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Abstract—Homogeneous balance method (HBM) plays an
important role in solving nonlinear partial differential equations
(PDEs). In this paper we improve two key steps of the
HBM to construct multi-soliton solutions of a time-dependent-
coefficient Gardner equation from nonlinear lattice, plasma
physics and ocean dynamics. It is shown that the HBM cannot
construct multi-soliton solutions of the Gardner equation but
the improved HBM is valid. The improved HBM can also be
used to construct multi-soliton solutions of some other nonlinear
PDEs in mathematical physics.

Index Terms—Homogeneous balance method, multi-soliton
solution, Gardner equation with time-dependent coefficients.

I. INTRODUCTION

IN nonlinear science, many physical phenomena can be de-
scribed by nonlinear PDEs. Researchers often investigate

exact solutions of such nonlinear PDEs to gain more insight
into these physical phenomena for further applications. In
the past several decades, more and more exact solutions of
nonlinear PDEs have been obtained, such as those in [1], [2],
[3], [4], [5], [6]. As a direct method, the HBM [7] proposed
by Wang plays an important role in solving nonlinear PDEs
[8], [9], [10], [11], [12], [13], [14]. With the development of
soliton theory, finding multi-soliton solutions has gradually
become one of the most important and significant tasks and
attached much attention [15], [16], [17], [18], [19], [20].
When the inhomogeneities of media and nonuniformities of
boundaries are taken into account, the variable-coefficient
PDEs could describe more realistic physical phenomena
than their constant-coefficient counterparts [21]. Therefore,
how to generalize the existing methods to construct exact
solutions of nonlinear PDEs with variable coefficients is
worthy of exploring. For such motivation, the present paper
will improve the HBM [7] to construct multi-soliton solutions
of the following time-dependent-coefficient Gardner equation
from nonlinear lattice, plasma physics and ocean dynamics
[22]:

ut + a(t)uux + b(t)u2ux + c(t)uxxx + d(t)ux + f(t)u = 0,
(1)

where u(x, t) is the amplitude of the relevant wave model,
e.g., for the internal waves in a stratified ocean, x is the
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horizontal coordinate and t is the time, while the time-
dependent coefficients a(t), b(t), c(t), d(t) and f(t) are all
analytic functions and relevant to the background density and
shear flow stratification.

The rest of the paper is organized as follows. In Section 2,
we improve two key steps of the HBM [7] for constructing
multi-soliton solution of Eq. (1). As a result, one-soliton
solution, two-soliton solution and three-soliton solution of
Eq. (1) are obtained, from which a formula of n-soliton
solution of Eq. (1) is summarized. It is shown that that the
obtained multi-soliton solutions can not be constructed by
using the original HBM. In Section 3, we outline the steps
of the improved HBM and then conclude this paper.

II. MULTI-SOLITON SOLUTIONS

According to the HBM [7], we suppose that Eq. (1) has a
solution in the form:

u = iα(t)
∂

∂x
g(w(x, t))+β(t) = iα(t)g′(w)wx+β(t), (2)

where i is the imaginary unit, g(w(x, t)), w(x, t), α(t) and
β(t) are undetermined functions. Substituting Eq. (2) into
Eq. (1) yields

ut + a(t)uux + b(t)u2ux + c(t)uxxx + d(t)ux + f(t)u

= [iα(t)c(t)g(4) − iα3(t)b(t)g′2g′′]w4
x + · · ·, (3)

where the unwritten part in Eq. (3) is a polynomial of various
partial derivatives of w(x, t), the degree of which is lower
than 4. We further set the coefficient of w4

x to zero, an
ordinary differential equation (ODE) for g(w) is obtained
as following:

α(t)c(t)g(4) − α3(t)b(t)g′2g′′ = 0, (4)

which has a solution in the form:

g(w) = lnw, (5)

under the condition that

c(t) =
1

6
α2(t)b(t). (6)

From Eq. (5) we have

g′2g′′ =
1

6
g(4), g′g′′ = −1

2
g(3), g′3 =

1

2
g(3), g′2 = −g′′.

(7)
Substituting Eqs. (6) and (7) into Eq. (3) and collecting

the coefficients of g(4), g(3), g′′ and g′ yields

ut + a(t)uux + b(t)u2ux + c(t)uxxx + d(t)ux + f(t)u
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= [
1

2
α2(t)a(t)w3

x+α2(t)β(t)b(t)w3
x+

1

2
iα3(t)b(t)w2

xwxx]g
′′′

+[iα(t)wxwt + iα(t)d(t)w2
x + iα(t)β(t)a(t)w2

x

+iα(t)β2(t)b(t)w2
x + α2(t)a(t)wxwxx

+2α2(t)β(t)b(t)wxwxx +
1

2
iα3(t)b(t)w2

xx

+
2

3
iα3(t)b(t)wxwxxx]g

′′ + [iα(t)f(t)wx + iα′(t)wx

+iα(t)wxt + iα(t)d(t)wxx + iα(t)a(t)β(t)wxx

+iα(t)b(t)β2(t)wxx +
1

6
iα3(t)b(t)wxxxx]g

′

+β′(t) + f(t)β(t) = 0. (8)

Setting the coefficients of g′′′, g′′ and g′ to zeros, we get
a system of nonlinear PDEs for w(x, t) as follows:

1

2
α2(t)a(t)w3

x+α2(t)β(t)b(t)w3
x+

1

2
iα3(t)b(t)w2

xwxx = 0,

(9)
iα(t)wxwt + iα(t)d(t)w2

x + iα(t)β(t)a(t)w2
x

+iα(t)β2(t)b(t)w2
x + α2(t)a(t)wxwxx

+2α2(t)β(t)b(t)wxwxx +
1

2
iα3(t)b(t)w2

xx

+
2

3
iα3(t)b(t)wxwxxx = 0, (10)

iα(t)f(t)wx + iα′(t)wx + iα(t)wxt + iα(t)d(t)wxx

+iα(t)a(t)β(t)wxx + iα(t)b(t)β2(t)wxx

+
1

6
iα3(t)b(t)wxxxx = 0, (11)

β′(t) + f(t)β(t) = 0. (12)

We further suppose that

w = 1 + θekx+h(t)+iπ
2 , (13)

where k, θ and h(t) are undetermined constants and func-
tion, respectively. Substituting Eq. (13) into the system of
nonlinear PDEs (9)–(12), we then get

α(t) = Ae−
∫

f(t)dt, β(t) = Be−
∫

f(t)dt, (14)

h(t) = k

∫
[(A2 + ikB − 1

6
k2B2)b(t)e−2

∫
f(t)dt − d(t)]dt,

(15)
a(t) = −(2A+ ikB)b(t)e−

∫
f(t)dt, (16)

and hence obtain a kink one-soliton solution of Eq. (1):

u = iAe−
∫

f(t)dt

· kθekx+k
∫

[(A2+ikB− 1
6k

2B2)b(t)e
−2

∫
f(t)dt

−d(t)]dt+iπ
2

1 + θekx+k
∫

[(A2+ikB− 1
6k

2B2)b(t)e
−2

∫
f(t)dt

−d(t)]dt+iπ
2

+Be−
∫

f(t)dt, (17)

under the constraints of Eqs. (6) and (16).
Inspired by the multi-soliton solutions [23] of the modified

Korteweg–de Vries (KdV) equation ut +6u2ux +uxxx = 0,
we suppose that

w =
1 + eξ1−iπ

2

1 + eξ1+iπ
2
, ξ1 = k1x+ h1(t), (18)

can be employed to construct one-soliton solution of Eq. (1).
Then Eq. (9) is reduced to:

[ia(t) + 2iβ(t)b(t) + kα(t)b(t)]eξ1 + ia(t)

+2iβ(t)b(t)− kα(t)b(t) = 0, (19)

which shows kα(t)b(t) = 0. Obviously, when kα(t) = 0,
solution (2) is a trivial one. Therefore b(t) = 0 is needed.
Then we can see from Eq. (19) that a(t) = 0. In this case,
Eq. (1) is a linear PDE. This is not the starting point of
this paper. So following the idea of HBM [7] we can not
construct one-soliton solution from Eqs. (9)–(12) and (18).
However, if we substitute Eqs. (2), (5), (6) and (18) into Eq.
(3) and cancel the common denominator (e2ξ1 + 1)3, then
Eq. (3) is converted into a polynomial of eξ1 . Collecting and
setting each coefficient of the same powers of eξ1 to zeros,
we get a set of nonlinear ODEs:

β′(t) + f(t)β(t) = 0, (20)

−2k21α(t)d(t) + 2kα(t)f(t)− 2k21α(t)β(t)a(t)

−2k21α(t)β
2(t)b(t)− 1

3
k41α

3(t)b(t)

−2k1α(t)h
′
1(t) + 2k1α

′(t) = 0, (21)

3β(t)f(t)− 4k31α
2(t)a(t)− 8k31α

2(t)β(t)b(t) + 3β′(t) = 0,
(22)

4k1α(t)f(t) + 4k1α
′(t) = 0, (23)

3β(t)f(t) + 4k31α
2(t)a(t) + 8k31α

2(t)β(t)b(t) + 3β′(t) = 0,
(24)

2k21α(t)d(t) + 2k1α(t)f(t) + 2k21α(t)β(t)a(t)

+2k21α(t)β
2(t)b(t) +

1

3
k41α

3(t)b(t)

+2k1α(t)h
′
1(t) + 2k1α

′(t) = 0. (25)

Solving the system of nonlinear ODEs (20)–(25) yields

α(t) = Ae−
∫

f(t)dt, β(t) = Be−
∫

f(t)dt, (26)

h1(t) = k1

∫
[(A2 − 1

6
k21B

2)b(t)e−2
∫

f(t)dt − d(t)]dt,

(27)
a(t) = −2Ab(t)e−

∫
f(t)dt. (28)

We, therefore, obtain the following one-soliton solution of
Eq. (1):

u = iAe−
∫

f(t)dt

(
ln

1 + eξ1−iπ
2

1 + eξ1+iπ
2

)
x

+Be−
∫

f(t)dt, (29)

under the constraints of Eqs. (6) and (28).
In Fig. 1, a spatial structure of the one-soliton solution

(29) is shown by selecting A = 1, B = 1, k1 = 1,
f(t) = t, b(t) = 1−t, d(t) = sin t. The dynamical evolutions
and profiles of the one-soliton solution (29) are shown in
Figs. 2 and 3, respectively. We can see that the one-soliton
determined by Eq. (29) propagates along the x-axis in the
negative direction at first and then in the positive direction.
In the process of propagation, the amplitude of left-travelling
soliton increases while the one of right-travelling soliton
decreases and the maximal amplitude happens between the
locations of x = −1 and x = 0 at the time t = 0.
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Fig. 1. Spatial structure of one-soliton solution (29).

For the two-soliton solution, we suppose that

w =
1 + eξ1−iπ

2 + eξ2−iπ
2 + eξ1+ξ2−iπ+θ12

1 + eξ1+iπ
2 + eξ2+iπ

2 + eξ1+ξ2+iπ+θ12
,

ξj = kjx+ hj(t), (j = 1, 2), (30)

where k1, k2, θ12 and h1(t), h2(t) are undetermined con-
stants and functions, respectively. Substituting Eq. (30) into
Eq. (9), then equating the coefficients of the same powers of
e3ξ1+ξ2 and e4ξ1+ξ2 to zeros, we have

−k31α
2(t)a(t)−2k31α

2(t)β(t)b(t)−ik41α
3(t)b(t) = 0, (31)

−ik31α
2(t)a(t)−2ik31α

2(t)β(t)b(t)−k41α
3(t)b(t) = 0, (32)

which show k1α(t)b(t) = 0. Since k1α(t) = 0, solution (2)
to construct is a trivial one, we have to set b(t) = 0. Then it
is easy to see from Eq. (9) that a(t) = 0. In this case, Eq. (1)
becomes linear again. So from Eqs. (9)-(12) and (30) we can
not construct two-soliton solution by the idea of HBM [7].
In another way, we substitute Eqs. (2), (5), (6) and (30) into
Eq. (3) and cancel the common denominator [θ212e

2ξ1+2ξ2 +
2(1−θ12)e

ξ1+ξ2 +e2ξ1 +e2ξ2 +1]3, then Eq. (3) is converted
into a polynomial of eξ1 and eξ2 . Collecting and setting each
coefficient of the same powers of epξ1+qξ2(p, q = 0, 1, 2, · ·
·, 6) to zeros yields a set of nonlinear ODEs. From the set
of nonlinear ODEs, we have

α(t) = Ae−
∫

f(t)dt, β(t) = Be−
∫

f(t)dt, (33)

hj(t) = kj

∫
[(A2 − 1

6
k2jB

2)b(t)e−2
∫

f(t)dt − d(t)]dt,

(j = 1, 2), (34)

a(t) = −2Ab(t)e−
∫

f(t)dt, eθ12 =
(k1 − k2)

2

(k1 + k2)2
. (35)

Thus, we obtain the following two-soliton solution of Eq.
(1):

u = iAe−
∫

f(t)dt

·
(
ln

1 + eξ1−iπ
2 + eξ2−iπ

2 + eξ1+ξ2−iπ+θ12

1 + eξ1+iπ
2 + eξ2+iπ

2 + eξ1+ξ2+iπ+θ12

)
x

+Be−
∫

f(t)dt, (36)

under the constraints of Eqs. (6) and (35).

(a)

(b)

(c)

Fig. 2. Evolutions of one-soliton solution (29) at different times (a)
t = −2, (b) t = 0 and (c) t = 2.
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(a)

(b)

(c)

Fig. 3. Profiles of one-soliton solution (29) at different locations (a)
x = −6, (b) x = 0 and (c) x = 6.

Fig. 4. Spatial structure of two-soliton solution (36).

In Fig. 4, a spatial structure of the two-soliton solution (36)
is shown by selecting A = 1, B = 1, k1 = −1, k2 = 2.1,
f(t) = t, b(t) = 1 − t, d(t) = t. The dynamical evolutions
and profiles of the two-soliton solution (36) are shown in
Figs. 5 and 6, respectively. It can be seen that the amplitude
and the propagation direction of two-soliton determined by
Eq. (36) have similar evolution laws as those in the one-
soliton shown in Figs. 1–3.

To construct the three-soliton solution, we suppose that

w = [1 + eξ1−iπ
2 + eξ2−iπ

2 + eξ3−iπ
2 + eξ1+ξ2−iπ+θ12

+eξ1+ξ3−iπ+θ13 + eξ2+ξ3−iπ+θ23

+eξ1+ξ2+ξ3−i 3π
2 +θ12+θ13+θ23 ]

/[1 + eξ1+iπ
2 + eξ2+iπ

2 + eξ3+iπ
2 + eξ1+ξ2+iπ+θ12

+eξ1+ξ3+iπ+θ13 + eξ2+ξ3+iπ+θ23

+eξ1+ξ2+ξ3+i 3π
2 +θ12+θ13+θ23 ], (37)

ξj = kjx+ hj(t), (j = 1, 2, 3), (38)

where k1, k2, k3, θ12, θ13, θ23 and h1(t), h2(t), h3(t) are
undetermined constants and functions, respectively. A direct
computation shows that following the idea of HBM [7] we
can not construct three-soliton solution from Eqs. (9)–(12)
and (37). In the similar manipulation, we substitute Eqs. (2),
(5), (6) and (37) into Eq. (3) and equate each coefficient
of the same powers of the exponential functions to zeros,
then a set of nonlinear ODEs are derived. Solving the set of
nonlinear ODEs, we have

α(t) = Ae−
∫

f(t)dt, β(t) = Be−
∫

f(t)dt, (39)

hj(t) = kj

∫
[(A2 − 1

6
k2jB

2)b(t)e−2
∫

f(t)dt − d(t)]dt,

(j = 1, 2, 3), (40)

a(t) = −2Ab(t)e−
∫

f(t)dt, eθjl =
(kj − kl)

2

(kj + kl)2
,

(1 ≤ j < l ≤ 3). (41)

With the help of Eqs. (2), (3), (5), (16) and (37)–(41), we
obtain the following three-soliton solution of Eq. (1):

u = iAe−
∫

f(t)dt
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(a)

(b)

(c)

Fig. 5. Evolutions of two-soliton solution (36) at different times (a)
t = −2, (b) t = 0 and (c) t = 2.

(a)

(b)

(c)

Fig. 6. Profiles of two-soliton solution (36) at different locations (a)
x = −3, (b) x = 0 and (c) x = 3.
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Fig. 7. Spatial structure of three-soliton solution (42).

·

ln

∑
µ=0,1

e

∑3

j=1
µj(ξj−iπ

2 )+
∑

1≤j<l
µjµlθjl

∑
µ=0,1

e

∑3

j=1
µj(ξj+iπ

2 )+
∑

1≤j<l
µjµlθjl


x

+Be−
∫

f(t)dt, (42)

under the constraints of Eqs. (6) and (41). Here the sum-
mation Σµ=0,1 refers to all possible combination of each
µi = 0, 1 for i = 1, 2, 3.

In Fig. 7, a spatial structure of the three-soliton solution
(42) is shown by selecting A = 1, B = 1, k1 = −1,
k2 = 1.5, k3 = 0.1, f(t) = t, b(t) = 1 − t, d(t) = t.
The dynamical evolutions and profiles of the three-soliton
solution (42) are shown in Figs. 8 and 9, respectively. We can
see that the amplitude and the propagation direction of three-
soliton determined by Eq. (42) have similar evolution laws as
those in the one-soliton and two-soliton shown respectively
in Figs. 1–3 and Figs. 4–6.

Generally, if take

w =

∑
µ=0,1

e

∑n

j=1
µj(ξj−iπ

2 )+
∑

1≤j<l
µjµlθjl

∑
µ=0,1

e

∑n

j=1
µj(ξj+iπ

2 )+
∑

1≤j<l
µjµlθjl

,

ξj = kjx+ hj(t), (43)

hj(t) = kj

∫
[(A2 − 1

6
k2jB

2)b(t)e−2
∫

f(t)dt − d(t)]dt,

(j = 1, 2, · · ·, n), (44)

eθjl =
(kj − kl)

2

(kj + kl)2
, (1 ≤ j < l ≤ n), (45)

and substitute Eqs. (43)–(45) into Eq. (8), then equate each
coefficient of the same powers of the exponential functions
to zeros, we can obtain n-soliton solution of Eq. (1):

u = iAe−
∫

f(t)dt

·

ln

∑
µ=0,1

e

∑n

j=1
µj(ξj−iπ

2 )+
∑

1≤j<l
µjµlθjl

∑
µ=0,1

e

∑n

j=1
µj(ξj+iπ

2 )+
∑

1≤j<l
µjµlθjl


x

(a)

(b)

(c)

Fig. 8. Evolutions of three-soliton solution (42) at different times (a)
t = −2, (b) t = 0 and (c) t = 2.
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(a)

(b)

(c)

Fig. 9. Profiles of three-soliton solution (42) at different locations (a)
x = −5, (b) x = 0 and (c) x = 5.

+Be−
∫

f(t)dt, (46)

under the constraints of Eqs. (6) and (41). Here the sum-
mation Σµ=0,1 refers to all possible combination of each
µi = 0, 1 for i = 1, 2, · · · , n.

III. CONCLUSION

We have obtained one-soliton solution (29), two-soliton
solution (36), three-soliton solution (42) and n-soliton solu-
tion (46) of the time-dependent-coefficient Gardner equation
(1) by improving two key steps of the HBM [7]. Though the
kink one-soliton solution (17) is obtained by using the idea of
HBM [7], these obtained multi-soliton solutions cannot been
constructed by the HBM [7] without further improvement.
For a given nonlinear PDE, say in two independent variables
x and t

P (u, ut, ux, uxx, uxt, · · ·) = 0, (47)

where P is in general a polynomial function of the indicated
variables, the subscripts denote the partial derivatives, the
steps of the improved HBM for n-soliton solutions can be
outlined as follows:

Step 1: Supposing the solution of Eq. (47) is of the form

u(x, t) =
∂m+sf(w)

∂xm∂ts
+

m+s−1∑
i=0

ai(x, t)f
(i)[w(x, t)], (48)

where m ≥ 0, s ≥ 0 are integers which can be determined by
balancing the highest nonlinear terms and the highest order
partial derivative terms, and ai(x, t) is a polynomial of the
partial derivative terms of w(x, t) generated in the process of
calculating the derivatives of f(w) with respective to w(x, t).

Step 2: Substituting Eq. (48) into Eq. (47), collecting all
terms with the highest degree of derivatives of w(x, t) and
setting its coefficients to zero, one obtains an ODE for f(w)
and then solves it, in most cases f(w) is a logarithm function.

Step 3: Supposing

w(x, t) =

∑p1

i1=0

∑p2

i2=0 · · ·
∑pn

in=0 ai1i2···ine

∑n

g=1
igξg∑q1

j1=0

∑q2
j2=0 · · ·

∑qn
jn=0 bj1j2···jne

∑n

g=1
jgξg

,

(49)
where ξg = kgx + cgt, p1, p2, · · ·, pn, q1, q2, · · ·, qn
are selected integers, ai1i2···in , bj1j2···jn , kg and cg are
undetermined constants.

Step 4: Substituting f(w) determined in Step 2 along with
Eq. (49) into Eq. (47) and equating each coefficient of the
same powers of the exponential functions to zeros, then a set
of nonlinear ODEs are derived. Solving the set of nonlinear
ODEs, one determines all the constants ai1i2···in , bj1j2···jn ,
kg and cg.

Step 5: Substituting f(w), w(x, t), m and s determined
in above Steps into Eq. (48), the n-solution of Eq. (47) is
finally determined.

Obviously, Steps 1, 2 and 5 are same as the corresponding
Steps in the HBM [7, 24] but Steps 3 and 4 are different.
This paper shows that the improved HBM can also be used to
construct n-soliton solutions of some other nonlinear PDEs
in mathematical physics.
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