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Abstract—In this paper, we present some new Gronwall-
Bellmann type discrete fractional sum inequalities, and based on
them present some Volterra-Fredholm type discrete inequalities.
These inequalities are of new forms compared with the existing
results in the literature, and can be used in the research of
boundedness and continuous dependence on the initial value for
solutions of fractional difference equations. As for applications,
we apply the presented results to research the initial value
problem of a certain fractional difference equation.
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I. INTRODUCTION

Fractional differential equations are widely used as models
to express many important physical phenomena such as fluid
mechanics, plasma physics, optical fibers, biology, solid state
physics, chemical kinematics, chemical physics and so on.
Recently, there have been much attention paid on the research
of properties of fractional differential equations. For exam-
ple, in [1,2], the authors proposed certain methods for finding
analytical solutions of fractional differential equations. In
[3-5], qualitative and quantitative properties of solutions of
fractional differential equations are investigated.

In the research of qualitative and quantitative properties
of solutions of differential equations, difference equation-
s and dynamic equations on time scales, the Gronwall-
Bellman inequality [6,7] and its various generalizations play
important roles as explicit bounds for unknown functions
can be provided. In the last few decades, many Gronwall-
Bellman type differential and integral inequalities [8-18],
retarded inequalities [19-24], difference inequalities [25-
32], and dynamic inequalities on time scales [33-40] have
been established, which have proved to be very useful in
the research of boundedness, uniqueness, and continuous
dependence on initial value and parameter for solutions of
differential equations, difference equations and dynamic e-
quations on time scales. Among these inequalities, we notice
that most of the inequalities established so far can only be
used in the qualitative and quantitative analysis for solutions
of differential and difference equations of integer order, while
few results are concerned with fractional differential equa-
tions [41-44]. Furthermore, there are less inequalities suitable
for the qualitative and quantitative analysis for solutions of
fractional difference equations.
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Compared to the theory of fractional differential calculus,
there has been relatively less development on the theory
of fractional difference calculus so far in the literature.
In general, there are two types of fractional difference
operators: the ∆ difference and the ∇ difference. For the ∆
difference, we have the following two definitions:

Definition 1. Let υ > 0, σ(s) = s + 1, and the
function f is defined for s = a mod 1. Then the υ−th
fractional sum of f is defined by

∆−υf(t) = 1
Γ(α)

t−υ∑
s=a

(t− σ(s))(α−1)f(s),

where t(υ) =
Γ(t+ 1)

Γ(t+ 1− υ)
, ∆−υf is defined for s = a+ υ

mod 1, and ∆−υ maps functions defined on Na to functions
defined on Na+υ.

Definition 2. Let µ > 0, and m − 1 < µ < m,
where m is a positive integer. Then the µ−th fractional
difference of f is defined by

∆µf(t) = ∆m−(m−µ)f(t) = ∆m∆−(m−µ)f(t).
For the ∆ difference and fractional sum, we also have

the following two theorems.

Theorem A [45, Theorem 1.1] . Let f be a real-
valued function defined on Na, and µ, υ > 0. Then the
following equalities hold:

∆−υ[∆−µf(t)] = ∆−(υ+µ)f(t) = ∆−µ[∆−υf(t)].

Theorem B [45, Theorem 2.1]. Let f be a real-valued
function defined on Na, and υ > 0. Then the following
equalities hold:

∆−υ∆f(t) = ∆∆−υf(t)− (t− a)(υ−1)

Γ(υ)
f(a).

For other important properties and conclusions on the
discrete fractional calculus, we refer the reader to [45-47].

Motivated by the above analysis, in this paper, we establish
some new Gronwall-Bellmann type discrete fractional sum
inequalities, and based on them present some Volterra-
Fredholm type discrete inequalities. We also apply the p-
resented inequalities to research the initial value problem of
a certain fractional difference equation.

The next of this paper is organized as follows. In Sec-
tion 2, we establish some new Gronwall-Bellmann type
discrete fractional sum inequalities as well as some Volterra-
Fredholm type discrete inequalities, and deduce explicit
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bounds for the unknown functions lying in these inequalities.
In Section 3, we apply the inequalities established to research
boundedness and continuous dependence on the initial value
for the solution to a certain initial value problem of a
fractional difference equation. In Section 4, some conclusions
are presented.

For the sake of convenience, we denote Nt = {t, t+1, t+

2, ......}, and
m1∑

s=m0

f(s) = 0 provided m0 > m1.

II. MAIN RESULTS

Theorem 1. Assume 0 < α ≤ 1, u(n), a(n), b(n), c(n)
are nonnegative function defined on Nα−1. If the following
inequality satisfies:

u(n) ≤ a(n)+c(n)∆−α[b(n+α−1)u(n+α−1)], n ∈ Nα,
(1)

then we have the following estimate for u(n):

u(n) ≤ a(n) + c(n){θ(n− α, n)a(n− 1)

+
n−α−1∑
s=0

|θ(s, n)− θ(s, n− 1)|a(s+ α− 1)

+
n−1∑
p=α

{[θ(p− α, p)a(p− 1)

+
p−α−1∑
s=0

|θ(s, p)− θ(s, p− 1)|a(s+ α− 1)]×
n∏

ξ=p+1

[1 + θ(ξ − α, ξ)c(ξ − 1)

+

ξ−α−1∑
s=0

|θ(s, ξ)−θ(s, ξ−1)|c(ξ+α−1)]}}, n ∈ Nα. (2)

where θ(s, n) = 1
Γ(α)

(n− s− 1)(α−1)b(s+ α− 1).

Proof . By the definition of the α−th fractional sum
and (1) one can obtain that

u(n) ≤ a(n) +
c(n)
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)×

b(s+ α− 1)u(s+ α− 1)), n ∈ Nα.

Denote θ(s, n) = 1
Γ(α)

(n − s − 1)(α−1)b(s + α − 1),

and v(n) =
n−α∑
s=0

θ(s, n)u(s+ α− 1). Then we have

u(n) ≤ a(n)+c(n)v(n), n ∈ Nα. (3)

Furthermore, for n ∈ Nα,

v(n)− v(n− 1) = θ(n− α, n)u(n− 1)

+
n−α−1∑
s=0

[θ(s, n)− θ(s, n− 1)]u(s+ α− 1)

≤ θ(n− α, n)[a(n− 1) + c(n− 1)v(n− 1)]

+
n−α−1∑
s=0

|θ(s, n)− θ(s, n− 1)|a(s+ α− 1)

+
n−α−1∑
s=0

|θ(s, n)− θ(s, n− 1)|c(s+ α− 1)v(n− 1),

which is rewritten by

v(n)− {1 + θ(n− α, n)c(n− 1)

+
n−α−1∑
s=0

[|θ(s, n)− θ(s, n− 1)|c(s+ α− 1)]}v(n− 1)

≤ θ(n−α, n)a(n−1)+

n−α−1∑
s=0

|θ(s, n)−θ(s, n−1)|a(s+α−1).

(4)
For n > α, substituting n with p in (4), multiplying on

both sides by
n∏

ξ=p+1

{1+θ(ξ−α, ξ)c(ξ−1)+
ξ−α−1∑
s=0

[|θ(s, ξ)−

θ(s, ξ − 1)|c(ξ + α − 1)]}, a summation with respect to p
from α to n− 1 together with (4), and using v(α− 1) = 0,
yields that

v(n) ≤ θ(n− α, n)a(n− 1)

+
n−α−1∑
s=0

|θ(s, n)− θ(s, n− 1)|a(s+ α− 1)

+
n−1∑
p=α

{[θ(p− α, p)a(p− 1)

+
p−α−1∑
s=0

|θ(s, p)− θ(s, p− 1)|a(s+ α− 1)]×
n∏

ξ=p+1

[1+θ(ξ−α, ξ)c(ξ−1)+

ξ−α−1∑
s=0

|θ(s, ξ)−θ(s, ξ−1)|c(ξ+α−1)]}.

(5)
Note that (5) also holds for n = α. So (5) holds in fact

for n ∈ Nα. Combining (3) and (5) we can deduce the
desired result.

Theorem 2. Assume 0 < α ≤ 1,
u(n), a(n), b1(n), b2(n), c(n) are nonnegative function
defined on Nα−1. If for n ∈ Nα, the following inequality
satisfies:

u(n) ≤ a(n)

+
c(n)
Γ(α)

n−α∑
s=0

u(s+ α− 1))[(n− s− 1)(α−1)b1(s+ α− 1)

+
s∑

ξ=0

b2(ξ + α− 1)(n− ξ − 1)(α−1)], (6)

then for n ∈ Nα, we have the following estimate for u(n):

u(n) ≤ a(n) + c(n){[θ̃(n− α, n)

+ 1
Γ(α)

n−α∑
ξ=0

b2(ξ + α− 1)(n− ξ − 1)(α−1)]a(n− 1)

+
n−α−1∑
s=0

[|θ̃(s, n)− θ̃(s, n−1)|+ 1
Γ(α)

s∑
ξ=0

b2(ξ+α−1)×

|(n− ξ − 1)(α−1) − (n− ξ − 2)(α−1)|]a(s+ α− 1)

+
n−1∑
p=α

{{[θ̃(p− α, p) + 1
Γ(α)

p−α∑
ξ=0

b2(ξ + α− 1)×
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(p− ξ − 1)(α−1)]a(p− 1) +
p−α−1∑
s=0

[|θ̃(s, p)− θ̃(s, p− 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)|(p− ξ − 1)(α−1)

−(p− ξ − 2)(α−1)|]a(s+ α− 1)}×

n∏
ζ=p+1

{1 + [θ̃(ζ − α, ζ) + 1
Γ(α)

ζ−α∑
ξ=0

b2(ξ + α− 1)×

(ζ − ξ − 1)(α−1)]c(ζ − 1)

+
ζ−α−1∑
s=0

[|θ̃(s, ζ)− θ̃(s, ζ − 1)|+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)

|(ζ − ξ− 1)(α−1) − (ζ − ξ− 2)(α−1)|]c(s+α− 1)}}}. (7)

where θ̃(s, n) = 1
Γ(α)

(n− s− 1)(α−1)b1(s+ α− 1).

Proof . Denote θ̃(s, n) = 1
Γ(α)

(n−s−1)(α−1)b1(s+α−1),

and

v(n) =
n−α∑
s=0

θ̃(s, n)u(s+ α− 1)

+ 1
Γ(α)

n−α∑
s=0

u(s+α−1))
s∑

ξ=0

b2(ξ+α−1)(n−ξ−1)(α−1).

Then we have

u(n) ≤ a(n)+c(n)v(n), n ∈ Nα. (8)

Furthermore, for n ∈ Nα,

v(n)− v(n− 1) = [θ̃(n− α, n)

+ 1
Γ(α)

n−α∑
ξ=0

b2(ξ + α− 1)(n− ξ − 1)(α−1)]u(n− 1)

+
n−α−1∑
s=0

{θ̃(s, n)− θ̃(s, n− 1)

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)[(n− ξ − 1)(α−1)

−(n− ξ − 2)(α−1)]}u(s+ α− 1)

≤ [θ̃(n− α, n) + 1
Γ(α)

n−α∑
ξ=0

b2(ξ + α− 1)×

(n− ξ − 1)(α−1)][a(n− 1) + c(n− 1)v(n− 1)]

+
n−α−1∑
s=0

[|θ̃(s, n)− θ̃(s, n− 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)|(n− ξ − 1)(α−1)

−(n− ξ − 2)(α−1)|]a(s+ α− 1)

+
n−α−1∑
s=0

[|θ̃(s, n)− θ̃(s, n− 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)|(n− ξ − 1)(α−1)

−(n− ξ − 2)(α−1)|](̧s+ α− 1)v(n− 1),
which is rewritten by

v(n)− {1 + [θ̃(n− α, n)

+ 1
Γ(α)

n−α∑
ξ=0

b2(ξ + α− 1)(n− ξ − 1)(α−1)]c(n− 1)

+
n−α−1∑
s=0

[|θ̃(s, n)− θ̃(s, n− 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)|(n− ξ − 1)(α−1)

−(n− ξ − 2)(α−1)|]c(s+ α− 1)}v(n− 1)

≤ [θ̃(n−α, n)+ 1
Γ(α)

n−α∑
ξ=0

b2(ξ+α−1)(n− ξ−1)(α−1)]

a(n− 1) +
n−α−1∑
s=0

[|θ̃(s, n)− θ̃(s, n− 1)|+ 1
Γ(α)

s∑
ξ=0

b2(ξ+α−1)|(n−ξ−1)(α−1)−(n−ξ−2)(α−1)|]a(s+α−1).
(9)

For n > α, substituting n with p in (9), multiplying on

both sides by
n∏

ζ=p+1

{1 + [θ̃(ζ − α, ζ) + 1
Γ(α)

ζ−α∑
ξ=0

b2(ξ +

α− 1)(ζ − ξ − 1)(α−1)]c(ζ − 1) +
ζ−α−1∑
s=0

[|θ̃(s, ζ)− θ̃(s, ζ −

1)| + 1
Γ(α)

s∑
ξ=0

b2(ξ + α − 1)|(ζ − ξ − 1)(α−1) − (ζ − ξ −

2)(α−1)|]c(s+α−1)}, a summation with respect to p from α
to n−1 together with (9), and using v(α−1) = 0, yields that

v(n) ≤ [θ̃(n− α, n)

+ 1
Γ(α)

n−α∑
ξ=0

b2(ξ + α− 1)(n− ξ − 1)(α−1)]a(n− 1)

+
n−α−1∑
s=0

[|θ̃(s, n)− θ̃(s, n− 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)|(n− ξ − 1)(α−1)

−(n− ξ − 2)(α−1)|]a(s+ α− 1) +
n−1∑
p=α

{{[θ̃(p− α, p)

+ 1
Γ(α)

p−α∑
ξ=0

b2(ξ + α− 1)(p− ξ − 1)(α−1)]a(p− 1)

+
p−α−1∑
s=0

[|θ̃(s, p)− θ̃(s, p− 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)|(p− ξ − 1)(α−1)

−(p− ξ − 2)(α−1)|]a(s+ α− 1)}
n∏

ζ=p+1

{1 + [θ̃(ζ − α, ζ)

+ 1
Γ(α)

ζ−α∑
ξ=0

b2(ξ + α− 1)(ζ − ξ − 1)(α−1)]c(ζ − 1)

+
ζ−α−1∑
s=0

[|θ̃(s, ζ)− θ̃(s, ζ − 1)|+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)

|(ζ − ξ− 1)(α−1) − (ζ − ξ− 2)(α−1)|]c(s+α− 1)}}. (10)

Note that (10) also holds for n = α. So (10) holds in fact
for n ∈ Nα. Combining (8) and (10) we can get the desired
result.

In the following two theorems we establish some Volterra-
Fredholm type discrete inequalities based on the results of
Theorems 1-2.

Theorem 3. Assume 0 < α ≤ 1, u(n), a(n), b(n)
are nonnegative functions defined on Nα−1, C > 0 is
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a constant, and T ∈ Nα is a constant. If the following
inequality satisfies:

u(n) ≤ C + 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)b(s+ α− 1)

u(s+ α− 1)) + 1
Γ(α)

T−α∑
s=0

(T − s− 1)(α−1)×

b(s+ α− 1)u(s+ α− 1)), n ∈ [α, T ]
∩

Nα, (11)

then we have

u(n) ≤ C

2− µ(α, T )
µ(α, n), n ∈ [α, T ]

∩
Nα, (12)

provided that µ(α, T ) < 2, where θ(s, n) is defined as in
Theorem 1, and

µ(α, n) = 1+ θ(n−α, n) +
n−α−1∑
s=0

|θ(s, n)− θ(s, n− 1)|

+
n−1∑
p=α

{[θ(p− α, p) +
p−α−1∑
s=0

|θ(s, p)− θ(s, p− 1)|]×

n∏
ξ=p+1

[1+θ(ξ−α, ξ)+

ξ−α−1∑
s=0

|θ(s, ξ)−θ(s, ξ−1)|]}. (13)

Proof . Denote the right-hand side of (11) by v(n).
Then we have

u(n) ≤ v(n), n ∈ [α, T ]
∩

Nα. (14)

Using v(α − 1) = C + 1
Γ(α)

T−α∑
s=0

(T − s − 1)(α−1)b(s +

α− 1)u(s+ α− 1)), one can obtain that

v(n) = v(α− 1) + 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)×

b(s+ α− 1)u(s+ α− 1))

≤ v(α− 1) + 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)b(s+ α− 1)×

v(s+ α− 1), n ∈ [α, T ]
∩

Nα. (15)

Applying Theorem 1 to (15) yields that

v(n) ≤ v(α− 1){1 + θ(n− α, n)

+
n−α−1∑
s=0

|θ(s, n)− θ(s, n− 1)|

+
n−1∑
p=α

{[θ(p− α, p) +
p−α−1∑
s=0

|θ(s, p)− θ(s, p− 1)|]×

n∏
ξ=p+1

[1 + θ(ξ − α, ξ) +
ξ−α−1∑
s=0

|θ(s, ξ)− θ(s, ξ − 1)|]}}

= v(α− 1)µ(α, n), n ∈ [α, T ]
∩

Nα, (16)

where θ(s, n) is defined as in Theorem 1, and µ(α, n) is
defined in (13).

Setting n = T in (16) one can obtain that

v(T ) ≤ v(α− 1)µ(α, T ).

So

2v(α− 1)− C = v(T ) ≤ v(α− 1)µ(α, T ),

which is followed by

v(α−1) ≤ C

2− µ(α, T )
. (17)

Combining (14), (16) and (17) we can deduce the desired
inequality (12).

Theorem 4. Assume 0 < α ≤ 1, u(n), a(n), b1(n),
b2(n), c(n) are nonnegative functions defined on Nα−1,
C > 0 is a constant, and T ∈ Nα is a constant. If the
following inequality satisfies:

u(n) ≤ C + 1
Γ(α)

n−α∑
s=0

u(s+ α− 1))[(n− s− 1)(α−1)×

b1(s+ α− 1) +
s∑

ξ=0

b2(ξ + α− 1)(n− ξ − 1)(α−1)]

+ 1
Γ(α)

T−α∑
s=0

u(s+α− 1))[(T − s− 1)(α−1)b1(s+α− 1)

+
s∑

ξ=0

b2(ξ+α−1)(T−ξ−1)(α−1)], (18)

then we have

u(n) ≤ C

2− µ̃(α, T )
µ̃(α, n), n ∈ [α, T ]

∩
Nα, (19)

provided that µ̃(α, T ) < 2, where θ̃(s, n) is defined as in
Theorem 2, and

µ̃(α, n) = 1 + θ̃(n− α, n)z(n− 1)

+
n−α−1∑
s=0

|θ̃(s, n)− θ̃(s, n− 1)|

+
n−1∑
p=α

{[θ̃(p− α, p) +
p−α−1∑
s=0

|θ̃(s, p)− θ̃(s, p− 1)|]×

n∏
ξ=p+1

[1+ θ̃(ξ−α, ξ)+

ξ−α−1∑
s=0

|θ̃(s, ξ)− θ̃(s, ξ−1)|]}. (20)

Proof . Denote the right-hand side of (18) by v(n).
Then we have

u(n) ≤ v(n), n ∈ [α, T ]
∩

Nα. (21)

Using v(α− 1) = C + 1
Γ(α)

T−α∑
s=0

u(s+α− 1))[(T − s−

1)(α−1)b1(s+ α− 1) +
s∑

ξ=0

b2(ξ + α− 1)(T − ξ − 1)(α−1)],

one can obtain that

v(n) = v(α−1)+ 1
Γ(α)

n−α∑
s=0

u(s+α−1))[(n−s−1)(α−1)

b1(s+ α− 1) +
s∑

ξ=0

b2(ξ + α− 1)(n− ξ − 1)(α−1)]
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≤ v(α− 1) + 1
Γ(α)

n−α∑
s=0

v(s+ α− 1)[(n− s− 1)(α−1)×

b1(s+α−1)+

s∑
ξ=0

b2(ξ+α−1)(n−ξ−1)(α−1)], n ∈ [α, T ]
∩

Nα.

(22)
Applying Theorem 2 to (22) yields that

v(n) ≤ v(α− 1){1 + [θ̃(n− α, n)

+ 1
Γ(α)

n−α∑
ξ=0

b2(ξ + α− 1)(n− ξ − 1)(α−1)]

+
n−α−1∑
s=0

[|θ̃(s, n)− θ̃(s, n− 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ+α−1)|(n−ξ−1)(α−1)−(n−ξ−2)(α−1)|]

+
n−1∑
p=α

{{[θ̃(p− α, p) + 1
Γ(α)

p−α∑
ξ=0

b2(ξ + α− 1)

(p− ξ − 1)(α−1)] +
p−α−1∑
s=0

[|θ̃(s, p)− θ̃(s, p− 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)|(p− ξ − 1)(α−1)

−(p− ξ − 2)(α−1)|]} ×
n∏

ζ=p+1

{1 + [θ̃(ζ − α, ζ)

+ 1
Γ(α)

ζ−α∑
ξ=0

b2(ξ + α− 1)(ζ − ξ − 1)(α−1)]

+
ζ−α−1∑
s=0

[|θ̃(s, ζ)− θ̃(s, ζ − 1)|

+ 1
Γ(α)

s∑
ξ=0

b2(ξ + α− 1)|(ζ − ξ − 1)(α−1)

−(ζ − ξ − 2)(α−1)|]}}}

= v(α− 1)µ̃(α, n), n ∈ [α, T ]
∩

Nα, (23)

where θ̃(s, n) is defined as in Theorem 2, and µ̃(α, n) is
defined in (20).

Setting n = T in (23) one can obtain that

v(T ) ≤ v(α− 1)µ̃(α, T ).

So

2v(α− 1)− C = v(T ) ≤ v(α− 1)µ̃(α, T ),

which is followed by

v(α−1) ≤ C

2− µ̃(α, T )
. (24)

Combining (21), (23) and (24) we can deduce the desired
inequality (19).

Remark. We note that the inequalities as well as the
bounds established in Theorems 1-4 are new results in the
literature.

III. APPLICATIONS

In this section, we apply the inequalities established above
to research boundedness and continuous dependence on

the initial value for the solution to a fractional difference
equation.

Consider the IVP of the following fractional difference
equation:{

∆αu(k) = f(k + α− 1, u(k + α− 1)), k = 0, 1, 2, ...,
∆α−1u(k)|k=0 = C,

(25)
where 0 < α < 1, u(n) is an unknown function defined

on Nα−1, f : Nα−1 ×R → R.

Theorem 5. For the IVP (25), if |f(k + α− 1, u(k + α−
1))| ≤ b(k+α− 1)|u(k+α− 1)|, where b is a nonnegative
function defined on Nα−1, then we have the following
estimate for u(n):

|u(n)| ≤ |C|
Γ(α)

{n(α−1) + θ(n− α, n)(n− 1)(α−1)

+
n−α−1∑
s=0

|θ(s, n)− θ(s, n− 1)|(s+ α− 1)(α−1)

+
n−1∑
p=α

{[θ(p− α, p)(p− 1)(α−1)

+
p−α−1∑
s=0

|θ(s, p)− θ(s, p− 1)|(s+ α− 1)(α−1)]×

n∏
ξ=p+1

[1+ θ(ξ−α, ξ)+

ξ−α−1∑
s=0

|θ(s, ξ)− θ(s, ξ−1)|]}}, n ∈ Nα.

(26)

where θ(s, n) = 1
Γ(α)

(n− s− 1)(α−1)b(s+ α− 1).

Proof . By [45, Eq. (4)], the equivalent discrete fractional
sum equation of the IVP (25) can be denoted as follows:

u(n) = n(α−1)

Γ(α)
C

+ 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)f(s+ α− 1, u(s+ α− 1)).

So

|u(n)| ≤ n(α−1)

Γ(α)
|C|

+ 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)|f(s+ α− 1, u(s+ α− 1))|

≤ n(α−1)

Γ(α)
|C|

+ 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)b(s+ α− 1)|u(s+ α− 1)|

=
n(α−1)

Γ(α)
|C|+∆−α[b(n+ α− 1)|u(n+ α− 1)|]. (27)

Then a suitable application of Theorem 1 (with c(n) ≡ 1)
to (27) yields the desired result.

Now we research the continuous dependence on the initial
value for the solution of the IVP (25).

Theorem 6. For the IVP (25), if |f(k+α− 1, u)− f(k+
α − 1, v)| ≤ b(k + α − 1)|u − v|, where b is a nonnegative
function defined on Nα−1, then the solution of the IVP (25)
depends continuously on the initial value C.
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Proof . Let ũ(n) be the solution of the following
IVP:

{
∆αũ(k) = f(k + α− 1, ũ(k + α− 1)), k = 0, 1, 2...,

∆α−1ũ(k)|k=0 = C̃,
(28)

Similar to Theorem 5, the equivalent discrete fractional
sum equation of the IVP (28) can be denoted as follows:

ũ(n) = n(α−1)

Γ(α)
C̃

+
1

Γ(α)

n−α∑
s=0

(n−s−1)(α−1)f(s+α−1, ũ(s+α−1)). (29)

So we have

u(n)− ũ(n) = n(α−1)

Γ(α)
(C − C̃)

+ 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)×

[f(s+α−1, u(s+α−1))−f(s+α−1, ũ(s+α−1))]. (30)

Furthermore,

|u(n)− ũ(n)| ≤ n(α−1)

Γ(α)
|C − C̃|

+ 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)b(s+ α− 1)

|u1(s+ α− 1)− u2(s+ α− 1)|. (31)

Applying Theorem 1 to (31), after some basic computation
we can deduce that

|u(n)−ũ(n)| ≤ |C − C̃|
Γ(α)

{n(α−1)+θ(n−α, n)(n−1)(α−1)

+
n−α−1∑
s=0

|θ(s, n)− θ(s, n− 1)|(s+ α− 1)(α−1)

+
n−1∑
p=α

{[θ(p− α, p)(p− 1)(α−1)

+
p−α−1∑
s=0

|θ(s, p)− θ(s, p− 1)|(s+ α− 1)(α−1)]×

n∏
ξ=p+1

[1+θ(ξ−α, ξ)+

ξ−α−1∑
s=0

|θ(s, ξ)−θ(s, ξ−1)|]}}, n ∈ Nα.

(32)
where θ(s, n) = 1

Γ(α)
(n− s− 1)(α−1)b(s+ α− 1).

Seen from (32) one can see that small change in the initial
value C leads to small change in the solution u(n) of the
IVP (25). So the proof is complete.

IV. FURTHER RESULTS ON GRONWALL-BELLMANN TYPE
DISCRETE FRACTIONAL INEQUALITIES

In Theorems 1-4 established in Section 2, the unknown
function u(n) are all linear function terms, which can be
extended to nonlinear power function terms with arbitrary
power.

In this section, based on the main results presented in
Section 2, we investigate some further results on Gronwall-
Bellmann type inequalities , and establish some discrete
fractional sum inequalities involving nonlinear power
function terms with arbitrary power for unknown functions.

Lemma 7 [12]: Assume that a ≥ 0, p ≥ q ≥ 0, and
p ̸= 0, then for any K > 0,

a
q
p ≤ q

pK
q−p
p a+

p− q
p K

q
p .

Theorem 8. Assume 0 < α ≤ 1, u(n), a(n), b(n)
are nonnegative functions defined on Nα−1, n1, n2 are
constants with n1 ≥ n2 > 0. If for n ∈ Nα, the following
inequality holds:

un1(n) ≤ a(n)

+
1

Γ(α)

n−α∑
s=0

(n−s−1)(α−1)b(s+α−1)un2(s+α−1), (33)

then for n ∈ Nα, one has

u(n) ≤ {a(n) + ê(n) + θ̂(n− α, n)ê(n− 1)

+
n−α−1∑
s=0

|θ̂(s, n)− θ̂(s, n− 1)|ê(s+ α− 1)

+
n−1∑
p=α

{[θ̂(p− α, p)ê(p− 1)

+
p−α−1∑
s=0

|θ̂(s, p)− θ̂(s, p− 1)|ê(s+ α− 1)]×

n∏
ξ=p+1

[1 + θ̂(ξ − α, ξ) +

ξ−α−1∑
s=0

|θ̂(s, ξ)− θ̂(s, ξ − 1)|]}}
1
n1 ,

(34)
where

b̂(n+ α− 1) = n2
n1

K
n2−n1

n1 b(n+ α− 1),

ê(n) = 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)b(s+ α− 1)

[n2
n1

K
n2−n1

n1 a(s+ α− 1) + n1 − n2
n1

K
n2
n1 ],

θ̂(s, n) = 1
Γ(α)

(n− s− 1)(α−1)b̂(s+ α− 1),

(35)

and K > 0 is an arbitrary constant.

Proof . Denote

v(n) = 1
Γ(α)

n−α∑
s=0

(n−s−1)(α−1)b(s+α−1)un2(s+α−1).

Then

un1(n) ≤ a(n) + v(n), n ∈ Nα. (36)

and it holds that

v(n) ≤ 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)b(s+ α− 1)

[a(s+ α− 1) + v(s+ α− 1)]
n2
n1

≤ 1
Γ(α)

n−α∑
s=0

(n− s− 1)(α−1)b(s+ α− 1)
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[n2
n1

K
n2−n1

n1 (a(s+α−1)+v(s+α−1))+n1 − n2
n1

K
n2
n1 ]

= ê(n) + ∆−α [̂b(n+ α− 1)v(n+ α− 1)], n ∈ Nα, (37)

where ê, b̂ are defined as in (35), and K > 0 is an arbitrary
constant.

Applying Theorem 1 to (37) one can deduce that

v(n) ≤ ê(n) + θ̂(n− α, n)ê(n− 1)

+
n−α−1∑
s=0

|θ̂(s, n)− θ̂(s, n− 1)|ê(s+ α− 1)

+
n−1∑
p=α

{[θ̂(p− α, p)ê(p− 1)

+
p−α−1∑
s=0

|θ̂(s, p)− θ̂(s, p− 1)|ê(s+ α− 1)]×

n∏
ξ=p+1

[1 + θ̂(ξ − α, ξ)

+

ξ−α−1∑
s=0

|θ̂(s, ξ)− θ̂(s, ξ − 1)|]}, n ∈ Nα, (38)

where θ̂ is defined as in (35).
Combining (36) and (38) one can obtain the desired

inequality (34).
Now we present one application for Theorem 8.
Consider the following IVP of fractional difference

equation:{
∆

1
2u3(k) = g(k − 1

2 )u(k − 1
2 ), k ∈ N0,

∆− 1
2u3(k)|k=0 = u0,

(39)

where u(n) is an unknown function defined on N− 1
2

.
In the following theorem, explicit bound for the unknown

function u is obtained.

Theorem 9. For the IVP (39), if g is a nonnegative
function defined on Nα−1, then we have the following
estimate for u(n):

|u(n)| ≤ {n
(− 1

2 )

Γ(
1

2
)
|u0|+ ê(n) + θ̂(n− 1

2 , n)ê(n− 1)

+
n− 3

2∑
s=0

|θ̂(s, n)− θ̂(s, n− 1)|ê(s− 1
2 )

+
n−1∑
p= 1

2

{[θ̂(p− 1
2 , p)ê(p− 1)

+
p− 3

2∑
s=0

|θ̂(s, p)− θ̂(s, p− 1)|ê(s− 1
2 )]×

n∏
ξ=p+1

[1 + θ̂(ξ − 1
2 , ξ)

+
ξ− 3

2∑
s=0

|θ̂(s, ξ)− θ̂(s, ξ−1)|]}} 1
3 , n ∈ N 1

2
, (40)

where



θ̂(s, n) = 1

Γ(
1

2
)
(n− s− 1)(−

1
2 ) 1
3K

− 2
3 g(s− 1

2 ),

ê(n) = 1

Γ(
1

2
)

n− 1
2∑

s=0
(n− s− 1)(−

1
2 )g(s− 1

2 )

[13K
− 2

3

(s− 1

2
)(−

1
2 )

Γ(
1

2
)

|u0|+ 2
3K

1
3 ],

(41)

and K > 0 is an arbitrary constant.

Proof . Similar to Theorem 5, the equivalent discrete
fractional sum equation of the IVP (39) can be denoted as
follows:
u3(n) = n(− 1

2 )

Γ(
1

2
)
u0+

1

Γ(
1

2
)

n− 1
2∑

s=0
(n− s− 1)(−

1
2 )g(s− 1

2 )u(s−
1
2 ).

So

|u(n)|3 ≤ n(− 1
2 )

Γ(
1

2
)
|u0|+

1

Γ(
1

2
)

n− 1
2∑

s=0
(n− s− 1)(−

1
2 )g(s− 1

2 )|u(s−
1
2 )|. (42)

Applying Theorem 8 (with n1 = 3, n2 = 1) to (42) yields
the desired result.

V. CONCLUSIONS

In this paper, by use of the properties of discrete fractional
calculus, we have presented some new Gronwall-Bellmann
type discrete fractional sum inequalities as well as some
Volterra-Fredholm type discrete inequalities. Based on these
inequalities, explicit estimates for the unknown functions
concerned have been established. As for applications, we
apply the results to research boundedness and continuous
dependence on the initial value for the solution of the IVP of
one certain fractional difference equation. It is worthy to note
that the main inequalities in this paper can be extended to
other discrete inequalities of more general forms, especially
to 2D case, which are supposed to further research.
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