Artificial Boundary Method for Anisotropic Problems in an Unbounded Domain with a Concave Angle

Yajun Chen, and Qikui Du

Abstract—In this paper, the artificial boundary method for anisotropic problems in an infinite domain with a concave angle is investigated. The exact and approximate boundary conditions on an artificial boundary are given. Finite element approximations are applied to the problem in a bounded computational domain and error estimates are obtained. Finally, some numerical examples show the effectiveness of this method.

Index Terms—artificial boundary method, anisotropic problem, error estimate.

I. INTRODUCTION

In scientific and engineering computing, many problems can be modeled by boundary value problems of partial differential equations in unbounded domains. Artificial boundary method [1]-[2], which is also called coupling method with natural boundary reduction [3]-[5] or DtN method [6]-[7], is a common method to solve such problems numerically. The method may be summarized as follows: (i) Introduce an artificial boundary, which divides the original unbounded domain into two non-overlapping subdomains: a bounded computational domain and an infinite residual domain. (ii) By analyzing the problem in the infinite residual domain, obtain a relation on the artificial boundary involving the unknown function and its derivatives. (iii) Using the relation as a boundary condition, to obtain a well-posed problem in the bounded computational domain. (iv) Solve the problem in the bounded computational domain be the standard finite element methods or some other numerical methods.

In the past three decades, artificial boundaries of various shapes have been derived for problems in unbounded domains. Circular [8]-[9] and elliptical [10]-[12] artificial boundaries for two dimensional exterior problems; spheroidal [13] and ellipsoidal [14] artificial boundaries for three dimensional exterior problems; circular arc artificial boundaries for linear [15]-[16] and quasilinear [17] problems in concave angle domains. Other related works may also be found from [18]-[21].

Recently, the authors used a new elliptical arc artificial boundary to solve Poisson problems in concave angle domains [22]. In this paper, we follow the idea of [22] for solving some anisotropic problems in an unbounded domain with a concave angle. Let Ω be an exterior concave angle domain with angle ω, and $0 < \omega \leq 2\pi$. The boundary of domain Ω is decomposed into three disjoint parts: Γ, Γ_0 and Γ_ω (see Fig. 1), i.e. $\partial \Omega = \Gamma_\omega \cup \Gamma_0 \cup \Gamma$, $\Gamma_0 \cap \Gamma_\omega = \emptyset$, $\Gamma \cap \Gamma_0 = \emptyset, \Gamma \cap \Gamma_\omega = \emptyset$. The boundary Γ is a simple smooth curve part, Γ_0 and Γ_ω are two half lines.

We consider the following anisotropic problems in two cases:

\begin{align}
- \nabla \cdot (A \nabla u) &= f, \quad \text{in } \Omega, \\
A \nabla u \cdot n &= 0, \quad \text{on } \Gamma_0 \cup \Gamma_\omega, \\
u &= g, \quad \text{on } \Gamma, \\
 u \text{ is bounded at infinity,}
\end{align}

and

\begin{align}
- \nabla \cdot (A \nabla u) &= f, \quad \text{in } \Omega, \\
u &= 0, \quad \text{on } \Gamma_0 \cup \Gamma_\omega, \\
A \nabla u \cdot n &= h, \quad \text{on } \Gamma, \\
 u \text{ vanish at infinity,}
\end{align}

where $A = \begin{pmatrix} k^2 & 0 \\ 0 & 1 \end{pmatrix}$, k is a constant and $0 < k < 1$, u is the unknown function, $f \in L^2(\Omega)$ and $g, h \in L^2(\Gamma)$ are given functions, $\text{supp}(f)$ is compact.

The rest of the paper is organized as follows. In section 2, we obtain the exact artificial boundary condition. In section 3, we give the equivalent variational problem and it’s well-posedness. In section 4, we discuss the finite element approximation and an new error estimate that depends on the finite element mesh, the order of artificial boundary condition and the location of the artificial boundary. Finally, in section 5, we give some numerical examples to show the effectiveness of the method.

Fig. 1. The Illustration of Domain Ω
II. THE EXACT ARTIFICIAL BOUNDARY CONDITION

We introduce an circular arc artificial boundary \(\Gamma_R = \{(x, y)|x^2+y^2 = R^2, (x, y) \in \Omega\} \) to enclose \(\text{supp}(f) \), which divides \(\Omega \) into a bounded domain \(\Omega_i \), and an unbounded domain \(\Omega_e \) (see Fig. 2).

In the first case, problem (1) confines in \(\Omega_i \) is

\[
\begin{cases}
- \nabla \cdot (A \nabla u) = f, & \text{in } \Omega_i, \\
A \nabla u \cdot n = 0, & \text{on } \Gamma_{0i} \cup \Gamma_{\omega i}, \\
u = g, & \text{on } \Gamma,
\end{cases}
\]
where \(\Gamma_{0i} = \Gamma_0 \cap \Omega_i, \Gamma_{\omega i} = \Gamma_\omega \cap \Omega_i \).

Problem (1) confines in \(\Omega_e \) is

\[
\begin{cases}
- \nabla \cdot (A \nabla u) = 0, & \text{in } \Omega_e, \\
A \nabla u \cdot n = 0, & \text{on } \Gamma_{0e} \cup \Gamma_{\omega e}, \\
u = \text{bounded at infinity}, & \text{on } \Gamma_e
\end{cases}
\]

By the variable transform \(x = k \xi, y = \eta \), the anisotropic equation becomes a Poisson equation in \(\tilde{\Omega} \) and the circular arc boundary \(\tilde{\Gamma}_R \) becomes an elliptic arc boundary \(\tilde{\Gamma}_R = \{(\xi, \eta)|k^2 \xi^2 + \eta^2 = R^2, (\xi, \eta) \in \tilde{\Omega}\} \). Let \(f_0 \) denote the half distance between the two foci of an ellipse, we introduce an elliptic system of co-ordinates \((\mu, \varphi)\) such that the artificial boundary \(\tilde{\Gamma}_R \) coincides with the elliptic arc \(\{(\mu, \varphi)|\mu = \mu_R, 0 < \varphi < \omega\} \). Thus, the Cartesian co-ordinates \((\xi, \eta)\) are related to the elliptic co-ordinates \((\mu, \varphi)\), that is \(\xi = f_0 \cosh \mu \cos \varphi, \eta = f_0 \sinh \mu \sin \varphi \).

Problem (3) becomes the following problem

\[
\begin{cases}
- \Delta u = f, & \text{in } \tilde{\Omega}_i, \\
\frac{\partial u}{\partial n} = 0, & \text{on } \tilde{\Gamma}_{0i} \cup \tilde{\Gamma}_{\omega i}, \\
u = g, & \text{on } \tilde{\Gamma},
\end{cases}
\]

Problem (4) becomes the following problem

\[
\begin{cases}
- \Delta u = 0, & \text{in } \tilde{\Omega}_e, \\
\frac{\partial u}{\partial n} = 0, & \text{on } \tilde{\Gamma}_{0e} \cup \tilde{\Gamma}_{\omega e}, \\
u = \text{bounded at infinity}, & \text{on } \tilde{\Gamma}_e
\end{cases}
\]

By separation of variables, we know that the solution of problem (6) has the form

\[
u(\mu, \varphi) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n e^{(\mu_R - \mu)} \frac{\sin n\pi \varphi}{\sin \omega}, \tag{7}
\]

where

\[
a_n = \frac{2}{\omega} \int_0^\omega u(\mu_R, \phi) \cos \frac{n\pi \varphi}{\omega} d\phi, \quad n = 0, 1, 2, \ldots. \tag{8}
\]

We differentiate (7) with respect to \(\mu \) and set \(\mu = \mu_R \) to obtain

\[
\frac{\partial u}{\partial n} \bigg|_{\Gamma_R} = - \frac{2 \pi}{\omega^2} \sum_{n=1}^{+\infty} n \int_0^\omega u(\mu_R, \phi) \cos \frac{n\pi \varphi}{\omega} \cos \frac{n\pi \phi}{\omega} d\phi. \tag{9}
\]

Since

\[
\frac{\partial u}{\partial n} \bigg|_{\Gamma_R} = - \frac{1}{\sqrt{J}} \frac{\partial u}{\partial \mu} \bigg|_{\Gamma_R},
\]

where \(J = \frac{\partial \mu}{\partial \omega} (\sin^2 \varphi + k^2 \cos^2 \varphi) \), we obtain the exact artificial boundary condition on \(\tilde{\Gamma}_R \)

\[
\frac{\partial u}{\partial n} \bigg|_{\tilde{\Gamma}_R} = - \frac{2 \pi}{\omega^2} \sum_{n=1}^{+\infty} n \int_0^\omega u(\mu_R, \phi) \cos \frac{n\pi \varphi}{\omega} \cos \frac{n\pi \phi}{\omega} d\phi, \tag{10}
\]

In practice, we need to truncate the above infinite series by finite terms, let

\[
\mathcal{K}_1^N = \frac{2 \pi}{\omega^2 \sqrt{J}} \sum_{n=1}^{N} n \int_0^\omega u(\mu_R, \phi) \cos \frac{n\pi \varphi}{\omega} \cos \frac{n\pi \phi}{\omega} d\phi, \tag{11}
\]

then we obtain the approximate artificial boundary condition on \(\tilde{\Gamma}_R \)

\[
\frac{\partial u}{\partial n} \bigg|_{\tilde{\Gamma}_R} = \mathcal{K}_1^N. \tag{12}
\]

For the second case, the exact artificial boundary condition on \(\tilde{\Gamma}_R \) is

\[
\frac{\partial u}{\partial n} \bigg|_{\tilde{\Gamma}_R} = - \frac{2 \pi}{\omega^2 \sqrt{J}} \sum_{n=1}^{+\infty} n \int_0^\omega u(\mu_R, \phi) \sin \frac{n\pi \varphi}{\omega} \sin \frac{n\pi \phi}{\omega} d\phi, \tag{13}
\]

and the approximate artificial boundary condition on \(\tilde{\Gamma}_R \) is

\[
\frac{\partial u}{\partial n} \bigg|_{\tilde{\Gamma}_R} = - \frac{2 \pi}{\omega^2 \sqrt{J}} \sum_{n=1}^{N} n \int_0^\omega u(\mu_R, \phi) \sin \frac{n\pi \varphi}{\omega} \sin \frac{n\pi \phi}{\omega} d\phi, \tag{14}
\]

In the following sections, we just consider the equivalent variational problem and finite element approximation of problem (1), we can obtain corresponding result of problem (2) in the same way.
III. THE EQUIVALENT VARIATIONAL PROBLEM

By the exact artificial boundary condition (10), the original problem (1) confines in \(\tilde{\Omega}_i \) is

\[
\begin{align*}
-\Delta u &= f, \quad \text{in } \tilde{\Omega}_i, \\
\frac{\partial u}{\partial n} &= 0, \quad \text{on } \tilde{\Gamma}_0 \cup \tilde{\Gamma}_{\omega i}, \\
u &= g, \quad \text{on } \tilde{\Gamma}, \\
\frac{\partial u}{\partial n} &= K_j u(\mu_R, \varphi), \quad \text{on } \tilde{\Gamma}_R.
\end{align*}
\]

(15)

By the approximate artificial boundary condition (12), the approximation problem can be described as follows

\[
\begin{align*}
-\Delta u^N &= f, \quad \text{in } \tilde{\Omega}_i, \\
\frac{\partial u^N}{\partial n} &= 0, \quad \text{on } \tilde{\Gamma}_0 \cup \tilde{\Gamma}_{\omega i}, \\
u^N &= g, \quad \text{on } \tilde{\Gamma}, \\
\frac{\partial u^N}{\partial n} &= K_j^N u(\mu_R, \varphi), \quad \text{on } \tilde{\Gamma}_R.
\end{align*}
\]

(16)

Let \(V = H^1(\tilde{\Omega}_i), V_g = \{ v \in H^1(\tilde{\Omega}_i) \colon v|_{\tilde{\Gamma}} = g \}, \) then the problem (15) is equivalent to the following variational problem

\[
\begin{align*}
\text{Find } u \in V_g, \text{ such that } \\
a(u, v) + b(u, v) = f(v), \quad \forall v \in V_0,
\end{align*}
\]

(17)

problem (16) is equivalent to the following variational problem

\[
\begin{align*}
\text{Find } u^N \in V_g, \text{ such that } \\
a(u^N, v) + b_N(u^N, v) = f(v), \quad \forall v \in V_0,
\end{align*}
\]

(18)

where

\[
a(u, v) = \int_{\tilde{\Omega}_i} A \nabla u \cdot \nabla v \, dx \, dy = k \int_{\tilde{\Omega}_i} \nabla u \cdot \nabla v \, d\xi \, d\eta,
\]

(19)

\[
b(u, v) = k \sum_{n=1}^{+\infty} \frac{2}{\pi} \int_0^{\omega} \int_0^{\omega} \frac{\partial u(\mu R, \phi) \partial v(\mu R, \varphi)}{\partial \phi} \cdot \sin \frac{n \pi \phi}{\omega} \sin \frac{n \pi \varphi}{\omega} \, d\phi \, d\varphi,
\]

(20)

\[
b_N(u, v) = k \sum_{n=1}^{+\infty} \frac{2}{\pi} \int_0^{\omega} \int_0^{\omega} \frac{\partial u(\mu R, \phi) \partial v(\mu R, \varphi)}{\partial \phi} \cdot \sin \frac{n \pi \phi}{\omega} \sin \frac{n \pi \varphi}{\omega} \, d\phi \, d\varphi,
\]

(21)

\[
f(v) = \int_{\tilde{\Omega}_i} f \, v \, dx \, dy = k \int_{\tilde{\Omega}_i} f \, v \, d\xi \, d\eta.
\]

(22)

Then we have the following results.

Lemma 1. \(b(u, v) \) and \(b_N(u, v) \) are both a symmetric, semi-definite and continuous bilinear form on \(V \times V \).

Proof. Let

\[
u(\mu_R, \phi) = \sum_{n=1}^{+\infty} a_n \cos \frac{n \pi \phi}{\omega}, \\
v(\mu_R, \varphi) = \sum_{n=1}^{+\infty} c_n \cos \frac{n \pi \varphi}{\omega},
\]

taking the derivative with respect to \(\phi \) and \(\varphi \) we have

\[
\frac{\partial u(\mu_R, \phi)}{\partial \phi} = \sum_{n=1}^{+\infty} n \pi a_n \sin \frac{n \pi \phi}{\omega}, \\
\frac{\partial v(\mu_R, \phi)}{\partial \varphi} = \sum_{n=1}^{+\infty} n \pi c_n \sin \frac{n \pi \varphi}{\omega},
\]

then we have

\[
|b(u, v)| = \left\| \sum_{n=1}^{+\infty} a_n c_n \right\| \\
\leq \frac{k \pi}{2} \left\| u \right\|_{2, R} \left\| v \right\|_{2, R} \\
\leq C \left\| u \right\|_{1, \tilde{\Omega}_i} \left\| v \right\|_{1, \tilde{\Omega}_i}.
\]

In the same way, we obtain

\[
|b_N(u, v)| = \left\| \sum_{n=1}^{+\infty} a_n c_n \right\| \\
\leq \frac{k \pi}{2} \left\| u \right\|_{2, R} \left\| v \right\|_{2, R} \\
\leq C \left\| u \right\|_{1, \tilde{\Omega}_i} \left\| v \right\|_{1, \tilde{\Omega}_i}, \\
\left\| b(u, u) \right\| = \frac{k \pi}{2} \sum_{n=1}^{+\infty} \left\| a_n c_n \right\| \\
\geq 0, \\
\left\| b_N(u, u) \right\| = \frac{k \pi}{2} \sum_{n=1}^{+\infty} \left\| a_n c_n \right\| \\
\geq 0.
\]

By using this lemma we have the following theorem.

Theorem 1. The variational problem (17) and (18) have a unique solution on \(V \), respectively.

Proof. It is easy to see that \(a(u, v) \) is a symmetric, bounded and coercive bilinear form on \(V \times V \). Note that \(f(v) \) is a continuous linear function on \(V \) and lemma 1, we completed the proof of this theorem by Lax-Milgram theorem.

IV. FINITE ELEMENT APPROXIMATION

Assume that \(J_h \) is a regular and quasi-uniform triangulation of \(\tilde{\Omega}_i \) such that

\[\tilde{\Omega}_i = \bigcup_{K \in J_h} K, \]

where \(K \) is a (curved) triangle and \(h \) is the maximal diameter of the triangles. For the sake of simplicity, we assume \(g = 0 \). Let

\[V_h = \{ v \in V_0 \mid v|_K \text{ is a linear polynomial, } \forall K \in J_h \}. \]

The approximation problem of (18) can be described as follows

\[
\text{Find } u^N_h \in V_h, \text{ such that } \\
a(u^N_h, v) + b_N(u^N_h, v) = f(v), \quad \forall v \in V_h.
\]

(23)
Similar with theorem 1, we can see that the variational problem (23) has a unique solution \(u^N \in V_h \).

Let \(\tilde{\Gamma}_{N_0} = \{(\mu_0, \varphi) | \mu_0 < \mu_R, 0 < \varphi < \omega \} \) be the smallest elliptical arc to enclose \(\text{supp}(f) \), we have

Lemma 2. Suppose \(u \) is the solution of the problem (1), \(u|_{\Gamma_{N_0}} \in H^{p-\frac{1}{2}}(\tilde{\Gamma}_{N_0}) \), \(p \) is a constant and \(p \geq 1 \), then for any \(v \in V \) we have

\[
|b_N(u, v) - b(u, v)| \leq C e^{(\mu_0 - \mu_R)(\frac{N+1}{2N})} \|u\|_{H^{p-\frac{1}{2}}(\tilde{\Gamma}_{N_0})} \|v\|_{1, \tilde{\Gamma}_1},
\]

where \(C \) is a constant independent of \(h, N \) and \(\mu_R \).

Proof. By the formula (7) we have

\[
u(\mu_0, \varphi) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n e^{(\mu_0 - \mu_R)n} \frac{\omega}{\omega} \cos \frac{n\pi \varphi}{\omega}.
\]

For any \(v \in V \), let

\[
v(\mu_R, \varphi) = \frac{c_0}{2} + \sum_{n=1}^{+\infty} c_n e^{(\mu_0 - \mu_R)n} \frac{\omega}{\omega} \cos \frac{n\pi \varphi}{\omega}.
\]

Then we have

\[
|b_N(u, v) - b(u, v)| = \left| \sum_{n=N+1}^{+\infty} \frac{2k}{n^2} e^{(\mu_0 - \mu_R)n} \sum_{n=N+1}^{+\infty} \frac{\partial u}{\partial \varphi} \frac{\partial v}{\partial \varphi} \sin \frac{n\pi \varphi}{\omega} \sin \frac{n\pi \varphi}{\omega} \partial \varphi \partial \varphi \right| \leq C e^{(\mu_0 - \mu_R)(\frac{N+1}{2N})} \|u\|_{H^{p-\frac{1}{2}}(\tilde{\Gamma}_{N_0})} \|v\|_{1, \tilde{\Gamma}_1}.
\]

Theorem 2. Suppose \(u \in H^2(\tilde{\Omega}) \) is a solution of the problem (1), \(u|_{\Gamma_{N_0}} \in H^{p-\frac{1}{2}}(\tilde{\Gamma}_{N_0}) \), \(p \) is a constant and \(p \geq 1 \), \(u_N^N \in V_h \) is the solution of the problem (23), the following error estimate holds

\[
\|u - u_N^N\|_{1, \tilde{\Gamma}_1} \leq C(h\|u\|_{2, \tilde{\Gamma}_1} + e^{(\mu_0 - \mu_R)(\frac{N+1}{2N})} \|u\|_{p-\frac{1}{2}, \tilde{\Gamma}_{N_0}}),
\]

where \(C \) is a constant independent of \(h, N \) and \(\mu_R \).

Proof. From variational problem (17) and (18) we have

\[
a(u - u_N^N, v) + b_N(u - u_N^N, v) = 0, \quad \forall v \in V_h.
\]

For any \(v \in \tilde{\Omega} \), by lemma 2 we have

\[
\|u_N^N - v\|^2_{1, \tilde{\Gamma}_1} \leq C\left(a(u_N^N - v, u_N^N - v) + b_N(u_N^N - v, u_N^N - v)\right) = C\left(a(u - v, u - v) + b_N(u - v, u - v)\right).
\]

V. NUMERICAL EXAMPLES

We computed two numerical examples to test the effectiveness of the method we developed. The finite element method with linear elements is used in the computation.

Example 1. We consider problem (1), where \(\Omega = \{(r, \theta) | r > 1, 0 < \theta < 2\pi\} \), \(\Gamma = \{(1, \theta) | 0 < \theta < 2\pi\} \), \(\Gamma_0 = \{(r, 0) | r > 1\} \) and \(\Gamma_\omega = \{(r, 2\pi) | r > 1\} \). By using coordinate transformation \(x = k\xi, y = \eta \), we turn the original problem into the problem as the following

\[
\begin{align*}
\Delta u &= f, \quad \text{in } \tilde{\Omega}, \\
\partial u / \partial n &= 0, \quad \text{on } \Gamma_0 \cup \tilde{\Gamma}_\omega, \\
u &= g, \quad \text{on } \Gamma,
\end{align*}
\]

where \(\tilde{\Omega} = \{(\mu, \varphi) | \mu > \mu_0, 0 < \varphi < 2\pi\} \), \(\tilde{\Gamma}_R = \{(\mu, 0) | \mu > \mu_0\} \), \(\tilde{\Gamma}_\omega = \{(\mu, 2\pi) | \mu > \mu_0\} \), \(f_0 = \frac{\pi^2 - \mu_0^2}{\pi^2} \) and \(\mu_0 = \ln \frac{1+\sqrt{5}}{2} \). Let \(u(x, y) = \frac{x^2+y^2}{2} \) be the exact solution of original problem and \(g = u|_{\tilde{\Omega}} \).

Take the confocal elliptical arc artificial boundary \(\tilde{\Gamma}_R = \{(\mu_R, \varphi) | \mu_R > \mu_0, 0 < \varphi < 2\pi\} \), Fig. 3 shows the mesh \(h \) of subdomain \(\tilde{\Omega} \), with \(k = 0.7 \) and \(\mu_R = 2\mu_0 \). Table 1 shows \(L^\infty(\tilde{\Omega}_1) \) errors with different Mesh \(N = 20, \mu_R = 2\mu_0 \). Fig. 4 shows \(L^\infty(\tilde{\Omega}_2) \) errors with different \(N(k = 0.7, \mu_R = 2\mu_0) \). Fig. 5 shows \(L^\infty(\til\omega) \) errors with different \(\mu_R(k = 0.7, N = 20) \).

Example 2. We consider problem (1), where \(\Omega = \{(r, \theta) | r > 1, 0 < \theta < \frac{\pi}{2}\} \), \(\Gamma = \{(1, \theta) | 0 < \theta < \frac{\pi}{2}\} \), \(\Gamma_0 = \{(r, 0) | r > 1\} \) and \(\Gamma_\omega = \{(r, \frac{\pi}{2}) | r > 1\} \). By using coordinate transformation \(x = k\xi, y = \eta \), we turn the original problem into the problem (26), where \(\Omega = \{(\mu, \varphi) | \mu > \mu_0, 0 < \varphi < \frac{\pi}{2}\} \), \(\tilde{\Gamma} = \{(\mu_0, \varphi) | 0 < \varphi < \frac{\pi}{2}\} \) and \(\mu_0 = \ln \frac{1+\sqrt{5}}{2} \). The mesh \(h \) of subdomain \(\til\omega \), with \(k = 0.7 \) and \(\mu_R = 2\mu_0 \). Table 2 shows \(L^\infty(\til\omega) \) errors with different \(\mu_R(k = 0.7, N = 20) \).
Take the confocal elliptical arc artificial boundary ${\Gamma_\omega} = \{(\mu, 0)|\mu > \mu_0, \mu_0 = \ln\frac{1+k}{\sqrt{k}}\}$, where $\mu_0 = \frac{\mu_0}{\sqrt{k}}$, and $\mu_0 = \ln\frac{1+k}{\sqrt{k}}$. Let $u(x, y) = e^{x^2+y^2}$ be the exact solution of original problem and $g = u|_{\Gamma}$. Take the confocal elliptical arc artificial boundary $\Gamma_R = \{(\mu_R, \varphi)|\mu_R > \mu_0, 0 < \varphi < \frac{\pi}{2}\}$. Fig. 6 shows the Mesh h of subdomain Ω_i with $k = 0.5$ and $\mu_R = 2\mu_0$. Table 2 shows $L^\infty(\Omega_i)$ errors with different Mesh($N = 20, \mu_R = 2\mu_0$). Table 2 shows $L^\infty(\Omega_i)$ errors with different Mesh($(k = 0.5, \mu_R = 2\mu_0)$). Fig. 8 shows $L^\infty(\Omega_i)$ errors with different mesh ($k = 0.5, N = 20$).

The numerical results show that the numerical errors can be affected by the finite element mesh, the order of artificial boundary condition and the location of artificial boundary.

Numerical results are in agreement with the error estimates and show the efficiency of our method.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valuable comments which improve the paper.

REFERENCES

(Advance online publication: 26 November 2016)

(Advance online publication: 26 November 2016)