) = r(t, t0, φ0, ε) is

the maximal solution of

dφ(t)

dt
= g(t, φ(t)) + ε, φ(t0) = φ0 ≥ 0,

existing for t ∈ J . Let x(t) = x(t, t0, x0) be any solution of
(1) and y(t) = y(t, t0, y0, ε) be an ε-approximate solution of
(1) existing for t ∈ J . If dsup(x0, y0) ≤ φ0, then

dsup(x(t), y(t)) ≤ r(t, t0, φ0, ε), t ∈ J.

Proof. Let m(t) = dsup(x(t), y(t)) for each t ∈ J . Then
m(t0) = dsup(x0, y0) ≤ φ0 and

d+m(t)

= lim
h→0+

1

h
(m(t+ h)−m(t))

≤ lim
h→0+

dsup

(
x(t+ h)− x(t)

h
, f(t, x(t))

)
+ lim

h→0+
dsup

(
f(t, y(t)),

y(t+ h)− y(t)

h

)
+ dsup(f(t, x(t)), f(t, y(t))),

for each t ∈ J . In fact, we can show this assertion by a
similar method of Theorem 3.1. By Definition 4.1, we have

d+m(t) ≤ g(t, dsup(x(t), y(t))) + ε = g(t,m(t)) + ε,

for each t ∈ J . Hence, by Theorem 4.2 in [25], we obtain
dsup(x(t), y(t)) ≤ r(t, t0, φ0, ε), for each t ∈ J . 2

Corollary 4.1: Assume that f : J × F/S → F/S is
continuous and of uniformly bounded variation and for t ∈ J ,
⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S ,

dsup (f (t, ⟨x̃⟩) , f (t, ⟨ỹ⟩)) ≤ g (t, dsup (⟨x̃⟩ , ⟨ỹ⟩)) ,

where the function g(t, φ) = Lφ, L > 0, is admissible
in Theorem 4.1 and φ(t0) = dsup(x0, y0). Let x(t) =
x(t, t0, x0) be any solution of (1) and y(t) = y(t, t0, y0, ε)
is an ε-approximate solution of (1) existing for t ∈ J . Then

dsup(x(t), y(t)) ≤ dsup(x0, y0)e
L(t−t0) +

ε

L
(eL(t−t0) − 1).

Proof. We see that the scalar differential equation

dφ(t)

dt
= g(t, φ(t))+ ε = Lφ(t)+ ε, φ(t0) = dsup(x0, y0)

has a unique solution

φ(t) = dsup(x0, y0)e
L(t−t0) +

ε

L
(eL(t−t0) − 1),

on J . By Theorem 4.1, we obtain

dsup(x(t), y(t)) ≤ dsup(x0, y0)e
L(t−t0) +

ε

L
(eL(t−t0) − 1),

for each t ∈ J . 2
Example 4.1: Define two fuzzy mapping F,G : J →

F/S by the level sets[
F̂ (t)

]α
=

[
0, 3e

a−(1+α)(t−t0)1+α

1+α

]
and [

Ĝ(t)
]α

=
[
−2a−(1+α)(t− t0)

1+α
, 0
]
,

for each α ∈ [0, 1], where F̂ (t) and Ĝ(t) are the Mareš core
of F (t) and G(t), respectively, for each t ∈ J . Thus, we
have

MF (t)(α) =
3

2
e

a−(1+α)(t−t0)1+α

1+α

and
MG(t)(α) = −a−(1+α)(t− t0)

1+α,

for each α ∈ [0, 1] and t ∈ J . It is obvious that MF (t)(α) and
MG(t)(α) are continuous from the right at 0 and continuous
from the left on [0, 1] with respect to α. Since MF (t)(α) and
MG(t)(α) is decreasing with respect to α, we get

V 1
0 (MF (t)) ≤

3

2
ea

−1(t−t0) ≤ 3

2
e

and

V 1
0 (MG(t)) = −

(
t− t0
a

− 1

2

)2

+
1

4
≤ 1

4
,

for each t ∈ J . Thus, we get that F (t) and G(t) are of
uniformly bounded variation. Since MF (t)(α) and MG(t)(α)
are uniformly continuous with respect to t ∈ J , we get that
F (t) and G(t) are continuous with respect to dsup. Define
f : J × F/S → F/S by

f (t, ⟨x̃⟩) = F (t) ⟨x̃⟩+G(t).

It is obvious that f is continuous with respect to dsup and
of uniformly bounded variation. We get

dsup (f (t, ⟨x̃⟩) , f (t, ⟨ỹ⟩))
= dsup (F (t) ⟨x̃⟩+G(t), F (t) ⟨ỹ⟩+G(t))

= sup
α∈[0,1]

∣∣MF (t)(α)M⟨x̃⟩(α)−MF (t)(α)M⟨ỹ⟩(α)
∣∣

≤ sup
α∈[0,1]

∣∣MF (t)(α)
∣∣ dsup (⟨x̃⟩ , ⟨ỹ⟩)

≤ 3

2
edsup (⟨x̃⟩ , ⟨ỹ⟩)

for each t ∈ J and ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S . Define the scalar
differential equation

dφ(t)

dt
= g(t, φ(t)) + ε, φ(t0) = dsup(x0, y0),

where ε > 0 and the function g(t, φ) = 3
2eφ for each t ∈

J . It is obvious that g ∈ C1[J × R+,R+] and g(t, φ) is
nondecreasing with respect to φ for each t ∈ J . Then

g (t, dsup (⟨x̃⟩ , ⟨ỹ⟩)) =
3

2
edsup (⟨x̃⟩ , ⟨ỹ⟩)
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for each t ∈ J and ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S . Hence, we obtain

dsup (f (t, ⟨x̃⟩) , f (t, ⟨ỹ⟩)) ≤ g (t, dsup (⟨x̃⟩ , ⟨ỹ⟩))

for each t ∈ J and ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S . By Corollary 4.1, we
conclude that

dsup(x(t), y(t)) ≤ dsup(x0, y0)e
3
2 e(t−t0)+

2ε

3e
(e

3
2 e(t−t0)−1),

where x(t) = x(t, t0, x0) is a solution and y(t) =
y(t, t0, y0, ε) is an ε-approximate solution of the fuzzy
differential equation

x′(t) = f(t, x(t))

through (t0, x0) and (t0, y0) on J , respectively.

V. CONCLUSIONS

In this paper, we have researched the convergence of
successive approximations for fuzzy differential equations
in the quotient space of fuzzy numbers. We have solved
the convergence of successive approximations of the initial
value problem for the fuzzy differential equations, provided
that f is a continuous with respect to dsup, of uniformly
bounded variation on T and bounded function, under the
general uniqueness assumption of Perron type utilizing the
comparison functions. And then we have discuss the approx-
imate solutions and the error estimates between the solutions
and approximate solutions. We also hope that our results in
this paper may lead to significant, new and innovative results
in other related fields [11], [14], [15], [18], [24], [31].
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