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Abstract—The learning and optimizing of the scoring 

function are widely used in neural network, information 

retrieval and protein analysis. The multi-dividing ontology 

algorithms have drawn plenty of attention recent years. In this 

paper, we consider the Bayes-optimal scoring function in 

multi-dividing setting. By virtue of conditional risk, proper loss 

theory and derivative computing, we determine the scoring 

function in multi-dividing setting for certain special case. The 

results achieved in our paper illustrate the promising 

application prospects for multi-dividing ontology algorithm. 
 

Index Terms—About four key words or phrases in 

alphabetical order, separated by commas, for example, 

visual-servoing, tracking, biomimetic, redundancy, 

degrees-of-freedom 

 

I. INTRODUCTION 

n computer science application, the goal of a large number 

of the algorithms is to get a scoring function which maps 

each object into a real number. The relationship between 

these objects is represented by their corresponding real 

numbers. These scoring functions are employed in computer 

science, biology science, chemical science and 

pharmaceutical science.  

Example 1. In information retrieval, the user inputs a query q, 
and the computer should return a list in which the items are 
related to query q. The order of the items in list is determined 
by the scoring function which returns the information about 
the similarity between query and object.  
Example 2. The goal of ontology mapping is returning a 
scoring function which maps each vertex in multi-ontology 
graph into a real number, and the similarities between vertices 
in different ontologies are reflected by the difference between 
their scores. At last, the ontology map is constructed based on 
the score differences. 
Example 3. In biology science, scoring function is designed 
to excavate the relationship between the molecular structure 
of protein and the disease. In these mathematical settings, a 
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vector with a certain dimension is taken to express the 
features of the disease and the structure of molecular and 
protein. The scoring function in high dimension is learned by 
virtue of the selected sample which maps all objects into a real 
line. In essence, such scoring function plays active roles in 
dimensional reducing. 

The study of scoring function has attracted plenty of 

attention in recent years. Farhadinia [1] presented a series of 

scoring functions for hesitant fuzzy sets which offer a large 

amount of new methods for regress and ranking. In terms of a 

limitation of standard retrievability scoring function, Bashir, 

K. S. Khattak [2] proposed a normalized retrievability scoring 

function for information retrieval.  Faraggi and Kloczkowsik 

[3] raised a knowledge-based scoring function to measure 

protein decoys in view of their similarity to the native 

structure. Kandel et. al., [4] presented a new scoring function 

which enhances classification of antibacterial activity. Zhou 

et. al., [5] developed a novel integrated machine learning 

scoring function (SVR_CAF) to discriminate native 

structures from decoys in the protein folding problem. Park et. 

al., [6] determined the new scoring function to find the novel 

protein tyrosine phosphatase sigma inhibitors. Huang and 

Zhang [7] proposed variable choosing procedures rely on 

penalized score functions which derived for linear 

measurement error models. Liu et. al., [8] considered the 

knowledge-based halogen bonding scoring function for the 

application of protein-ligand interaction predicting. In Yan 

and Wang [9], optimizing scoring function is used in 

protein-nucleic acid interactions. Zilian and  Sotriffer [10] 

improved affinity Prediction of protein–ligand complexes 

using random forest-based scoring functions. 

Specially, scoring function learning is widely used in 

ontology similarity measure and ontology mapping. Lan et al. 

[11] explored the learning theory approach for ontology 

similarity computation in a setting when the ontology graph is 

a tree. He uses the multi-dividing algorithm in which the 

vertices can be divided into k parts corresponding to the k 

classes of rates. The rate values of all classes are decided by 

experts. Then, a vertex in a rate a has larger value than any 

vertex in rate b (where 1  a< b k) under ontology scoring 

function f. Finally, the similarity between two ontology 

vertices is measured by the difference of two real 

corresponding numbers. Thus, the multi-dividing algorithm is 

reasonable to learn a scoring function for an ontology graph 

with a tree structure. Zhu et. al., [12] proposed a new criterion 

for multi-dividing ontology algorithm from AUC standpoint, 

which was designed to avoid the choice of loss function. 

Furthermore, several papers have contributed to the 
theoretical analysis for different ontology settings with 
special scoring ontology function. Gao and Xu [13] 
investigated the uniform stability of multi-dividing ontology 
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algorithm and gave the generalization bounds for stable 
multi-dividing ontology algorithms. Gao et al. [14] 
researched the strong and weak stability of multi-dividing 
ontology algorithm. Gao and Xu [15] learned some 
characteristics for such ontology algorithm. Gao et al., [16] 
studied the multi-dividing ontology algorithm from a 
theoretical view. It is highlighted that empirical 
multi-dividing ontology model can be expressed as 
conditional linear statistical, and an approximation result is 
achieved based on the projection method. Gao et al. [17] 
presented the characteristics of the best ontology scoring 
function among piece constant ontology scoring functions. 
Gao et al. [18] investigated the upper bound and the lower 
bound minimax learning rates are obtained based on low 
noise assumptions. Gao et al. [19] and Yan et al. [20] 
presented an approach of piecewise constant function 
approximation for AUC criterion multi-dividing ontology 
algorithms. For more related results, refer to Lan et al. [21], 
Gao et al. [22], Gao and Shi [23], Gao et al. [24] and Yu et al. 
[25]. 

In this paper, we consider the scoring function learning 

problem in Bayes-optimal multi-dividing setting. The 

contribution of this paper is to show the Bayes-optimal 

multi-dividing scoring function in some special condition. 

The paper is organized as follows: we introduce the basic 

setting and algorithm in Section II; then in Section III, we 

present and prove the main result of this paper. The structure 

of Section III is designed as follows: first, we show the 

pair-scorers in multi-dividing setting by using the technology 

of conditional risk; second, the univariate scoring function is 

obtained in decomposable case; third; we deal with 

non-decomposable situation and the result manifested that 

scoring function can be obtained under some special 

assumptions; at last, we discuss the scoring function for 

p-norm push risk in multi-dividing setting, and the results 

yielded by derivative calculation show that Bayes-optimal 

multi-dividing scoring function for (l,g)-push can be 

constructed under proper conditions. 

II. SETTING AND MAIN ALGORITHM  

Let  be the set of real numbers, and  = [0, ). In the 

standard supervised multi-dividing setting, we say instance 
space X takes its value in a high dimension feature space 

(often 
n

), and a label space Y={1,…,k}. An element xX 

is called an instance, and an element y{1,…,k} is called a 

label. The elements in X are drawn independently and 
randomly according to some unknown distribution  . For 

arbitrary sets X and Y, we denote \X Y  as the set difference. 

For convenience, slightly confusing different notations, we 
use X, Y, to denote random variables and also arbitrary sets. 
Hence, E[X] is denoted as the expectation of a random 
variable.  

For a given set S, S  is denoted as the set of all 

distributions on S. Let   [0, 1] be a parameter, we use 

Ber( )  to express the Bernoulli distribution. The 

multi-dividing method is a special kind of scoring function 
learning approach in which instances come from k categories 
and the learner is given examples of instances labeled as the k 
classes. 

Formally, the settings of multi-dividing scoring function 
problems can be described as follows. The learner is given a 

training sample (
1S ,

2S ,…, 
kS )   1n

X   

2n
X   … kn

X consisting of a sequence of training sample 

aS =(
1

ax ,…, 
a

a

nx ) (1 a k). The goal is to get a real-valued 

scoring function f: X   that  is learned from these 

samples. Meanwhile, it orders the future 
aS  instances to have 

higher scores than 
bS  where a<b. We assume that instances 

in each 
aS  are drawn randomly and independently according 

to some (unknown) distribution 
a  on the instance space X 

respectively. 

For any scoring function f: X  , A rg min ( )
x X

f x


 is 

denoted as the set of all xX such that f(x) f(x’) for all 
x’X. If scoring function f has a unique minimiser, this can 

be expressed by arg min ( )
x X

f x


. For each pair (x, x’)X , 

Diff ( )f : X X   is denoted by the function 

satisfying (Diff ( ))( , ')f x x = ( ) ( ')f x f x . Let 

Diff ( )F  = {Diff ( ) : }f f F  for a function set 

F={ : }f X  . 

We use the ( )   to denote the indicator function, whose 

value is 1 if the argument is true and 0 otherwise. In this way, 
sign function can be defined as sign(x) 

= ( 0) ( 0)x x     for any x . The standard 

sigmoid function is denoted by ( )z =
1

1 ze
. 

Let V  , a scorer (scoring function) s is some function 

s:XV. For instance, a classifier is a special scorer with V 

={1,…,k}, and a class-probability estimator is other kind of 

particular scorer with V = [0, 1]. A pair-scorer Pairs  for a 

product space X X (
a bX X in multi-dividing setting 

for pair (a, b) with 1  a<b  k) is certain function Pairs : 

X X V. A pair-scorer Pairs  is called decomposable if 

Pairs  DecompS ={Diff ( ) : : }s s X  . 

A loss function (in many references, it called cost function) 

l is some measurable function l: {1,…,k}     which 

can be used to measure the difference between goal scorer and 

the scoring function we obtained from the algorithm. We use 

( ) ( , )al v l a v  and ( ) ( , )bl v l b v to express the 

individual partial losses for each pair of (a, b) with 

1 a<b k. Slightly abusing notation, we sometimes specify 

a loss via l(v)= ( ( ), ( ))a bl v l v . A loss function l is symmetric 

if ( )al v = ( )bl v  holds for each vV and all pair of (a, b) 

with 1 a<b k. We say it is a margin loss if l(y, v)= ( )yv  

for some  :  . The conditional l-risk then defined as 

( , )lL s = Ber( ) ( ( , ))YE l Y s  

=
1

, ,

1 1

( ) (1 ) ( )
k k

a b a b

a b

a b a

l s l s 


  

   . 

Here,   is the posterior distribution, and its restriction on 

each pair of (a, b) with 1 a<b k is described by 
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,a b = P{ | { , }}Y a Y a b  . 

The 0-1 loss is a kind of special misclassification loss which 

can be defined as  

0 1( , )l y v
 = 

1
( 0) ( 0)

2
yv v     . 

   A probability estimation loss   is a measurable function 

 : {1,…,k}{1,…,k}]   


. A probability estimation 

loss proper is said minimized by predicting   if for 

any , ' [0,1]   , we have 

( , ) ( , ').L L      

If the inequality is strict, then a loss function is called strict 

proper. A loss function l is called (strictly) proper composite 

if there exists an invertible link function  :[0,1]   such 

that the probability estimation loss ( , )y v  = ( , ( ))l y v  is 

(strictly) proper. For these (strictly) proper composite losses, 

we get that ( , ( ))lL     ( , )lL v  for each    [0, 1] 

and v . If l is differentiable, then its inverse link can be 

expressed as   

1( )v 
=

'1

' '
1 1

( )

( ) ( )

k k
b

a b a b a

l v

l v l v



   
  . 

It’s easy for us to check that the squared hinge loss, 
exponential loss, squared loss and logistic loss are all proper 
composite. 

Any D  {1, , }X k  may be specified exactly by the triplet 

, , ,( , , )a b a b a bP Q   for each pair of (a, b) with 1 a<b k, 

where for every x X  
, , ,( ( ), ( ), )a b a b a bP x Q x   

(P[ | , { , }],X x y a y a b     

P[ | , { , }],P[ | { , }])X x y b y a b y a y a b    

 

or alternately by the tuple 
, ,( , )a b a bM   for each pair of (a, b) 

with 1 a<b k, where for every x X  
, ,( ( ), ( ))a b a bM x x  

(P[ | { , }],P[ | , { , }])X x Y a b Y a X x Y a b     

. 

Here
,a bP , 

,a bQ are the class conditional densities for each 

pair of (a,b), and 
,a b  denoted as the base rate or each pair of 

(a,b). 
,a bM  and 

,a b are expressed as the observation 

density and class-conditional density, respectively. In what 
follows, we use P, Q,  , M,   to denote the corresponding 

objects on the whole multi-dividing domain, and the 

restriction on pair (a,b) are 
,a bP , 

,a bQ , 
,a b , 

,a bM  

and
,a b  , respectively. For simplicity consideration, we use 

, ,P QD   and ,MD   to denote the distribution on the whole 

domain, and its restricted on pair (a, b) are denoted by
, ,

,

P Q

a bD


 

and 
,

,

M

a bD


 (or, denoted by , , ,, ,a b a b a bP Q
D


 and , ,,a b a bM

D


) 

respectively. If we aim to refer to these densities, we should 

explicitly parameterise the distribution D  {1, , }X k  as 

either 
, ,P QD   or 

,MD   as appropriate. 

Given any distribution D  
{1, , }X k  and loss function l, 

the l-classification risk for a scorer s is defined as 

,( ) E [ ( , ( ))] E [ ( ( ), ( ))].D

l X Y D X M lL s l Y s X L X s X 

 
If the infimum is reachable, then the set of Bayes-optimal 
l-scorers can comprise those who minimize the risk (see 
Menon and Williamson [26], Steinwart [27] and Reid and 
Williamson [28] for more detail): 

                      
,*

:

Arg min ( )D D

l l
s X

S L s


 . 

Given any 
, ,P QD     

{1, , }X k   and loss function l, the 

multi-dividing l- risk for a pair-scorer 
Pairs  is defined by 

, Pair( )D

k lL s                                      (1) 

, ,

1
Pair Pair

, '
1 1

( ( , ')) ( ( ', ))
E [ ].

2
a b a b

k k
a b

X P X Q
a b a

l s X X l s X X

  


 
If we achieve the infimum, then we can define the set of 
Bayes-optimal multi-dividing pair-scorers as 

Pair:

,*

, , PairArg min ( ),
X X

D D

k l k l
s

S L s
 

  

and the set of Bayes-optimal multi-dividing univariate scorers 
is 

,Univ,*

, ,
:

Arg min (Diff( )).D D

k l k l
S X

S L s


  

In multi-dividing setting, we aim to discover a scorer s: X 

 so that 0 1,
(Diff( ))D

k l
L s  is (approximately) 

minimized. Equivalently, it is considered to minimise 

0 1 Pair,
( )D

k l
L s over all Pairs  DecompS in multi-dividing 

setting. It is verified that minimizing the risk 

0 1,
(Diff( ))D

k l
L s equals the area under the multi-dividing 

ROC curve (AUC) of the scorer s (the AUC criterion in 

multi-dividing setting can refer to Gao et. al. [29]): 

  

, ,

1

, '
1 1

AUC ( ) E [ ( ( ) ( '))a b a b

k k
D

X P X Q
a b a

s s X s X


  

     

1
( ( ) ( '))].

2
s X s X    

Minimising the multi-dividing risk with 0-1 loss function is 
equivalent to maximising the multi-dividing AUC. There are 
two tricks to be applied to a scorer s that approximately 

minimises 0 1,
(Diff( ))D

k l
L s . The first is the pointwise 

approach, and it minimises ( )D

lL s  for certain kind of 

surrogate loss function. The Second is the pairwise approach, 

and it minimises , (Diff( ))D

k lL s for certain surrogate loss 

function. An essential problem is that whether these 
approaches are consistent with the task of 

minimising 0 1,
(Diff( ))D

k l
L s  in multi-dividing setting or not. 

To solve this question, we need to construct the 
corresponding Bayes-optimal multi-dividing solutions 

,*D

kS and 
,Univ,*

,

D

k lS fall in the set 0 1

,Univ,*

,

D

k l
S  . Thus, we aim to 

characterise 
,Univ,*

,

D

k lS for which it will be helpful to 
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build
,*D

lS . In the following contents, D = 
, ,P QD   = 

,MD   

  
{1, , }X k . 

III. MAIN RESULTS AND PROOFS 

A. Pair-scorers 
In multi-dividing setting, we’d like to determine the 

Bayes-optimal univariate scorers 
,Univ,*

,

D

k lS . We first 

determine the Bayes-optimal pair-scorers,
,*

,

D

k lS as preparation. 

One challenge is to determine a suitable conditional risk by 
virtue of (1). For this purpose, we use an equivalence of the 
multi-dividing risk to a pairwise classification risk on a 
distribution Multi-diving(D) which is defined below. 

For any 
, ,P QD    

{1, , }X k , let Multi-diving(D)   

{1, , }X X k   be defined via the triplet Pair Pair Pair( , , )P Q  , 

where 
Pair Pair Pair

, , ,( , , )a b a b a bP Q  = Pair Pair Pair ( , )( , , ) | a bP Q   

restricted on pair (a, b) is given by 

Pair Pair Pair

, , ,( ( , '), ( , '), )a b a b a bP x x Q x x   

, , , , 1
( ( ) ( '), ( ') ( ), ).

2

a b a b a b a bP x Q x P x Q x  

The classification risk about Multi-diving(D) is equivalent to 
the multi-dividing risk with respect to D, as it is well known 

for loss function 
0 1l 

. 

Lemma 1. For any , ,P QD    {1, , }X k , loss function l and 

pair-scorer 
Pairs : X X  , we infer  

, Pair( )D

k lL s =
Multi-dividing( )

Pair( )D

lL s . 

Proof. According to (1), we deduce 

, Pair( )D

k lL s  

, ,

1
Pair Pair

, '
1 1

( ( , ')) ( ( ', ))
E [ ].

2
a b a b

k k
a b

X P X Q
a b a

l s X X l s X X

  


 
 

= , ,

1

Pair, '
1 1

1
{ E [ ( ( , '))]

2
a b a b

k k

aX P X Q
a b a

l s X X


  

   

+ , , Pair, '

1
E [ ( ( ', ))]}

2
a b a b bX P X Q

l s X X  

= , ,

1

Pair, '
1 1

1
{ E [ ( ( , '))]

2
a b a b

k k

aX P X Q
a b a

l s X X


  

   

+ , , Pair, '

1
E [ ( ( , '))]}

2
a b a b bX P X Q

l s X X  

= , ,

1

Pair( , ') ( , )
1 1

1
{ E [ ( ( , '))]

2
a b a b

k k

aX X P Q
a b a

l s X X


  

   

+ , , Pair( , ') ( , )

1
E [ ( ( , '))]}

2
a b a b bX X P Q

l s X X . 

In terms of the definition of Multi-diving(D), this is 

exactly , Pair( )D

k lL s . Hence, this conclusion is well-known for 

the situation of loss function 
0 1l 

.                                                                                        

Our first result reveals that 
Multi-dividing( )

,

D

k lS =
,*

,

D

k lS . We 

now obtain the following elementary character of the 

observation-conditional density
Pair  of Multi-diving(D). 

Lemma 2. For any 
,MD   {1, , }X k , Multi-diving(D) has 

observation-conditional density given by 

Pair =
1Diff ( )  

.                             (2) 

Proof. Assume that we have a distribution
, ,P QD  =

,MD    

{1, , }X k . Let (X, X’, Z) be the random variable triplet  such 

that, for any x, x’  X and z {1,…,k}, we get 

                                
1

P[Z z]
k

  , 

1
,

1 1

P[ | ] { ( | { , }) ( )
k k

a b

a b a

X x Z z z a z a b P x


  

      

                                
,( | { , }) ( )}a bz b z a b Q x   , 

1
,

1 1

P[ ' ' | ] { ( | { , }) ( ')
k k

a b

a b a

X x Z z z a z a b P x


  

      

                                
,( | { , }) ( ')}a bz b z a b Q x   . 

Furthermore, we assume that X, X’ are conditionally 
independent given Z. Thus, the above procedures can be 
summarized as a distribution Multi-diving(D)   

{1, , }X X k  , from which a sample (x, x’, z) may be drawn 

according to the following process: 
Draw   z Ber(1/k) 

  Draw x

1
,

1 1

{ ( | { , }) ( )
k k

a b

a b a

z a z a b P x


  

     

,( | { , }) ( )}a bz b z a b Q x        

Draw  x’

1
,

1 1

{ ( | { , }) ( ')
k k

a b

a b a

z a z a b P x


  

     

,( | { , }) ( ')}a bz b z a b Q x   . 

In terms of the above facts, we derive other marginals and 
conditionals as follows: 

P[ , ' ' | ]X x X x Z z    

=P[ | ] P[ ' ' | ]X x Z z X x Z z      

1
, ,

1 1

{ ( | { , }) ( ) ( ')
k k

a b a b

a b a

z a z a b P x Q x


  

      

, ,( | { , }) ( ') ( )}a b a bz b z a b P x Q x   , 

P[ , ' ']X x X x   

, , , ,1

1 1

( ) ( ') ( ') ( )
{ }

2

a b a b a b a bk k

a b a

P x Q x P x Q x

  


   

1
, ,

, ,
1 1

1
{ ( ) ( ')

2 (1 )

k k
a b a b

a b a b
a b a

M x M x
 



  




      

, , , ,( ( )(1 ( ')) ( ')(1 ( )))}a b a b a b a bx x x x        

P[ | , ' ']z a X x X x    

, ,1

, , , ,
1 1

( ) ( ')

( ) ( ') ( ') ( )

a b a bk k

a b a b a b a b
a b a

P x Q x

P x Q x P x Q x



  




   

1

, ,
1 1

, ,

1

( ) ( ')
1

( ) ( ')

k k

a b a b
a b a

a b a b

Q x P x

P x Q x



  



 

   

IAENG International Journal of Applied Mathematics, 47:1, IJAM_47_1_05

(Advance online publication: 23 February 2017)

 
______________________________________________________________________________________ 



 

1 1( (P[ | ]) (P[ | ' ']))Z a X x Z a X x        

 
1 1( (P[ | ]) (P[ | ' ']))Y a X x Y a X x        

 
1((Diff( ))( , '))x x   . 

The last two identities hold because of each pair of (a,b), 
we have 

1 ,( ( ))a b x 
=

,
1 ,

,

( )
( ) log

( )

a b
a b

a b

P x

Q x
   .                    

Thus, using the conclusion of Lemma 2 and the fact that 

Pairsign(2 ( , ') 1)x x   = sign( ( ) ( '))x x   , we infer  

0 1

,*

,

D

k l
S  = Pair{ : : ( ) ( ')s X X x x     

Pairsign( ( , ')) sign( ( ) ( '))}s x x x x    . 

Analogously, if loss function l is proper composite with the 
link function , then we get 

Pair{ }  =
1{ Diff( )}     ,*

,

D

k lS . 

Here, 
1{ Diff( )}   

=
,*

,

D

k lS  if and only if l is 

strictly proper composite. As with multi classification, the 
optimal solution may be trivially transformed to reside in 

,*

,

D

k lS for a proper composite loss. 

B. Univariate Scorers 
Searching the set of scoring functions that minimise 

, (Diff( ))D

k lL s is equivalent to searching the set of 

pair-scorers Pairs  (in DecompS ) that minimise , Pair( )D

k lL s . In 

general, it is no longer possible to make a pointwise analysis 

by virtue of the conditional risk since DecompS  is innocuous. 

If the optimal pair-scorer is decomposable, then the restricted 
function class can be ignored. 

It is not hard to check that 
,*

,

D

k lS  DecompS    

 ,*

,

D

k lS  DecompS =
,Univ,*

,Diff ( )D

k lS  

established for any D   {1, , }X k and loss function l. This 

property simplifies when all Bayes-optimal pair-scorer is 
decomposable, which is of interest when there is a unique 
optimal pair-scorer. 

We can verify that for any D   {1, , }X k and loss 

function l, 
,*

,

D

k lS  DecompS  ,*

,

D

k lS =
,Univ,*

,Diff ( )D

k lS . 

This is to say, the decomposable Bayes-optimal 
multi-dividing pair-scorers are exactly the Bayes-optimal 
multi-dividing univariate scoring function passed through 

Diff. It implies, if 
,*

,

D

k lS  DecompS    is true for a loss 

function l, we automatically obtain the Bayes-optimal 
multi-dividing scoring function. 

Fristly, we deal with the situation there is a decomposable 
Bayes-optimal multi-dividing pair-scorer, and thus the 
optimal scoring function can be easily computed. 

Since {Diff ( )}  0 1

,*

,

D

k l
S   DecompS , we deduce the 

following property of the optimal univariate scorers for l01. 

Lemma 3. For any ,MD    {1, , }X k , 

0 1

,*

,

D

k l
S  ={ : : }s X s    

for some monotone increasing   : [0,1]  . 

One fact we emphasize here is that   in Lemma 3 need not 

to be strictly monotone increasing means that for certain 

x  x’X, we may have ( )x = ( ')x but ( )s x  ( ')s x . 

Nonetheless, a corollary is immediately obtained that any 
strictly monotone increasing transform of   is necessarily an 

optimal multi-dividing univariate scoring function. 

Lemma 4. Given any strictly monotone increasing  :[0,1] 

  and any
,MD   {1, , }X k  , we have 

     0 1

,Univ,*

,

D

k l
S  . 

     By Lemma 4 and 
,*{ } D

lS   , we find that 

,*D

lS  0 1

,Univ,*

,

D

k l
S   for a strictly proper composite loss.  

When l is a proper composite loss, the subset of proper 
composite loss functions for which there exists a 
decomposable pair-scorer is described. 
Lemma 5. Given any strictly proper composite loss l with a 

differentiable, invertible link function  , then for any D   

{1, , }X k , we have  

,*

,

D

k lS  DecompS  

 1 1
( \{0})( ) ( ) .

1 av
a v V v

e
 


    


 

The above result characterizes the decomposability of 
Bayes-optimal multi-dividing pair-scorer. Furthermore, given 

any ,MD    {1, , }X k and strictly proper composite loss l 

with inverse link function 
1( )v 

=
1

1 ave
 for some 

\{0}a , we infer that 

,Univ,*

,

D

k lS ={ : }b b     0 1

,Univ,*

,

D

k l
S  . 

Also, surrogate regret bounds from multi-classification to 
relate the excess pairwise l-risk of a scoring function s: X 

   can be transferred to the excess pairwise 
0 1l 

 risk. It 

reveals that certain pairwise surrogate risks minimizing is 
consistent with AUC maximization. 
Lemma 6. Let 

0 1

,Univ,*

,
regretD

k l  = , ,
:

(Diff( )) inf (Diff( ))D D

k l k l
t X

L s L t


 . Given any  

,MD    {1, , }X k and strictly proper composite loss l with 

inverse link function 
1( )v 

=
1

1 ave
 for some 

\{0}a , and scoring function s: X  , we can find a 

convex function lF :[0,1]    so that 

                 0 1

,Univ,*

,
(regret ( ))D

l k l
F s 

,Univ,*

,regretD

k l . 

C. Non-decomposable Case 
In this subsection, we discuss the situation if the loss l does 

not have a decomposable Bayes-optimal multi-dividing 
pair-scorer. We can no longer resort to using the conditional 
risk in this case, but the risk minimiser can be directly 
computed by virtue of an appropriate derivative due to the 

simple structure of DecompS . It infers that the Bayes-optimal 

multi-dividing scoring function is still a strictly monotone 
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transform of  under some assumptions of the loss, but the 

transform is distribution dependent rather than given link 
function  .  

Lemma 7. For any  
, ,P QD   = 

,MD     
{1, , }X k  and a 

margin-based strictly proper composite loss l(y, v) = ( )yv   

with convex :  
. For v V  , set 

* ( )D

sf v   

,

, ,

, '1

, ' , '
1 1 '

[ ( *( ))]
.

[ ( *( ))] (1 ) [ ( *( '))]

a b
b

a b a b
b a

a bk k
X P

a b a b
a b a X P X Q

E l v s X

E l v s X E l v s X



  



  



   
 

 

If D has finite support or '  is bounded, we have 

,Univ,*

,

D

k lS =
*{ *: : *}D

ss X f s  . 

Proof. For the given D , set ( )L D  as the function space for 

Lebesgue-measurable multi-dividing scorers :s X   

which satisfies: 

,Univ

, ( )D

k lL s = , ,

1

' ,
1 1

E [ ( ( ) ( '))]a b a b

k k

X Q X P
a b a

s X s X


  

  <

 . 

We verify that 
,Univ

, : ( )D

k lL L D   is a function and its 

minimizer can be obtained after discussing the derivative of 

function. For arbitrary , ( )s t L D  and 0  , let 

, ( )s tF  =
,Univ

, ( )D

k lL s t = 

, ,

1

' ,
1 1

E [ ( ( ) ( ') ( ( ) ( ')))]a b a b

k k

X Q X P
a b a

s X s X t X t X 


  

   
. 

Hence, the G-variation of 
,Univ

, ( )D

k lL s at point s and direction 

of t can be stated as 

,Univ

, ( )D

k lL s t  =

,Univ ,Univ

, ,

0

( ) ( )
lim

D D

k l k lL s t L s







 
 

                           =
'

, (0)s tF , 

where 
'

, (0)s tF  is existed. By means of non-negativity and 

convexity of  , we infer  

((Diff ( ))( , ')) ((Diff ( ))( , '))s t x x s x x  



 
 

 ((Diff ( ))( , ')) ((Diff ( ))( , '))s t x x s x x     

 ((Diff ( ))( , ')) ((Diff ( ))( , '))s t x x s x x     

for any (0,1]   and , 'x x X . 

For any x X , let ( )r x = 

,

1
,

'
1 1

'( ( ) ( '){ ( )E [ ])a b

k k
a b

X Q
a b a

s X s XP x 


  

   

,

, '( ( ) ' })E ]([ )a b

a b

X P
s sQ X X  . 

Since both 
,Univ

, ( )D

k lL s t  and 
,Univ

, ( )D

k lL s  are finite, 

and  

0

( ( ) ( ') ( ( ) ( '))) ( ( ) ( '))
lim

s x s x t x t x s x s x



  



    

 

= ( ( ) ( ')) '( ( ) ( '))t x t x s x s x  , 

we get  

'

, (0)s tF = 

, ,

1

' ,
1 1

( ( ) (E ')) '( ( ) ( '[ ]))a b a b

k k

X Q X P
a b a

t X t X s X s X


  

  
 

= , ,

1

' ,
1 1

( ) '( (E ) ( ' ]))[a b a b

k k

X Q X P
a b a

t X s X s X


  

   

, ,

1

' ,
1 1

( ') '( ( ') ( 'E [ ))]a b a b

k k

X P X Q
a b a

t X s X s X


  

   

= ( ) ( )
X

t x r x dx . 

      Clearly, we have  

, ,

1

' ,
1 1

( ) '( (E ) ( ' ]))[a b a b

k k

X Q X P
a b a

t X s X s X


  

  < , 

, ,

1

' ,
1 1

( ') '( (E ') ( '))[ ]a b a b

k k

X P X Q
a b a

t X s X s X


  

  < . 

We can assume that '  is bounded if X  is infinite. Thus, 

, ,

1

' ,
1 1

( ) '( (E ) ( ' ]))[a b a b

k k

X Q X P
a b a

t X s X s X


  

   

< ,sup '( ) [ ( ) ]a bX P
z

z E t X


 

and  

, ,

1

' ,
1 1

( ') '( (E ') ( '))[ ]a b a b

k k

X P X Q
a b a

t X s X s X


  

   

< ,sup '( ) [ ( ) ]a bX Q
z

z E t X


. 

Moreover, we can check that 

, [ ( ) ]a bPX
E t X < , 

,'
[ ( ') ]a bQX

E t X < . 

Let *:s X   be the minimum of 
,Univ

,

D

k lL . According 

to the convexity of 
,Univ

,

D

k lL , for any ( )t L D  we have 

( ) ( )
X

t x r x dx =0. 

It is sufficient and necessary that 0r   holds for almost 

everywhere. Hence, for *s  is used to minimize the target 

risk, it is sufficient and necessary that for almost each 

0x X  and each pair of ( ),a b , 

,

,

0 0'
( )E [ '( *( ) *( '))]a b

a b

X Q
P x s x s X   

= ,

,

0 0( )E [ '( *( ) *( ))]a b

a b

X P
Q x s X s x   

which reveals that for almost each 0x X  and each pair of 

( ),a b , 

, ,

0

, ,

0

( ) 1

1 ( )

a b a b

a b a b

x

x

 

 




=

,

0

,

0

( )

( )

a b

a b

P x

Q x
 

=
,

,

0

0'

E [ '( *( ) *( ))]

E [ '( *( ) *( '))]

a b

a b

X P

X Q

s X s x

s x s X








 

=

,

,

' '

0 0

' '

0 0'

E [ ( *( ) *( )) ( *( ) *( ))]

E [ ( *( ) *( ')) ( *( ) *( ))]

a b

a b

a bX P

a bX Q

l s X s x l s x s X

l s x s X l s X s x

  

   
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=
,

,

' '

0 0

' '

0 0'

E [ ( *( ) *( )) ( *( ) *( ))]

E [ ( *( ) *( ')) ( *( ) *( ))]

a b

a b

b aX P

a bX Q

l s x s X l s X s x

l s x s X l s X s x

  

  
 

=
,

,

'

0

'

0'

E [ ( *( ) *( ))]

E [ ( *( ) *( '))]

a b

a b

bX P

aX Q

l s x s X

l s x s X




. 

It further implies that 
* *D

sf s   where 

*

D

sf = 

,

, ,

, '

, ' , '

1

1 1

E [ ( *( ))]

E [ ( *( ))] (1 )E [ ( *( '))]

a b

a b a b

a b

bX P

a b a b

b aX P X

k

b Q

k

a a

l v s X

l v s X l v s X



 



  



   
 

. 
Therefore, we get the expected result.                               

In order to present any optimal multi-dividing scoring 

function s* by virtue of , as we have done for the previous 

scenarios, it still has to check the invertible of 
*

D

sf . The 

following lemma offers sufficient conditions for this to hold. 

Lemma 8. Suppose  is differentiable, strictly convex, and 

for any vV, it satisfies 

'( ) 0 '( ) 0v v     . 

Assume ,MD     {1, , }X k and l(y, v) = ( )yv  is a 

margin-based strictly proper composite loss. Set 
*

D

sf is 

defined as in Lemma 7. If '  is bounded or D has finite 

support, then 
,Univ,*

,

D

k lS =
1

*{ *: : * ( ) }D

ss X s f    0 1

,Univ,*

,

D

k l
S  . 

Proof. We show that *

D

s
f  strictly monotone by virtue of 

constructing the strict monotonicity of  

                   g(v)=
,

,

'
1

'

'
1 1

[ ( *( '))]

[ ( *( ))]

a b

a b

k k
bX Q

a b a aX P

E l v s X

E l v s X



  




  . 

The derivative of this function is 
   

g’(v)= , ,

1
' ''

, '
1 1

{ [ ( *( ')) ( *( '))a b a b

k k

a bX P X Q
a b a

E l v s X l v s X


  

     

,

'' ' ' 2( *( ')) ( *( '))] / ( [ ( *( ))]) }.a ba b aX P
l v s X l v s X E l v s X   

Using the convexity of l, the terms 
' ( *( '))al v s X  and 

'' ( *( '))bl v s X  are both positive. In addition, by 

Proposition 15 in Vernet et. al., [30], la and lb are respectively 
increasing and decreasing, or viceversa. Hence, their 
derivatives cannot simultaneously be zero by assumption. 
Furthermore, the expected is always negative or positive for 
each v, and thus g’(v) is always strictly negative or positive. 

Therefore, g is strictly monotone, which implies *

D

s
f  is also 

monotone. In this way, we conclude s*= *

1( )D

s
f 

.                                      

D. Bayes-optimal Scoring Function for the p-Norm Push 

Risk                                                 
In this subsection, we discuss the Bayes-optimal solutions 

of the p-norm push risk. Next, let ,MD     {1, , }X k . For 

arbitrary loss l and pair-scorer Pairs , the (l, g)-push 

multi-dividing risk we defined as 

push, , Pair( )D

l gL s = 

, ,

1

'
1 1

( ( , ')) ( ( ', ))
E [ (E [ ])],

2
a b a b

k k
a b

X Q X P
a b a

l s X X l s X X
g



  


 
 
where g is a nonnegative, monotone increasing function. If 
g(x) =x, we recover the standard multi-dividing risk to offer a 

detailed discussion of the selection gp(x)=xp for p 1, with 
margin loss function l and decomposable pair-scorer, leading 
to the p-norm multi-dividing push risk: 

push, , (Diff( ))D

l gL s  

= , ,

1

'
1 1

E [(E [ ( ( ) ( '))]) ]a b a b

k k
p

aX Q X P
a b a

l s X s X


  

  . 

   For our discussion, let 
,*

push, ,

D

l gS =

Pair

push, , Pair
:

A rg min ( )D

l g
s X X

L s
 

, 

,Univ,*

push, ,

D

l gS =
push, ,

:

Arg min (Diff )D

l g
s X

L s


. 

As with the standard multi-dividing risk, determining the 
Bayes-optimal scoring function for the (l, g) push is difficult 

due to the implicitly restricted function class DecompS . In fact, 

this is challenging even for the pair-scorer situation: the (l, g) 
multi-dividing push risk is not so expressible by virtue of a 
conditional risk. Hence, we should compute the derivative of 
the risk, as in the proof of Lemma 7. 

Lemma 9. For any ,MD     {1, , }X k , a differentiable 

function g: X  , and a strictly proper composite loss l 

with link function  . Suppose 
'

al , 
'

bl are bounded or D has 

finite support. Let 

*
Pair

( , ')D

s
G x x = Pair

Pair

'( ( ))
log

'( ( '))

D

s

D

s

g F x

g F x
 

and 

Pair
( )D

sF x =

,

1
Pair Pair

1 1

( ( , )) ( ( , ))
E [ ]

2
a b

k k
a b

X P
a b a

l s X x l s x X

  


  . 

We deduce 
,*

push, ,

D

l gS = 

*
Pair

* * 1

Pair Pair{ : : (Diff( ) )}.D

s
s X X s G      

    For the particular case when g: xx, we get the standard 

multi-dividing risk, GD  0 and thus 
*

Pairs  = Pair  . For 

general (l, g) case, unfortunately, we didn’t know how to 
simplify the term GD, and thus have to settle for the above 
implicit equation. Interestingly, if loss function l is the 
exponential loss and gp(x)=xp, the following simple 
characterization is yielded. 

Lemma 10. Let ,MD     {1, , }X k , 
exp ( , )l y v = Pair   

be the exponential loss and gp(x)=xp for some positive p. Then, 
if D has finite support, we have 

exp

,*

push, , p

D

l g
S =

1

Pair

1
{ }

1p
 


=

11
{ Diff ( )}

1p
 


. 

We now pay attention to the computation of 
,*

push, ,

D

l gS . It is 
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unsuccessful in computing the optimal multi-dividing 

pair-scorer for 0-1 loss function 
0 1l 

. We use a different trick 

to construct the optimal univariate scoring functions. 

Lemma 11. Suppose   : [0, 1]  is strictly monotone 

increasing. For any given
,MD     

{1, , }X k  and 

nonnegative, monotone increasing g, we have 

                                 0 1

,*

push, ,

D

l g
S  . 

It is easy to verify that 0 1

,Univ,*

,

D

k l
S   0 1

,Univ,*

push, ,

D

l g
S    and so 

the (
0 1l 

, g)-push keeps the optimal solutions for the standard 

multi-dividing risk.  
For a general proper composite loss, it is difficult to appeal 

to the optimal pair-scorer implicitly obtained in Lemma 11. 
To our delight, the optimal pair-scorer immediately implies 
the form of the optimal univariate scoring function for the 
special case of exponential loss. 

Lemma 12. For any ,MD     {1, , }X k . Let 
exp ( , )l y v = 

yve
 be the exponential loss and gp(x)=xp for any positive p. 

Then, if D has finite support, we have 

exp

,*

push, , p

D

l g
S =

11
{ ( ) : }

1
b b

p
   


. 

E. Several equivalent risks in Multi-dividing Setting 
Now, we discuss the following techniques to obtain an 

optimal pair-scorer (here we assume that l  is a strictly proper 

composite loss): 

 Approach A: minimize the classification risk 
D

lL  (here, 

there are k classes in total) with loss function l  and then 

deduce the pair-scorer; 

  Approach B: minimize the multi-dividing risk ,

D

k lL  with 

loss function l  over all decomposable multi-dividing 

pair-scorers; 

  Approach C: minimize the multi-dividing risk ,

D

k lL  with 

loss function l  over all multi-dividing pair-scorers; 

  Approach D: minimize the p-norm push risk exppush, , p

D

l g
L  

over all decomposable multi-dividing pair-scorers.  
It seems that the above presented versions are very 

different: Approach D is the special framework which differs 
away the conventional conditional risk model; Approach C is 
the unique method to utilize a multi-dividing pair-scorer 
during optimization; Approach A is really a classification 
approximation algorithm which is the only one to operate on 
single sample points not pairs. However, using the conclusion 
getting in former subsections, we see that all tricks above have 
the same optimal function which implies that the 
corresponding risks are equivalent. 

Lemma 13. Let D   {1, , }X k , l  be a strictly proper 

composite loss function related on k classes, and 
1 1( ) (1 )att e      be an inverse link function with 

certain fixed {0}a  . Then, we yield 

(1) Approach A, Approach B and Approach C are equivalent; 

(2) If 1p a   for all 1a  and the support of D  is finite, 

then Approach D is equivalent to Approach A, Approach B 
and Approach C. 

To explain the Lemma 13, we show that the above 
mentioned approaches can obtain the same multi-dividing 
pair-scorer using exponential loss function: 

Approach A: 
( )

( , )
:

Diff{arg min E [ ]}Ys X

X Y D
s X

e



; 

  Approach B: 

, ,

1
( ( ) ( '))

' ,
: 1 1

Diff{arg min E [ ]}a b a b

k k
s X s X

X Q X P
s X a b a

e


 

   

  ; 

  Approach C: 

Pair
, ,

Pair

1
( , ')

' ,
: 1 1

arg min E [ ]a b a b

k k
s X X

X Q X P
s X X a b a

e




    

  ; 

  Approach D: 
 

, ,

1
( ( ) ( '))

'
: 1 1

Diff{arg min E [(E [ ]) ]}a b a b

k k
s X s X p

X Q X P
s X a b a

e


 

   

  .  

 

IV. CONCLUSIONS 

In this paper, we present the Bayes-optimal scoring 
functions for multi-dividing setting under proper composite 
family of loss function such as 0-1 loss and exponential loss. 
The theorem obtained in our paper helps construct the 
consistency of minimization of multi-dividing risk. To the 
best of our knowledge, the result achieved in our paper is the 
first to state in multi-dividing setting and to illustrate the 
promising application prospects in information retrieval, and 
the biochemistry field. 
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