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Please see the next section for the above interrelated
background materials. The proofs of Theorems 1.1-1.6 will
be given in Section 3 of this paper.

II. PRELIMINARIES

A. Support function, radial function and polar of convex
bodies

If K ∈ Kn, then its support function, hK = h(K, ·) :
Rn → (−∞,∞), is defined by (see[2], [24])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn, (10)

where x · y denotes the standard inner product of x and y.
If K is a compact star-shaped (about the origin) set in Rn,

then its radial function, ρK = ρ(K, ·) : Rn \ {0} → [0,∞),
is defined by (see[2], [24])

ρ(K,u) = max{λ ≥ 0 : λ · u ∈ K}, u ∈ Sn−1. (11)

If ρK is continuous and positive, then K will be called a
star body. Two star bodies K, L are said to be dilates (of
one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1.

If K ∈ Kn
o , the polar body, K∗, of K is defined by (see

[2], [24])

K∗ = {x ∈ Rn : x · y ≤ 1, y ∈ K}. (12)

From (12), we easily have (K∗)∗ = K, and

hK∗ =
1

ρK
, ρK∗ =

1

hK
. (13)

For K ∈ Kn
c and its polar body, the well-known Blaschke-

Santaló inequality is stated that (see [23])
Theorem 2.A. If K ∈ Kn

c , then

V (K)V (K∗) ≤ ω2
n, (14)

with equality if and only if K is an ellipsoid.

B. Lp-mixed volume
For K,L ∈ Kn

o , p ≥ 1 and ε > 0, the Firey Lp-
combination, K +p ε · L ∈ Kn

o , is defined by (see [11])

h(K +p ε · L, ·)p = h(K, ·)p + εh(L, ·)p,

where ” · ” in ε · L denotes the Firey scalar multiplication.
If K,L ∈ Kn

o , then for p ≥ 1, the Lp-mixed volume,
Vp(K,L), of K and L is defined by (see [11])

n

p
Vp(K,L) = lim

ε→0+

V (K +p ε · L)− V (K)

ε
.

For K,L ∈ Kn
o and p ≥ 1, there is a positive Borel

measure, Sp(K, ·), on Sn−1 such that (see [11])

Vp(K,L) =
1

n

∫
Sn−1

hpL(u)dSp(K, ·). (15)

From (15), we have

Vp(K,K) = V (K). (16)

The Minkowski inequality for Lp-mixed volume is called
Lp-Minkowski inequality. The Lp-Minkowski inequality was
given by Lutwak (see [10], [11]):
Theorem 2.B. If K,L ∈ Kn

o and p ≥ 1, then

Vp(K,L) ≥ V (K)
n−p
n V (L)

p
n , (17)

with equality for p = 1 if and only if K and L are
homothetic; for p > 1 if and only if K and L are dilates.

C. Lp-dual mixed volume

For K,L ∈ Sno , p ≥ 1 and λ, µ ≥ 0 (not both zero), the
Lp-harmonic radial combination, λ ? K +−p µ ? L ∈ Sno , of
K and L is defined by (see [10])

ρ(λ ? K +−p µ ? L, ·)−p = λρ(K, ·)−p + µρ(L, ·)−p. (18)

Associated with the Lp-harmonic radial combination of
star bodies, Lutwak in [10] introduced the notion of Lp-
dual mixed volume as follows: For K,L ∈ Sno , p ≥ 1 and
ε > 0, the Lp-dual mixed volume, Ṽ−p(K,L), of K and L
is defined by (see [10])

n

−p
Ṽ−p(K,L) = lim

ε→0+

V (K +−p ε ? L)− V (K)

ε
.

The definition above and Hospital’s role give the following
integral representation of Lp-dual mixed volume (see [10]):

Ṽ−p(K,L) =
1

n

∫
Sn−1

ρn+p
K (u)ρ−pL (u)dS(u), (19)

where the integration is with respect to spherical Lebesgue
measure S on Sn−1.

From formula (19), we get

Ṽ−p(K,K) = V (K) =
1

n

∫
Sn−1

ρnK(u)dS(u). (20)

D. Lp-curvature image

For K ∈ Kn
o and p ≥ 1, the Lp-surface area measure,

Sp(K), of K is defined by (see [11])

dSp(K, ·)
dS(K, ·)

= h(K, ·)1−p. (21)

Equation (21) is also called Radon-Nikodym derivative, it
turns out that the measure Sp(K, ·) is absolutely continuous
with respect to surface area measure S(K, ·).

A convex body K ∈ Kn
o is said to have Lp-curvature

function (see [10]), fp(K, ·) : Sn−1 → R, if its Lp-surface
area measure Sp(K, ·) is absolutely continuous with respect
to spherical Lebesgue measures, and

fp(K, ·) =
dSp(K, ·)

dS
. (22)

Let Fn
o , Fn

os and Fn
c denote the set of all bodies in

Kn
o , Kn

os and Kn
c that have a positive continuous curvature

function, respectively.
Lutwak showed the notion of Lp-curvature image in [10]

as follows: For K ∈ Fn
o and p ≥ 1, defined ΛpK ∈ Sn

o ,
Lp-curvature image of K, by

ρ(ΛpK, ·)n+p =
V (ΛpK)

ωn
fp(K, ·). (23)

Note that for p = 1, this definition differs from the defini-
tion of classical curvature image. For the studies of classical
curvature image and Lp-curvature image, see articles [7],
[12], [23], [25], [26], [27], [28], [30].
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E. Lp-projection body and Lp-centroid body

The notion of Lp-projection body is shown by Lutwak (see
[14]). For K ∈ Kn

o and p ≥ 1, the Lp-projection body, ΠpK,
of K is the origin-symmetric convex body whose support
function is given by

hpΠpK
(u) =

1

nωncn−2,p

∫
Sn−1

|u · v|pdSp(K, v), (24)

where u, v ∈ Sn−1, and Sp(K, v) is a positive Borel measure
on Sn−1.

In 1997, Lutwak and Zhang in [13] introduced the concept
of Lp-centroid body as follows: For each compact star-
shaped about the origin K ⊂ Rn and real number p ≥ 1,
the Lp-centroid body, ΓpK, of K is the origin-symmetric
convex body whose support function is defined by

hpΓpK
(u) =

1

cn,pV (K)

∫
K

|u · x|pdx. (25)

Here the integration is with respect to Lebesgue and cn,p =
ωn+p/ω2ωnωp−1.

Using polar coordinates in (25), we easily get

hpΓpK
(u) =

1

(n+ p)cn,pV (K)

∫
Sn−1

|u · v|pρK(v)n+pdv,

(26)
for any u ∈ Sn−1.

Since Lutwak, Yang, and Zhang’s seminal work, there are
many papers on Lp-centroid body and Lp-projection body,
see e.g., [3], [6], [9], [13], [14], [15], [16], [17], [29], [30],
[31], [35], [36].

III. THE PROOFS OF THEOREMS 1.1-1.6

Proof of Theorem 1.1. From (1) and Theorem 2.B, we
get

ω
p
n
n V (K∗)

n−p
n Gp(K)

= inf{nVp(K,Q)V (K∗)
n−p
n V (Q∗)

p
n : Q ∈ Kn

o }

≤ inf{nVp(K,Q)Vp(K∗, Q∗) : Q ∈ Kn
o }. (27)

Taking Q = K in (27), it follows from (14) and (16) that

ω
p
n
n V (K∗)

n−p
n Gp(K)

≤ inf{nV (K)V (K∗) : K ∈ Kn
c } ≤ nω2

n.

That is
Gp(K) ≤ nω

2n−p
n

n V (K∗)
p−n
n .

According to the equality conditions of (14) and (17), we
see that equality holds in (4) if and only if K is an ellipsoid.

In order to prove Theorem 1.2, we need the following
Lemmas.
Lemma 3.1.([14]) If K ∈ Sno and p ≥ 1, then for any
Q ∈ Kn

o ,

Vp(Q,ΓpK) =
ωn

V (K)
Ṽ−p(K,Π∗pQ). (28)

Lemma 3.2.([13]) If K ∈ Sno , then for p ≥ 1

V (K)V (Γ∗pK) ≤ ω2
n, (29)

with equality if and only if K is an ellipsoid centered at the
origin.

Proof of Theorem 1.2. From (1), we have

ω
p
n
n Gp(K) ≤ nVp(K,Q)V (Q∗)

p
n . (30)

For L ∈ Sno , Taking Q = ΓpL in (30), it follows from (28)
that

ω
p
n
n Gp(K) ≤ nVp(K,ΓpL)V (Γ∗pL)

p
n

=
nωn

V (L)
Ṽ−p(L,Π∗pK)V (Γ∗pL)

p
n . (31)

Taking L = Π∗pK in (31), we obtian

Gp(K) ≤ nω
n−p
n

n V (Γ∗p(Π∗pK))
p
n . (32)

Together (29) with (32), we get

V (Π∗pK)
p
nGp(K) ≤ nω

n+p
n

n . (33)

Namely,

Gp(K) ≤ nω
n+p
n

n V (Π∗pK)−
p
n .

From the equality condition of (29), we know that equality
holds in (5) if and only if K is an ellipsoid centered at the
origin.
Lemma 3.3.([28]) If K ∈ Fn

o and p ≥ 1, then

V (ΠpK) ≥ V (ΛpK), (34)

with equality if and only if K is an ellipsoid centered at the
origin.

Proof of Theorem 1.3. If 1 ≤ p ≤ n, then from Theorem
1.A and Lemma 3.3, we get

Gp(ΛpK) ≤ nω
p
n
n V (ΛpK)

n−p
n ≤ nω

p
n
n V (ΠpK)

n−p
n . (35)

By Theorem 1.1, we also have

Gp(Π∗pK) ≤ nω
2n−p

n
n V (ΠpK)

p−n
n . (36)

Combining (35) with (36), this yields

Gp(ΛpK)Gp(Π∗pK) ≤ (nωn)2.

According to the equality conditions of Theorem 1.A,
Theorem 1.1 and Lemma 3.3, we easily see that equality
holds in (6) if and only if K is an ellipsoid centered at the
origin.

Proof of Theorem 1.4. From Theorem 1.A, it follows
that

Gp(Γ∗pK) ≤ nω
p
n
n V (Γ∗pK)

n−p
n . (37)

By Lemma 3.2, we get that for 1 ≤ p ≤ n,

Gp(Γ∗pK) ≤ nω
2n−p

n
n V (K)

p−n
n . (38)

Associated (2) with (38), this yields

Gp(K)Gp(Γ∗pK) ≤ (nωn)2.

According to the equality conditions of (2) and (29), we
easily see that equality holds in (7) if and only if ΓpK is
an ellipsoid where K is an ellipsoid centered at the origin.
Lemma 3.4.([14]) If K ∈ Kn

o , then for p ≥ 1,

V (K)
n−p
p V (Π∗pK) ≤ ω

n
p
n , (39)

with equality if and only if K is an ellipsoid centered at the
origin.
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Proof of Theorem 1.5. It follows from (4) that,

Gp(ΠpK) ≤ nω
2n−p

n
n V (Π∗pK)

p−n
n . (40)

By Lemma 3.4 and (40), we obtain that for p ≥ n

Gp(ΠpK) ≤ nω
3np−n2−p2

pn
n

[
V (K)

p−n
n

] p−n
p

. (41)

Theorem 1.A implies that for p ≥ n

V (K)
p−n
n ≤ nω

p
n
n Gp(K)−1. (42)

Combining (41) and (42), we get

Gp(K)p−nGp(ΠpK)p ≤ (nωn)2p−n.

Together with the equality conditions of (2), (4) and (39),
we know that equality holds in (8) if and only if K is an
ellipsoid centered at the origin.
Lemma 3.5.([10]) If K ∈ Fn

os and p ≥ 1, then

V (ΛpK) ≤ ω
2p−n

p
n V (K)

n−p
p , (43)

with equality if and only if K is an ellipsoid.
Lemma 3.6.([28]) If K ∈ Fn

o and p ≥ 1, then

V (Λ∗pK) ≤ ω
n
p
n V (K)

p−n
p , (44)

with equality for p > 1 if and only if Λ∗pK and K are dilates;
for p = 1 if and only if Λ∗pK and K are homothetic.

Proof of Theorem 1.6. From (1), we get for any Q ∈ Kn
o ,

ω
p
n
n Gp(Λ∗pK) ≤ nVp(Λ∗pK,Q)V (Q∗)

p
n . (45)

Taking Q = Λ∗pK in (45), it follows that

ω
p
n
n Gp(Λ∗pK) ≤ nV (Λ∗pK)V (ΛpK)

p
n . (46)

From (43), (44) and (46), we obtain

Gp(Λ∗pK) ≤ nω
n2+p2−pn

pn
n V (K)−

(n−p)2

pn . (47)

Combining (47) with Theorem 1.A, this implies that for 1 ≤
p ≤ n,

Gp(K)n−pGp(Λ∗pK)p ≤ (nωn)n.

By the equality conditions of (2), (43) and (44), we see
that equality holds in (9) for 1 < p ≤ n if and only if Λ∗pK
and K are dilates; for p = 1 if and only if Λ∗pK and K are
homothetic.
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