
 

 
Abstract—Smoothing properties of the collective relaxations 

in multigrid method for solving 2D Stokes flow on the 
non-staggered grid are investigated by means of local Fourier 
analysis (LFA). For multigrid relaxation, the non-staggered 
discretizing scheme of Stokes flow is generally stabilized by 
adding an artificial pressure term. Therefore, an important 
problem is how to determine the zone of parameter of this term. 
To do that, a collective red-black Jacobi point (CRB-JACP) 
relaxation for the 2D Stokes flow is established. Firstly, the 
h-ellipticity for the 2D Stokes system is obtained with the 
parameter of the artificial pressure term. Then the Fourier 
representation of CRB-JACP relaxation for discretizing Stokes 
flow is given by the form of square matrix, whose eigenvalues 
are being computed. And a mathematical relation of the 
smoothing factor between the artificial pressure term and the 
h-ellipticity is well yielded. The results show that the numerical 
schemes for solving 2D Stokes flow by multigrid method on 
CRB-JACP have a specific convergence zone of parameter of 
added artificial pressure term. 
 

Index Terms—Smoothing factor, local Fourier analysis, 
multigrid method, Stokes flow, h-ellipticity, collective 
relaxation 
 

I. INTRODUCTION 

ULTIGRID methods  are generally considered one of 
the fastest numerical methods which have an optimally 

computational complexity for solving partial differential 
equations (PDEs) [1]-[7], especially for 3D steady 
impressible Newtonian flows, governed by Navier-Stokes 
equations, namely,  
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where ( ( , , ), ( , , ), ( , , ))u u x y z v x y z w x y z= is the 

velocity field, ( , , )p p x y z= represents the pressure, 
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is the external 
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force field, 3( , , )x y z Î W Í  , ¶W  is the Dirichlet 

boundary of the computing domain. 
In multigrid methods, the smoothing relaxation operator in 

simulation plays a key role. Several relaxation techniques 
have been developed for solving systems of PDEs, which are 
generally classified into two categories: collective and 
decoupled relaxations [8]. In [2], the collective relaxation is 
considered as a straightforward generalization of a scalar 
system. The early decoupled relaxation is based on a 
distributive Gauss-Seidel technique [9], and is currently 
extended to an incomplete LU factorization [10]. Recently, 
the relaxation techniques have been used for solving the 
Stokes systems [11]-[13]. Particularly, the successive over 
relaxation in the parallel multigrid method is applied to the 
linear complementarity problem [14], and the implicit 
Runge-Kutta relaxation for solving one-dimensional Burgers' 
equation is presented [15]. 

For multigrid methods LFA is a very useful tool. It is used 
to design efficient algorithms and to predict convergence 
factors for solving PDEs with high order accuracy [1]-[7]. 
Also, convergence properties of multigrid methods, with a 
collective point relaxation, for optimal control problems are 
well investigated with LFA [16]-[20]. In [21], a distributive 
relaxation method, which is used for solving a poroelasticity 
equation, is improved by using LFA. An efficiency multigrid 
solver on LFA for the Navier-Stokes equations is designed in  
[22]. The relaxations based on Hermitian and augmented 
Lagrangian splittings for the Oseen problem are given by 
LFA [23]. All-at-once multigrid approach for optimality 
systems with LFA are discussed in details and an analytical 
expression of convergence factors is given by using symbolic 
computation [17], [18]. 

Extensive analysis of the solution to Stokes equations can 
be found in literature due to their wide range of applications 
[1], [2], [6] and [8]. In particular, the multigrid performance 
for Stokes equations has been a topic of study during many 
years and a benchmark for studies of different techniques 
proposed in this field, as the local Fourier analysis for 
example in [1]-[8], [10] and [11]. In this paper, we apply this 
technique to study the h-ellipticity and smoothing factor of 
the considered stabilized scheme. As for the h-ellipticity, the 
similar analysis and conclusions can be found in several 
monographs dealing with multigrid method and LFA such as 
[1]-[7], especially, the well-known book by Trottenberg, 
Oosterlee and Schuller. The result we present is different 
from [1]. The Laplacian factor in determinant of discrete 2D 
Stokes operator is omitted, and the calculation of the 
h-ellipticity is simplified in [1]. However, we use another 
method. The h-ellipticity is directly computed by the 
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determinant of discrete 2D Stokes operator. And a different 
expression of the parameter of the artificial pressure term is 
obtained. A detailed analysis on the smoothing factor of the 
CRB-JACP relaxation is provided by means of LFA. The 
numerical result has already been given in [2]. In this paper, 
the analytical results are presented in detail, and the relation 
between the parameter in artificial pressure term and 
smoothing factor is obtained. The results show that the 
relaxation method subjected by this paper is divergence with 
the high h-ellipticity, which is agreeable with the numerical 
results in [2]. 

In this paper, the analysis of the stabilized central 
difference discretization of 2D Stokes equations on a 
non-staggered grid is presented. It is well-known that a 
central difference scheme for Stokes problem provides an 
unstable discretization as opposed to MAC (Marker and Cell) 
scheme on staggered grids. This leads to the addition of a 
stabilization term, which is proportional to h2 times the 
Laplacian operator, to the continuity equation. The resulting 
scheme is described by LFA. A quantitative analysis used to 
study the smoothing properties of the relaxation processes 
within a multigrid framework. The h-ellipticity of the discrete 
operator, taking into account the adding artificial pressure 
term, is studied. Also, the performance of a collective 
red-black Jacobi point (CRB-JACP) relaxation technique is 
analyzed. An analytical expression of the smoothing factor of 
the CRB-JACP relaxation technique is obtained and the 
relations between such smoothing factor, the artificial 
pressure term and the h-ellipticity are presented. 

A symbolic operation process by Mathematica software is 
carried out to derive an explicit formulation of the smoothing 
factor for the multigrid method. Especially, the cylindrical 
algebraic decomposition (CAD) function in the Mathematica 
build-in command is used [24]. 

 

II. LFA AND DISCRETE STOKES SYSTEM 

A. LFA AND DISCRETE STOKES SYSTEM  

A crucial point for using multigrid method is to identify 
multigrid components, which are used to construct an 
efficient interplay between relaxation and coarse grid 
corrections. A useful tool for a proper selection of the 
components is LFA. In [1]-[7] and [21], LFA is applied to 
develop efficient multigrid methods for solving linear elliptic 
equations with constant coefficients. The work is based on a 
simplification, which is obtained by neglecting the boundary 
conditions, and all occurring operators are extended to an 
infinite grid. On an infinite grid in numerical simulation, the 
approximation and the corresponding error and residual are 
represented by linear combinations of certain exponential 
functions or Fourier modal functions, which are used as a 
unitary basis of the space of bounded infinite grid functions 
[1]-[7]. 

Throughout this paper, discretizing 2D Stokes flow on a 
non-staggered grid is expressed as below 

2
1 2 1 2 1 2

{ ( , ) : ( , ) | ( , ) }
h
G x x x k h k h k k= = = Î     (2) 

where is h  the size of the uniform mesh. On grid (2), a 
unitary basis of vector-valued Fourier modes [1]-[3] is given 

by 
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where 2

1 2
( , ) : ( , ]q q q p p= ÎQ = -


,

h
x GÎ and 

1i = - . Thus, a Fourier space is defined as 

( ) : { ( , ) | }
h

F span xq j q q= ÎQ
   

                                      (4) 

For grid (2), a 2D scalar discrete operator 
h
P  is given by 

: [ ]
h n h
P l=                                                                              (5) 

where
n
l Î  , 2n JÎ Ì  , which contains (0,0) , the 

Fourier symbol of 
h
P is defined as 

( ) : ( )
h n

n J

P l exp i nq q
Î

= ⋅å 


                                                          (6) 

Using (3), the definition of the Fourier symbol (6) is 
generalized to the case of a system for further use in 
multigrid.  

Thus, a main idea of LFA is to study different multigrid 
relaxations by evaluating their effects on the used Fourier 
modes. From [2], [16] and [21], We know that if a standard 
coarsening in two dimensions is selected, a low frequency 
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with three high frequencies 11 10 01 2{ , , } h

high
q q q Î Q
  

 in the 

transition state from 
h
G  to 

2h
G , where  
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 ,                        (7) 

and 2 2\h h

high low
Q = Q Q , {00,11,10, 01}a Î L =

, in which 

1 2
( , )a a a=  is to be denoted by

1 2 1 2
( , ) :a a a a= . 

In this paper, the standard coarsening is assumed implicitly. 
Thus, the Fourier space (4) is needed to be subdivided into 
the corresponding 2h-harmonic subspaces 

{ }2
( ) : ( , )
h h
F span xaq j q a= Î L

   
                           (8) 

B. Discrete of 2D Stokes equations 

From (1), a 2D Stokes operator is written as 

0

0

0

x

y

x y

L
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                                                               (9) 

and its discretizing form is stated as 

0

0

0

h
h x

h
h h y

h h
x y

L

æ ö-D ¶ ÷ç ÷ç ÷ç ÷ç¢ = -D ¶ ÷ç ÷ç ÷ç ÷÷ç ¶ ¶ ÷çè ø

                                                     (10) 

By using the standard central differencing on grid (2) with 

uniform mesh size h  we obtain that
h

-D , h

x
¶ and h

y
¶ are 
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second-order central difference operators with the following 
discrete stencils 

2
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 .                                                               (11) 

In fact, because the above non-staggered scheme (10) is not 
stable, it needs to add an artificially elliptic pressure term 

2

h
ch- D  into the continuity equation to improve numerical 

stabilization in computation, where c is a positive real 
parameter, see e.g. [1] and [11]. By applying (11), the 
discretizing operator is changed as 

2

0
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h
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h h
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                                        (12) 

 

III. MEASURE OF h-ELLIPTICITY FOR THE GRID 

DISCRETIZATION  (12) 

In [1], [2] and [21], the h-ellipticity is a necessary and 
sufficient condition for the existence of the point relaxation. 
The h-ellipticity measure is often used to decide whether or 
not a certain discretization is appropriate for the multigrid 
treatment. A sufficient amount of the h-ellipticity indicates 
that pointwise error of smoothing procedures can be 
constructed, and the computational process of the 
h-ellipticity for (12) is done. Applying (3), the measure of the 
h-ellipticity for systems of PDEs is defined by 

2
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where the complex matrix ˆ ( )
h
M q


 is a Fourier symbol of the 

discrete system operator
h
M , i.e., 

ˆ( , ) ( ) ( , )
h h h h
M x M xj q q j q=

     
                                    (14) 

From (5) and (6), the Fourier symbols of the discrete stencils 
(11) are yielded as 
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For the discrete Stokes system (10), from (3), (14) and (15), 

the Fourier symbol of 
h
L¢ is given below 
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According to (13), it is easy to obtain ( ) 0
h h
E L¢ = . It 

implies that the point relaxation scheme is not proper for the 

smoothing properties for (10), which means that 
h
L¢  is not 

h-ellipticity, and the checkerboard is instability [1]. To 
improve the stability of the discretization an artificial elliptic 

pressure term 2

h
ch- D  need to be introduced. The measure 

of the h-ellipticity for (12) is obtained in a following theorem. 
Theorem 1 By adding the artificial elliptic pressure 

term 2

h
ch- D  into continuity equation of the Stokes system, 

the h-ellipticity of the non-staggered discrete system (12) is 
measured as 

2

2
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where c   is a positive real parameter. 
Proof. From (3), (14) and (15), the Fourier symbol of the 

discrete Stokes system (12) is written as 
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For the sake of convenient calculation, We denote the 
trigonometric functions by 

2 1
1
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2

s
q

= , 2 2
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q
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2high
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1 2
( , )s s s= . Further, by substituting (19) into (15), 

the determinant of matrix (20) is expressed by  
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Furthermore, by substituting (20) into (13), the h-ellipticity 
for (12) is obtained as 
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Solving 
1
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s
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¶
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 by CAD function in the 

Mathematics [24], one of the extreme values of (22) with 
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where
1
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24

c< £ , and other extreme values of (22) where 

1 2
( , )s s SÎ and 

1 2
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and 
1
s  and 

2
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and minimum values of (22) with S  and
high
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respectively given below, 
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From (24) and (25), (17) holds for " 0c > , ( ) 0
h
E c ¹ , 

and0 ( ) 1
h
E c< < . The Theorem 1 holds.□ 

From Theorem 1, the measure of h-ellipticity for (12) is 

nonzero and independent of the mesh sizeh . It means that 
the discrete Stokes system is stabilized by the artificial 

pressure term 2

h
ch- D . From (17), the properties of 

( )
h h
E L  are given as 
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From (26), there exists some
0

1
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28

c Î   subject to: 

"
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548864 h
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The curve of (17) is shown in Figure 1. 

 
Figure 1 ( )

h
E c  curve 

In [1] and [2], from (27), the smoothing factor of the point 

relaxation
h
S is not more than 63/65, and ( )

h h
E L is 

computed omitting
11
( )L q
  in (22). Furthermore, an 

analytical solution [1] of ( )
h h
E L   is obtained as follows. 
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IV. ERROR ANALYSIS OF 2D STOKES FLOW (12) 

From Theorem 1, (17) shows that there exists an efficient 
point relaxation, without loss of generality assuming that 

4
(0, )
5

c Î . Herein the collective red-black Jacobi point 

(CRB-JACP) relaxation for the Stokes discrete system (12) is 
investigated by LFA, and the relaxation operator is denoted 

by RB

h
S . From [1], [2] and [21], the relaxation operator 

RB

h
S makes the 2h-harmonic subspace (8) invariant, i.e, 

2
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: ( )

h

RB RB
h hF
S Sq q ´= Î

 
                                           (29) 
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S q
 

 is the Fourier representation of the 

relaxation operator RB
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whereI is a unit matrix, and by using (7),Aa  is expressed as 
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This is a Fourier symbol expression of the collective Jacobi 

point relaxation [2] for (12), and ( )
h
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  is 3 3´  unit 

matrix which denotes the Fourier symbol of the unit 

stencil [1]
h h
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In the process of Fourier smoothing analysis of 
CRB-JACP for (12), the standard coarsening and an ideal 
coarse grid correction operator [1], [2] are applied as follows, 
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where 2h

h
Q


 is the Fourier representation of the operator 2h

h
Q , 

which annihilates the low frequency error components and 
makes the high frequency components unchanged. From [2] 
and [6], the smoothing factor of the Fourier representations 
for (31) and (36) is given as 

2

2sup ( ( ))
h
low

h RB
s h h

Q S
q

r r q
ÎQ

=


  
                                                     (35) 

where ( )Mr  denotes the spectral radius of matrix M . The 

asymptotic smoothing process reduces the error from the 
high frequency components. 

Applying (30) and (33), a 12 12´   matrix of the discrete 
Stokes flow in (12) is expressed as 
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   Now, the smoothing factor of CRB-JACP for (12) is 
presented as follows. 
Theorem 2 The following sentiments hold for CRB-JACP of 
(12) in the 2D Stokes flow in multigrid simulation. 
(i). The relation of the smoothing factor and parameter c  of 
the artificial elliptic pressure term is 

1 1

8 4
1 4

46 5

1

8
1 4

1

s
c
c

c

c

c
r

ìïï < £ïïï= íïï < <
î

+
ïïï

                                               (38) 

(ii). The relation between the smoothing factor and the 
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Proof. From (39), the eigenvalues of (38) are obtained as 
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For the sake of convenient discussions, we replace 
1
s  and 

2
s  with 2

1
s  and 2

2
s , respectively, and

low
S is changed 

from 22 2
2 2

( , ]-  to 21[0, ]
2

. Thus, the nonzero eigenvalues 

of (36) are obtained as follows, 
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As 2
1 2

1
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2
s s Î , then by applying (40)-(42), the 

following values are yielded 

1
21 2

1 2 2

1
21 2

1 2 2

4 4 (0, )( , ) [0, ]

10 10 (0, )( , ) [0, ]

1
max

4
max

8
1

s s

s s

l l

l l

Î

Î

üïï¢ ¢= = ïïïýïï¢ ¢= = ïïïþ

                                   (43) 

2 2 2 2
1 1 2 2 1 2

1 1 1
( ) ( ) 0

2 2 2
s s s s s s- + - = - + - - £  

(44) 
From (44), (41) and (42) we conclude that we have two 

pairs of the conjugate complex roots, respectively. Therefore, 
in order to compute the maximum values of the modulus for 
the above eigenvalues, it only needs to compute the squares 

of the modulus, which means that only 
2

5
l¢  and 
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l¢  are 

considered. Combining (41) and (44), the expression of 
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(46) 
From (46), by using CAD function in the Mathematics [24], 

we obtain that the extreme values of 
1 2
( , )f s s   all lie on the 
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S = . From the assumption of 

0
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Combining (42) and (44), the expression of 
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l¢ , with 

respect to 
1
s  and 
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s , is given as 
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and when 
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c > , the maximum value of (50) is 
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Applying (43), (47), (50) and (51), the maximum value of 
square of the modulus for the eigenvalues of (36) is 

21
1 2 2

2

1,2, ,12

2

2

2
( , ) [0, ]

1
0

1

64
1 1
( 2 )
2

4ma

6

x
1 4

4 4 5

kk
s s

c

c
c

c

c
l

=
Î

ìïï < £ïïï¢ = íïï £ <ïïïî
+


   (52) 

To make the operator RB

h
S be convergent, from (52), 

1
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c >  

should hold. Therefore, (52) is rewritten as  
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                        (53) 

Then (38) can be obtained by (53). Furthermore, substituting 

(17) into (38), we yield (39) when 
1 4

8 5
c< <  . Thus, 

Theorem 2 holds.□ 

In [2], for 
1

16
c =  , CRB-JACP for (12) is divergent. 

Applying (26) and (27), the maximum value of the 

h-ellipticity for (12) is obtained at 
1

28
c =  , and from (52), 

the smoothing factor is 
7
1

2
r = > . By the same way, for 

1
0

8
c< £  we obtain that 1r ³  . So, it is concluded that 

the CRB-JACP relaxation of (12) is divergent with high 
h-ellipticity. From Theorem 2, the smoothing factor for the 
CRB-JACP relaxation of (12) is independent of the mesh size, 
but depends on the parameter c artificial elliptic pressure 
term. 

 

V.  CONCLUSIONS 

The error smoothing process of the collective relaxation for 
solving 2D Stokes flow in multigrid simulation is analytically 
presented with details. By using (19) and (33), the Fourier 
symbols of (12) with the trigonometric functions for the 
discrete operator and relaxation are transformed to the 
rational functions, and the smoothing process is greatly 
simplified. The analytical expression of the smoothing factor 
for the collective relaxation is obtained successfully. The 
value of the smoothing factor is an upper bound for the 
smoothing rates and is independent of the mesh size, but it 
depends on the converged parameter c of the artificial elliptic 
pressure term. The coarse-grid correction operator of the 
multigrid components is well handled by the method 
suggested by this paper. The prediction of the convergence 
properties for the complete multigrid methods is investigated 

for the 2D Stokes flow.  
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