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Abstract—The linear canonical transform (LCT) is a 

powerful tool for signal processing and optics. It is, therefore, 

worthwhile and interesting to consider the Wigner-Ville 

distribution (WVD) in the LCT domain. In this paper, we 

propose a new definition for the WVD associated with the 

instantaneous autocorrelation function in the LCT domain, 

which we name as WL, and also obtain some properties of WL. 

As a further generalization of WL, a new definition for the 

WVD associated with the offset linear canonical transform 

(OLCT) is given. Finally, we have achieved some applications of 

the new WVD in the LCT and OLCT domain to verify the 

derived theory.  

 

 

Index Terms—Offset linear canonical transform, linear 

canonical transform, Wigner-Ville distribution. 

 

 

I. INTRODUCTION 

HE linear canonical transform (LCT) is introduced 

in 1970s by Collins, Moshinsky and Quesne as an 

integral transform with four parameters  dcba ,;,  

[1], [2]. It has been widely applied in several areas, including 

applied mathematics, optics and signal processing. With 

intensive research, many properties of the LCT are well 

studied. The Fourier transform (FT) [3], [4], fractional 

Fourier transform (FrFT) [5]–[8], Fresnel transform [9], 

Laplace transform and time scaling operations are all special 

cases of the LCT. The LCT is also known under different 

names as the Collins formula [1], the affine Fourier transform 

[10], the generalized Fresnel transform [11], the ABCD 

transform [12], etc.  

The Wigner-Ville distribution (WVD) is a special type of 

quasi-probability distribution, which was proposed by 

Wigner in 1932 to study quantum corrections for classical 

statistical mechanics. It intended to supplant the wave 

function which appeared in the Schrodinger equation with a 

probability distribution in phase space. Later in 1948 J. Ville 

re-derived it as a quadratic representation of the local 

time-frequency energy of a signal. Among many methods, 

such as the iterative algorithm [13], [14], the chirp-Fourier 

transform method [15], the Radon-ambiguity transform [16], 

and the Wigner-Hough transform [17], the WVD is shown to 

be an important method in the linear-frequency-modulated 
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(LFM) signal detection and parameter estimation, which is 

also essential in the signal processing community [18]. 

Based on the properties of the LCT, the FrFT, and the 

classical WVD, Pei and Ding [19] investigated the WVD and 

ambiguity function (AF) of the signal  uF dcba ,,,  and discuss 

the relations among the common fractional and canonical 

operators. Unlike the definition of WVD associated with the 

LCT in [19], Bai in [18] proposed generalized kind of WVD 

in the LCT domain, namely WDL, which can be thought as 

the affine transform of the autocorrelation function of  хf . 

In this paper, we propose a new definition for the WVD in 

the LCT domain, which we name as WL, and establish the 

various properties of the newly defined WL. Furthermore, we 

provide a new way to calculate the instantaneous frequency 

and the group delay. Meanwhile, a new definition for the 

WVD associated with the OLCT (WOL) is also proposed. 

This is considered as a further generalization of the WL. The 

applications of both the WL and WOL are also discussed. 

The paper is organized as follows: Section II is 

Preliminary.  In Section III,  a new definition of WVD 

associated with the LCT is proposed along with its main 

properties. A new definition of the WVD associated with the 

OLCT is depicted in Section IV. The applications of the 

newly defined WVD in the LFM signal processing are 

investigated in details in Section V. and Section VI is the 

conclusion of this paper. 

 

 

II. PRELIMINARY 

A. The Linear Canonical Transform (LCT) 

The LCT of a signal  tf  with parameter matrix А  is 

defined as follows [1], [2], [18]–[29]  
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where the parameter matrix  ,,,, dcbaA   and the 

parameters dcba ,,,  satisfying 1ad bc .   When the 

parameter 0b   is of no particular interest to our object. 

Therefore, we always assume 0b  in this paper. 

Recently, the LCT has had a great development [20]. 

Developing relevant theories for LCT can help to achieve 

more insights on its special cases and to carryover knowledge 

gained from one subject to others. For more detailed 

definitions and properties of the LCT, one can refer to [26]. 
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B. The Offset Linear Canonical Transform (OLCT) 

The OLCT [30]–[32] is a six-parameter  00 ,,,,, udcba  

class of linear integral transform. It is a time-shifted and 

frequency-modulated version of the LCT. The OLCT with 

real parameters of  00 ,,,,, udcbaA   of a signal  tf  is 

defined by [30]–[32] 
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It is easy to verify that the OLCT with parameters 

   0,0,,,,,,,,, 00 dcbaudcba   reduces to the LCT. And the 

FT, the fractional FT, the offset FT, the FRST and the 

frequency modulation, time scaling and time shifting are all 

special cases of the OLCT. As a generalization of many other 

linear transforms, the OLCT has found wide applications in 

applied mathematics, signal processing and optics [31]–[33].  

C. The Classical WVD 

The instantaneous autocorrelation function of a signal 

 tf  is defined as follows [18] 
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and the WVD of a signal  tf  defined as the FT of 

 ,tR f for   
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The WVD is one of the most useful time-frequency 

analysis tools Some properties of WVD are listed in [18], 

[19], [26], [27]. 

D. Previous Research Outputs 

The WVD associated with the LCT (LCWD) given in [19] 

is defined as 
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where  uFA  is the LCT of signal  tf  with parameter 

matrix .A   

Recently, Bai et. al obtained WVD in the LCT domain, 

named the WDL, by substituting the orthogonal kernel 
ie of the FT with the non-orthogonal kernel 
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  of the LCT. The main properties 

and applications of the WDL are also investigated in [18]. 

 

 

  

III. THE NEW DEFINITION AND PROPERTIES OF WVD  

A. The Instantaneous Autocorrelation Function  

We first give a new definition of the instantaneous 

autocorrelation function associate with LCT as the following 
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where  ,,;, dcbaA  1ad bc .   We obtain the 

classical instantaneous autocorrelation function when ,0a  

hence the new definition can be seen as the generalization of 

the classical instantaneous autocorrelation function. 
B. The WVD in the LCT Domain 

We definite the WVD in the LCT domain as 
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In order to make different from the existing results about 

the WVD, we denote it as  utWL f ,  and simplified as WL. 

C. The Properties of the WL 

The properties of the WL are investigated in this 

subsection as following. 

Conjugation symmetry property 
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Instantaneous frequency 

For any signal      tietftf  , its instantaneous 

frequency can be derived as following. 
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Here, the denominator of above equation is the time 

marginal property, so the  tui  can be rewritten as  
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Group delay 
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derived as  
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In time domain, the  ui  can be rewritten as   
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D. The uncertainty principle of the WL 

The Heisenberg’s uncertainty principle [26], [28], [29] 

plays an important role in physics and communication. In this 

subsection, we obtain the uncertainty principle of the WL. 

First we give two important equalities. 
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Let ,2n  then we obtain the uncertainty principle of the 

WL as follows 
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IV. THE NEW DEFINITION OF WVD IN THE OLCT DOMAIN 

From (4) we can definite the WVD in the OLCT domain as 

following 
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We denote the WVD in the OLCT domain for parameter 

 00 ,,,,, udcbaA   by  utWOLf ,  and simplified as the 

WOL of signal  .f t  

The relationship between WL and WOL is easy to verify, 

that when the parameter A  reduces to  ,,;, dcbaA   the 

WOL reduces to the WL. Bellow we listed some basic 

properties of the WOL. 
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V. APPLICATIONS 

A. Signal Reconstruction by WL and WOL  

According to (1) and (5) we obtain 
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This equation shows that the signal  f t  can be 

reconstructed by the WL. 

By the similar method, based on equation (2) and (6) we 

can obtain 
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Hence we have that 
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The signal  tf  can be also reconstructed by the WOL. 

B. One-component LFM signal  

Suppose the LFM signal modeled as    
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where 0  represent the initial frequency and m  is frequency 

rate of signal  ,tf  respectively. From the definition of the 

WL, we obtain the WL of the one-component LFM signal by 
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From the definition of the WOL, WOL of  tf  is 
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This equation shows that if we choose special parameter, 

the WL/WOL of  tf  will produce an impulse in  ut,  

plane. 

C. Bi-component signal 

When the processing signal is modeled as a bi-component 

finite-length signal as follows 
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This signal can be expressed as summation of two 

one-component LFM signals      ,21 tftftf   and the 

WL of  tf  can be represented by the WL of  tf1  and 

 tf2  as follows 
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and the WOL 
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The auto-terms of the signal are represented by first two 

terms, whereas the others are the cross-terms. 

 

 

VI. CONCLUSION 

Based on the LCT and the classical WVD theory, this 

paper proposes a new kind of definition of WVD in the LCT 

domain, namely WL, and its generalization which we name 

as WOL also depicted in this paper. Main properties of the 

WL, including uncertainty principle are derived in detail. 

Furthermore, we provide a new way to calculate the 

instantaneous frequency and the group delay. Moreover, 

signal reconstruction by WL and WOL has been shown in 

this paper. In addition, the newly defined WL and WOL are 

applied in the LFM signal detection. The future works will be 

the applications of the newly defined WL in the   

nonstationary signal processing and develop relevant 

theories for the WVD and AF in the OLCT domain.  
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