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Some Inequalities for L,-geominimal Surface Area

Yibin Feng

Abstract—In this article, we first investigate two affine
isoperimetric inequalities for L,-geominimal surface area. Then
some Blaschke-Santalé type inequalities for L,-geominimal
surface area are established.

Index Terms—L,-geominimal surface area, L,-centroid body,
Ly-curvature image, L,-projection body.

I. INTRODUCTION

ET K™ denote the set of convex bodies (compact,

convex subsets with nonempty interiors) in Euclidean
space R"™. For the set of convex bodies containing the origin
in their interiors, the set of convex bodies whose centroid lie
at the origin and the set of origin-symmetric convex bodies in
R", we write K7, K7 and K7, respectively. SI' denotes the
set of star bodies (about the origin) in R"™. Let S”~! denote
the unit sphere in R", and V' (K') denotes the n-dimensional
volume of a body K. For the standard unit ball B in R", we
denote its volume by w,, = V(B).

The concept of geominimal surface area was introduced by
Petty [22] about 40 years ago. The study of affine surface
area goes back to Blaschke [1] and is about one hundred
years old. In [10], Lutwak demonstrated that there were
natural extensions of affine and geominimal surface area in
the Brunn-Minkowski-Firey theory. It motivates extensions
of some known inequalities for affine surface area and
geominimal surface areas to L,-affine surface area and L,-
geominimal surface area, respectively. Since then, consider-
able attention has been paid to the L,-affine surface area
and the L,-geominimal surface area, which is now at the
core of the rapidly developing L,-Brunn-Minkowski theory
(see articles [4], [5], [18], [19], [20], [21], [32], [33], [34],
[38]).

For K € K7, the geominimal surface area, G(K), of K
is defined by (see [22])

wi G(K) = inf{nV3 (K, Q)V(Q*)* : Q € K1},

Here Q* denotes the polar of body @ and V; (M, N) denotes
the mixed volume of M, N € K.

According to L,-mixed volume, Lutwak [10] introduced
the notion of L,-geominimal surface area. For K € K and
p > 1, the L,-geominimal surface area, G,(K), of K is
defined by

¥

wéGp(K) = inf{nVp (K, QV(Q")" : Q e K7} (1)

Here V,(M,N) denotes the L,-mixed volume of M,N €
K.
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Obviously, if p = 1, G,(K) is just the geominimal
surface area G(K). Further, Lutwak in [10] proved a affine
isoperimetric inequality for L,-geominimal surface area.
Theorem 1.A. If K € K] and p > 1, then

n—p

Gy (K) < nwyi V(K)'5, 2)

with equality if and only if K is an ellipsoid.

The following result [37] is also a affine isoperimetric
inequality, which is related to L,-projection body.
Theorem 1.B. If K € K and p > 1, then

Gp(K) < nw,™ V(ILK)F, (3)

with equality if and only if K is an ellipsoid.

In this paper, we first give the polar form of Theorem 1.A
for L,-geominimal surface area.
Theorem 1.1. If K € £ and p > 1, then

p—n

Gp(K) < nwn ™ V(K" (4)

with equality if and only if K is an ellipsoid.

Next, we establish the polar form of Theorem 1.B for L,-
geominimal surface area.
Theorem 1.2. If K € £} and p > 1, then

ntp »
Gp(K) < nwn™ VLK) ", (5)

with equality if and only if K is an ellipsoid centered at the
origin.

As some applications of Theorem 1.1 and Theorem 1.A,
we establish the following Blaschke-Santal6 type inequalities
for L,-geominimal surface area.

Theorem 1.3. If K € 7! and 1 < p < n, then

Gyr(MpK)G(ILK) < (nwn)?, (6)

with equality if and only if K is an ellipsoid centered at the
origin.
Theorem 1.4. If K € £ and 1 < p < n, then

Gp(K)G,(I K) < (nwy)?, (7)

with equality if and only if I', K is an ellipsoid where K is
an ellipsoid centered at the origin.
Theorem 1.5. If K € K and p > n, then

Gp(E)P " Gp(IK)P < (nwn) ™", (8)

with equality if and only if K is an ellipsoid centered at the
origin.

Finally, we use a method different from the above to also
show a Blaschke-Santal6 type inequality for L,-geominimal
surface area.

Theorem 1.6. If K € F

os

Gp(K)" PGy (A K)” < (nwn)", (9)

and 1 < p < n, then

with equality for 1 < p < n if and only if AjK and K are
dilates; for p = 1 if and only if A K and K are homothetic.
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Please see the next section for the above interrelated
background materials. The proofs of Theorems 1.1-1.6 will
be given in Section 3 of this paper.

II. PRELIMINARIES

A. Support function, radial function and polar of convex
bodies

If K € K", then its support function, hyx =
R" — (—00,0), is defined by (see[2], [24])

h(K,z) =max{z-y:y€ K}, zeR",

h(K,-) :

(10)

where x - y denotes the standard inner product of x and y.

If K is a compact star-shaped (about the origin) set in R™,
then its radial function, px = p(K,-) : R" \ {0} — [0, 00),
is defined by (see[2], [24])

p(K,u) =max{\>0:\-uc K}, uesS" ' (11)

If px is continuous and positive, then K will be called a
star body. Two star bodies K, L are said to be dilates (of
one another) if px (u)/pr(u) is independent of v € S™~L,

If K € K7, the polar body, K*, of K is defined by (see
(2], [24])

K'={zeR":z-y<l,ye K} (12)
From (12), we easily have (K*)* = K, and
1 1
hpe = — L= 13
K P PK i (13)

For K € K7 and its polar body, the well-known Blaschke-
Santalé inequality is stated that (see [23])

Theorem 2.A. If K € K7, then
V(K)V(K*) <wp, (14)

with equality if and only if K is an ellipsoid.

B. L,-mixed volume

For K,L € K?, p > 1 and € > 0, the Firey L,-
combination, K +, - L € K7, is defined by (see [11])

MK +pe- L, )P =h(K,-)? +¢eh(L,-)?,

b2

where ” -7 in € - L denotes the Firey scalar multiplication.
If K,L € K7, then for p > 1, the L,-mixed volume,
Vp(K, L), of K and L is defined by (see [11])
K -L)-V(K
My (K, L) = lim L E e D) = VIE)
p

e—0t €

For K,L € K} and p > 1, there is a positive Borel
measure, S,(K, -), on S7=1 such that (see [11])

1
M == [ s, (15)

From (15), we have
VoK, K) = V(K). (16)

The Minkowski inequality for L,-mixed volume is called
L,-Minkowski inequality. The L,-Minkowski inequality was
given by Lutwak (see [10], [11]):

Theorem 2.B. If K,L € K} and p > 1, then
V(K. L) 2 V(E) =V (L), (17)

with equality for p = 1 if and only if K and L are
homothetic; for p > 1 if and only if K and L are dilates.

C. L,-dual mixed volume

For K,L € 8}, p > 1 and A, 1 > 0 (not both zero), the
L,-harmonic radial combination, Ax K +_, px L € S, of
K and L is defined by (see [10])

PAXK +_p uxL, )7 = Xp(K,-)7P + up(L,-)"P. (18)

Associated with the L,-harmonic radial combination of
star bodies, Lutwak in [10] introduced the notion of L,-
dual mixed volume as follows: For K, L € S, p > 1 and
¢ > 0, the L,-dual mixed volume, V_,(K, L), of K and L
is defined by (see [10])

o VE 4o yex L) ~V(K)

e—0t e

n ~
_—pV_p(K ,L) =
The definition above and Hospital’s role give the following
integral representation of L,-dual mixed volume (see [10]):

VD) = o [ e wasw.  (9)

n
where the integration is with respect to spherical Lebesgue
measure S on S 1.

From formula (19), we get

VoK) = V) = 1 [ s, (20)

D. Ly-curvature image

For K € K and p > 1, the Ly-surface area measure,
Sp(K), of K is defined by (see [11])

dS,(K,-)

a5(K, )~ M

(21)

Equation (21) is also called Radon-Nikodym derivative, it
turns out that the measure S,(K, -) is absolutely continuous
with respect to surface area measure S(K,-).

A convex body K € K is said to have L,-curvature
function (see [10]), f,(K,-) : S"~1 — R, if its L,-surface
area measure S, (K, -) is absolutely continuous with respect
to spherical Lebesgue measures, and

_dSy(K, )

Il ) = 2 (22)

Let 7', FJ. and F]' denote the set of all bodies in
Ko, Ko, and K7 that have a positive continuous curvature
function, respectively.

Lutwak showed the notion of L,-curvature image in [10]
as follows: For K € F}' and p > 1, defined A, K € S,

L,-curvature image of K, by

p(ApK’7 .)”'H’ — pr(}'{7 )

wTL

(23)

Note that for p = 1, this definition differs from the defini-
tion of classical curvature image. For the studies of classical

curvature image and L,-curvature image, see articles [7],
[12], [23], [25], [26], [27], [28], [30].
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E. L,-projection body and L,-centroid body

The notion of L,,-projection body is shown by Lutwak (see
[14]). For K € K7 and p > 1, the L,-projection body, II, K,
of K is the origin-symmetric convex body whose support
function is given by

1
hIIZIpK (u) =

NWnCn—2p

/S Juolds,(Kov),  (24)

where u,v € S"!, and S, (K, v) is a positive Borel measure
on ™71,

In 1997, Lutwak and Zhang in [13] introduced the concept
of L,-centroid body as follows: For each compact star-
shaped about the origin K C R" and real number p > 1,
the L,-centroid body, I', K, of K is the origin-symmetric
convex body whose support function is defined by

1 .
hY. = —— -z|Pdx.

FPK(U) Cn,pV(K) /K |U I| €L

Here the integration is with respect to Lebesgue and ¢, ,, =

wn+p/w2wnwp—1 .
Using polar coordinates in (25), we easily get

1
hP — P n+p
FPK(U) (n_'_p)cn’pv(K) /Sn—l |U U‘ pK(U) dv7
(26)

(25)

for any u € S"1,

Since Lutwak, Yang, and Zhang’s seminal work, there are
many papers on L,-centroid body and L,-projection body,
see e.g., [3], [6], [9], [13], [14], [15], [16], [17], [29], [30],
[31], [35], [36].

III. THE PROOFS OF THEOREMS 1.1-1.6

Proof of Theorem 1.1. From (1) and Theorem 2.B, we
get

n—p

wi V(K*)™5

Gy(K)
= inf{nV,(K,Q)V(K*) " V(Q")" : Q € Ky}
< inf{nV, (K, Q)V,(K*, Q") : Q € K7}, (27)

Taking Q = K in (27), it follows from (14) and (16) that

n—p

n

wi V(") 5 Gy ()
<inf{nV(K)V(K*): K € KI'} < nw?.

That is — -
Gp(K) <nw, ™ V(K*)5.

According to the equality conditions of (14) and (17), we
see that equality holds in (4) if and only if K is an ellipsoid.
In order to prove Theorem 1.2, we need the following
Lemmas.
Lemma 3.1.([14]) If K € S and p > 1, then for any

Qe Ky,
Wn =~ .
Vp(Q,TpK) = WVW(K, 11;Q). (28)
Lemma 3.2.([13]) If K € S7, then for p > 1
V(K)V (LK) < w2, (20)

with equality if and only if K is an ellipsoid centered at the
origin.
Proof of Theorem 1.2. From (1), we have

y

wi Gyp(K) < nV,(K,QV(Q")F.

For L € S, Taking Q = I', L in (30), it follows from (28)
that

(30)

b
n

wi Gyp(K) < nV, (K, T, L)V(T;L)

Wy =~ ®
=—V_ (LICK)V(I:L)». 1
Taking L = II; K in (31), we obtian
Gp(K) < nuwn V(DI K))* (32)
Together (29) with (32), we get
P ntp
VAL K)"Gp(K) < nw,™ . (33)

Namely,
ntp D
G,,(K) < nwp™ V(HZK)*F.

From the equality condition of (29), we know that equality
holds in (5) if and only if K is an ellipsoid centered at the
origin.

Lemma 3.3.([28]) If K € F7' and p > 1, then

o

VLK) =2 V(A K), (34)

with equality if and only if K is an ellipsoid centered at the
origin.

Proof of Theorem 1.3. If 1 < p < n, then from Theorem
1.A and Lemma 3.3, we get

n—
n

Go(AK) < nwi VA K) T < nws V(LK) 2. (35)

By Theorem 1.1, we also have

2n—p p—n
n

Gy(ILK) < nwp, ™ V(I,K) =
Combining (35) with (36), this yields

(36)

Gp(AK)GR(ITK) < (nw, ).

According to the equality conditions of Theorem 1.A,
Theorem 1.1 and Lemma 3.3, we easily see that equality
holds in (6) if and only if K is an ellipsoid centered at the

origin.
Proof of Theorem 1.4. From Theorem 1.A, it follows
that . -
Gp(ThK) < nwi V(TEK) 7 (37)
By Lemma 3.2, we get that for 1 < p < n,
2n—p p—n
Gp(THK) <nwp, ™ V(K) 7. (38)

Associated (2) with (38), this yields
Gp(K)Gy(TH ) < (niwn)?.

According to the equality conditions of (2) and (29), we
easily see that equality holds in (7) if and only if T', K is
an ellipsoid where K is an ellipsoid centered at the origin.
Lemma 3.4.([14]) If K € K7, then for p > 1,

V(K) 7

V(LK) < wf, (39)

with equality if and only if K is an ellipsoid centered at the
origin.
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Proof of Theorem 1.5. It follows from (4) that,

2n—p pn
Gp(I,K) < nw, ™ V(LK) = . (40)
By Lemma 3.4 and (40), we obtain that for p > n
Snp7n27p2 pn p—n
Gy, K) < 7 [V(K) 5] 7 (41)
Theorem 1.A implies that for p > n
V(K)5" < nws; Gy(K) . (42)

Combining (41) and (42), we get
Gp(KPP "Gy, K)P < (nw, )",

Together with the equality conditions of (2), (4) and (39),
we know that equality holds in (8) if and only if K is an
ellipsoid centered at the origin.

Lemma 3.5.([10]) If K € 7', and p > 1, then

2p—
p—n p

V(AK) Sw,” V(K)7, (43)
with equality if and only if K is an ellipsoid.
Lemma 3.6.([28]) If K € 7' and p > 1, then
V(ALK) <wi V(K), (44)

with equality for p > 1 if and only if A} K and K are dilates;
for p =1 if and only if AjK and K are homothetic.
Proof of Theorem 1.6. From (1), we get for any Q) € K7,

wh Gy(ALK) <V (ALK, Q)V(Q)E.  (45)
Taking Q = A;‘,K in (45), it follows that
wi Gyp(ASK) < nV(ALK)V(AK)E. (46)
From (43), (44) and (46), we obtain
n2+p27pn n—p 2
Gp(AK) < nw, ™" V(K)‘( o (47)

Combining (47) with Theorem 1.A, this implies that for 1 <
p <,
Gp(E)"PGp(A K)P < (nwn)™.

By the equality conditions of (2), (43) and (44), we see
that equality holds in (9) for 1 < p < n if and only if AjK
and K are dilates; for p = 1 if and only if A;‘,K and K are
homothetic.
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