
 

Dynamical Behavior and Bifurcation Analysis of 
SEIR Epidemic Model and its Discretization 

Wen-ju Du, Shuang Qin, Jian-gang Zhang and Jian-ning Yu 

 
Abstract—The dynamical behaviors of a SEIR epidemic 

model are investigated in this paper. More precisely, we 
presented a new discrete-time SEIR epidemic model by using 
the Forward-Euler difference method. And the existence, 
stability and direction of Hopf bifurcation of the SEIR epidemic 
model and its discretization model are also studied. In addition, 
the numerical simulations were presented to illustrate the 
theoretical analysis. Finally, some comparisons of bifurcation 
between the continuous-time epidemic system and its 
discrete-time system are given. 
 

Index Terms—Stability, Discretization, Hopf bifurcation, 
Center manifold theorem, Forward Euler scheme 
 

I. INTRODUCTION 

he dynamical system refers to the dynamic system of 
change over time, which includes continuous dynamical 

systems and discrete dynamical systems. Despite the 
simplicity of dynamical systems, these systems have a rich 
dynamical behavior, ranging from stable equilibrium points 
to periodic and even chaotic oscillations. And Hopf 
bifurcation is an important dynamic bifurcation which 
closely related to some self-excited vibration phenomenon 
and has a high theoretical value in dynamic bifurcation and 
limited cycle research. Moreover, the research and 
application on bifurcation of autonomous systems has 
become a very popular topic [1-9]. But compared with the 
continuous systems, the discrete systems possess its unique 
dynamic characteristics. In the real life, many practical 
problems can be depicted by the discrete systems, and we can 
also to discretize the continuous systems. Therefore, the 
study of discrete system is very important and achieved great 
development in the field of mathematics, physics and 
engineering [10-13]. Hu et al. [14] presented a new epidemic 
model by using the Euler difference method, and discussed 
the Neimark-Sacker bifurcation of the system based on the 
center manifold theorem and the bifurcation theory. Elabbasy 
et al. [15] studied the Pitchfork bifurcation, Flip bifurcation 
and Neimark-Sacker bifurcation of a two-dimensional 
discrete Lorenz system. He et al. [16] focus on a third-order 
rational difference equation with positive parameters, and the 

existence and direction of the Neimark-Sacker bifurcation of 
the system are investigated in detail. 
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Epidemic is caused by the pathogen, which can be spread 
from human to human, human to animals and animals to 
animals. And the epidemic can makes a range of biological 
reduce or lose labor, death and spread rapidly in a certain 
period of time. Therefore, it has caused great attention of 
scientists and mathematicians. As early as 1927, Kermark 
and Mckendrick were established the mathematical model of 
infectious diseases by using the method of dynamics, and 
constructed the famous SIR bin model [17]. After the middle 
of the 20th century, the dynamics of infectious disease has 
been obtained rapid development, and the epidemic 
dynamical models have been widely investigated [18, 19]. At 
present, the bifurcation researches of discrete systems are 
mostly concentrated in the two-dimensional systems, and 
there are few studies focusing on the three dimensional 
discrete system. But compared with the two-dimensional 
model of infectious diseases, three-dimensional model can 
better reflect the mechanism of the spread of disease [20]. 

Wang [21] investigated an SEIR epidemic model with 
infectious force in latent period as follows: 
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where and denote the numbers of susceptible, 
lurker, infective, recovered individuals and total numbers of 
the individuals, respectively. Assume that the susceptible 
crowd has a constant input rate

, , ,S E I R N

A , and  is the effective 

vaccination rate. The proportional coefficient of Lurker 
become infected is , and the lurker crowd possess bilinear 
incidence rate

v

1ES . The infected people have bilinear 

incidence rate 2IS , and is the diseased death rate,  is the 

cure rate,  is the natural recovery rate, and 0 
R

is the 

natural mortality rate. Here , and all the 
coefficients are positive.  

N S  E I 

Due to the first three equations of model (1) is 
about  , ,S E I not including , and the fourth equation is the 

linear equation of . Therefore, the dynamical behavior of 
model (1) is equivalent to the dynamical behaviors of the 
following model: 
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Applying the Forward-Euler difference method to model 
(2), we obtained the following three-dimensional 

T 
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discrete-time SEIR epidemic model with infectious force in 
latent period: 
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where is the step size.  0h h  1

The paper is organized as follows. In section 2, we discuss 
the stability of fixed points and the Hopf bifurcation by 
choosing as the bifurcation parameter in model (2). The 
stability of fixed points and the existence, direction and 
stability of the Hopf bifurcation of the discretized system are 
investigated in section 3. In section 4, we present the 
numerical simulations illustrate our results with the 
theoretical analysis. We have given some comparisons of 
bifurcation between the continuous-time epidemic system 
and its discrete-time system in section 5. In section 6, 
conclusion of the paper is given. 

II. DYNAMICAL BEHAVIORS OF THE SEIR EPIDEMIC MODEL 

A.  Linear Analysis of the Fixed Points and Existence of 
Hopf Bifurcation 

Through a simple calculation, we can easily get the 
following two fixed points of model (2): 

1 2 0,0,0 , , , ,
A

P P S
 

 
   

0 0E I                (4) 

where 
  
 

  
   

0
1 2

2
2 1

0

1 2

,

,

v
S

v

A v v v A
E

v v

    
     

         

      

   


   

       


      

  
    

2
2 1

0

1

.
v A v v v A

I
v

         

          

         
        2v  

The Jacobian matrix of model (2) at the fixed point is 

given by 
1P
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and its characteristic polynomial is  
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So, we can get the eigenvalues of 1J as follows 
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According to Routh-Hurwitz criterion, it is easy to obtain 
the following proposition. 

Proposition 1. If   1 2 0
A A v

v
 

    
   

 
          , 

 0,   and 1
0 2

A
v


  

 
     


  , then the 

fixed point 1P is asymptotically stable. 

Proposition 2. Assume that
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. If 

characteristic polynomial (6) has a pair of purely imaginary 
eigenvalues 2,3 ,i    and , then the Hopf 

bifurcation occurs at the fixed point when the bifurcation 

parameter

  0Re 0  

1P

 pass through the critical value 0 . 

Proof. Suppose that , ( 0)i    is a root of the equation 

(6), so we have 
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then separating the real and imaginary parts of above 
equation, and we get  
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Through simple calculation, we have  
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Take the derivative of both sides of Eq. (6) with respect 
to , we obtain  
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According to the explicit criterion of Hopf bifurcation [22], 
we can get 0 is the critical value of bifurcation, suppose that 

2

1 2 0,
A A v
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 when  pass through the 

critical value 0 , the model (2) occurs Hopf bifurcation at the 

fixed point . 1P
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B. Direction and Stability of the Hopf Bifurcations 

In this section, we study the direction and stability of Hopf 
bifurcation by using the normal form method and center 
manifold theory [23]. First, the model (2) can be written as 

4
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1 1
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Through direct calculation, we also has 
   21 21 5 1 3 6 2 4, 2 2G p H           ,i    (16) 

Theorem 1. Consider model (2), the first Lyapunov 
coefficient associated to the fixed point 1P is given by 

        
1 21 5 1

1 1
Re 2 ,

2 2
l G 3                      (17) 

If is different from zero, then model (2) has a transversal 

Hopf point at . More precisely, if , the Hopf 

bifurcation at the fixed point

1l

1P 1 0l 

1P  is supercritical and there 

exists a stable periodic orbit near the asymptotically stable 
fixed point ; if , the Hopf bifurcation at the fixed 

point
1P 1l 0

1P is subcritical. 
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III. DYNAMICAL BEHAVIORS OF THE DISCRETIZED 

SEIR EPIDEMIC MODEL  

A. Stability of the Fixed Points of the Discretized Model 

Next, we study the asymptotic stability of model (3). The 
fixed points of model (3) satisfy: 
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The Jacobian matrix *J of model (3) at the fixed 

point is given by * * * *, ,P S E I 
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For simplification, we only consider the fixed point . 

And the characteristic equation of model (3) at the fixed 
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From the local stability theory of fixed point, it is easy to 
obtain the following Proposition: 
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and by calculation we can get According 

to bifurcation theory [24], the Hopf bifurcation occurs at the 
fixed point

 2,3 0 1,2,3,4.m  

 1 , 0, 0P A    . 

C. Direction and Stability of the Hopf Bifurcation 

Next, we investigate the stability and direction of the Hopf 
bifurcation by using the Kuznetsov’s normal form method 
and center manifold theory [25]. First, the model (3) can be 
written as 
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Theorem 2.  The direction and stability of Hopf bifurcation 
at the fixed point 1P is determined by  1 0l  . If 

, the Hopf bifurcation of model (3) at    1 0 0 0l   
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  is supercritical 

(subcritical), and the unique closed invariant curve 
bifurcating from 1P is asymptotically stable (unstable). 

 

 
Fig. 1. Time history and phase diagram of model (2) with 0.5   

IV. NUMERICAL SIMULATIONS  

A. Hop bifurcation simulation of continuous Model 

First, we give a numerical example of model (2). 
Let 1 210, 0.2, 0.5, 0.1, 0.05, 0.014, 0.03,A            

0.13,v  and through compute we get the critical value 

0 0.543.  The fixed point 1P is stable when 00.5 ,    

and unstable when 00.6 ,   as show in Fig. 1 and 2, 

respectively. From the formulas in previous section, we can 
get  1 0 0.31l  64 0  . Thus, the periodic solutions 

bifurcating from the fixed point 1P are subcritical and 

unstable. 

 
Fig. 2. Time history and phase diagram of model (2) with 0.6   

B. Hop bifurcation simulation of discrete Model 

Next, we choose one group parameters: 10, 0.4,A     

1 20.12, 0.2, 0.1, 0.1, 0.3, 0.1, 0.1v h            and 

by compute we get the critical value 0 0.329  . The fixed 

point 1P is stable when 0.31 0 ,   and unstable when 

00.34 ,   as shown in Fig. 3 and Fig. 4, respectively. 

Based on the previous conclusions and through complex 
calculations, we have  1 0 0.07 0l   64 . Therefore the 

Hopf bifurcation of model (3) at the fixed point 1P  is 

subcritical, and the unique invariant curve which is resulting 
from the bifurcation at fixed point is unstable. 
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Fig. 3. Time history and phase diagram of model (3) with 0.31   

V. COMPARISONS 

For the continuous-time model (2) at the fixed point 
 

with 

1P
2

1 2 0,
A A v

v
 


   

 
      

we know that the critical 

value of Hopf bifurcation as follows: 
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For the discrete-time model (3) at the fixed point 
 
with 

 
let ,

 
we obtain the critical value 

of Hopf bifurcation as follows: 
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By simple calculation, we can get the following 
conclusions. 
Proposition 4. Hopf bifurcations of continuous-time model 

(2) and discrete-time model (3) occur simultaneously when 
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Fig. 4. Time history and phase diagram of model (3) with 0.34   

Proposition 5. The continuous-time model (2) undergoes 
Hopf bifurcation earlier than the discrete-time model (3) 
when 
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Proposition 6. The discrete-time model (3) undergoes Hopf 
bifurcation earlier than the continuous-time model (2) when 
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VI. CONCLUSIONS 
In this paper, we introduced a SEIR epidemic model and 

obtained a new discrete-time epidemic model by using the 
Forward-Euler difference method. A necessary and sufficient 
condition for existence of the solution of the SEIR epidemic 
model are obtained, and we also investigated the local 
stability of the fixed point of the epidemic model and its 
discretized counterpart. Besides, the stability and direction of 
Hopf bifurcation are proved by using the Kuznetsov’s normal 
form method and center manifold theory. And the numerical 
simulations were presented to illustrate the above main 
results. Finally we give some comparisons of bifurcation 
between the discrete-time epidemic model and its 
continuous-time model.. 
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