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Abstract—This paper is concerned with a higher-dimensional
neutral nabla dynamic equation on time scales. Based on the
theory of calculus on time scales, we first study some properties
of the nabla exponential function êA(t, t0) and shift operators
δ±; then by using Krasnoselskii’s fixed point theorem and
contraction mapping principle as well as the obtained results,
sufficient conditions are established for the existence of nonzero
periodic solutions in shifts δ± of the equation as the following
form:

x∇(t) = A(t)x(t) + f∇(t, x(t)) + b(t)g(t, x(τ(t))), t ∈ T,

where A(t) = (aij(t))n×n is a nonsingular matrix with contin-
uous real-valued functions as its elements. Finally, numerical
examples are presented to illustrate the applicability of the
theoretical results.

Index Terms—periodic solution; neutral nabla dynamic equa-
tion; shift operator; time scale.

I. INTRODUCTION

IN recent decades, the theory of neutral functional d-
ifferential equations has been prominent attention due

to its tremendous potential of its application in applied
mathematics. There are many papers that handle neutral
differential equations on regular time scales, such as discrete
and continuous cases, but few that deal with general time
scales.

A time scale is a nonempty arbitrary closed subset of
reals. Stefan Hilger [1] introduced the notion of time scale
in 1988 in order to unify the theory of continuous and
discrete calculus. The time scales approach not only unifies
differential and difference equations, but also solves some
other problems such as a mix of stop-start and continuous
behaviors [2,3] powerfully. Nowadays the theory on time
scales has been widely applied to several scientific fields
such as biology, heat transfer, stock market, wound healing
and epidemic models.

The existence problem of periodic solutions is an im-
portant topic in qualitative analysis of functional dynamic
equations. Up to now, there are a few results concerning
periodic dynamic equations on time scales; see, for example,
[4,5]. In these papers, authors considered the existence of
periodic solutions for dynamic equations on time scales
satisfying the condition ”there exists a ω > 0 such that
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t ± ω ∈ T, ∀t ∈ T.” Under this condition all periodic
time scales are unbounded above and below. However, there
are many time scales such as qZ = {qn : n ∈ Z} ∪ {0}
and

√
N = {

√
n : n ∈ N} which do not satisfy the

condition. To overcome such difficulties, Adıvar introduced a
new periodicity concept on time scales which does not oblige
the time scale to be closed under the operation t ± ω for a
fixed ω > 0. He defined a new periodicity concept with the
aid of shift operators δ± which are first defined in [6] and
then generalized in [7].

In recent years, periodic solutions in shifts δ± for some
nonlinear dynamic equations on time scales with delta deriva-
tive have been studied by many authors; see, for example,
[8-11]. However, to the best of our knowledge, there are few
papers published on the existence of periodic solutions in
shifts δ± for a dynamic equation on time scales with nabla
derivative, especially for some higher-dimensional nabla dy-
namic equations on time scales.

Motivated by the above, in the present paper, we consider
the following neutral nabla dynamic equation:

x∇(t) = A(t)x(t) + f∇(t, x(t)) + b(t)g(t, x(τ(t))), (1)

where t ∈ T, T ⊂ R be a periodic time scale in shifts
δ± with period P ∈ [t0,∞)T and t0 ∈ T is nonnegative
and fixed; A = (aij)n×n is a nonsingular matrix with
continuous real-valued functions as its elements, A ∈ R+,
and aij ∈ Cld(T,R) is ∇-periodic in shifts δ± with period ω;
b = diag(b1, b2, · · · , bn), and bi ∈ Cld(T,R) is ∇-periodic
in shifts δ± with period ω; f = (f1, f2, · · · , fn)T , g =
(g1, g2, · · · , gn)T , and fi, gi ∈ Cld(T× Rn,R) are periodic
in shifts δ± with period ω with respect to the first variable;
τ ∈ Cld(T,T) is periodic in shifts δ± with period ω.

The main purpose of this paper is to establish some
sufficient conditions for the existence of at least one nonzero
periodic solution in shifts δ± of equation (1) using Krasnosel-
skii’s fixed point theorem and contraction mapping principle.

For each x = (x1, x2, · · · , xn)T ∈ Cld(T,Rn), the norm
of x is defined as ∥x∥ = sup

t∈[t0,δω+(t0)]T

|x(t)|0, where |x(t)|0 =

n∑
i=1

|xi(t)|, and when it comes to that x is continuous, delta

derivative, delta integrable, and so forth; we mean that each
element xi is continuous, delta derivative, delta integrable,
and so forth.

II. PRELIMINARIES

Let T be a nonempty closed subset (time scale) of R. The
forward jump operator σ : T → T is defined by σ(t) =
inf{s ∈ T : s > t} for all t ∈ T, while the backward jump
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operator ρ : T → T is defined by ρ(t) = sup{s ∈ T : s < t}
for all t ∈ T.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t,
left-scattered if ρ(t) < t, right-dense if t < supT and σ(t) =
t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then Tk = T\{m}; otherwise Tk = T. If
T has a right-scattered minimum m, then Tk = T\{m};
otherwise Tk = T. The backwards graininess function ν :
Tk → [0,+∞) is defined by ν(t) = t− ρ(t).

A function f : T → R is ld-continuous provided it is
continuous at left-dense point in T and its right-side limits
exist at right-dense points in T.

Definition 1. ([12]) An n × n-matrix-valued function A on
a time scale T is called ν-regressive (with respect to T )
provided

I − ν(t)A(t)

is invertible for all t ∈ Tk. The set of all ν-regressive and
ld-continuous functions A : T → Rn×n will be denoted by
Rν = Rν(T,Rn×n).

Definition 2. ([12]) Let t0 ∈ T and assume that A ∈ Rν is
an n × n-matrix-valued function. The unique matrix-valued
solution of the IVP

Y ∇ = A(t)Y, Y (t0) = I,

where I denotes as usual the n×n-identity matrix, is called
the nabla matrix exponential function(at t0), and is denoted
by êA(·, t0).

Lemma 1. ([12]) If A ∈ Rν is an n × n-matrix-valued
function on T, then
(i) ê0(t, s) ≡ I and êA(t, t) ≡ I;
(ii) êA(ρ(t), s) = (I + µ(t)A(t))êA(t, s);
(iii) êA(t, s) = ê−1

A (s, t);
(iv) êA(t, s)êA(s, r) = êA(t, r);
(v) (êA(c, ·))∇ = −(êA(c, ·))ρA and∫ b

a
êA(c, ρ(t))A(t)∆t = êA(c, a)− êA(c, b).

Lemma 2. ([12]) If a, b ∈ T, and f, f∇, g : T → R are
ld-continuous, then
(i)

∫ b

a
f(ρ(t))g∇(t)∇t

= (fg)(b)− (fg)(a)−
∫ b

a
f∇(t)g(t)∇t;

(ii) [
∫ t

a
f(t, s)∇s]∇ =

∫ t

a
f∇(t, s)∇s+ f(ρ(t), t);

(ii) [
∫ b

t
f(t, s)∇s]∇ =

∫ b

t
f∇(t, s)∇s− f(ρ(t), t).

For more details about the calculus on time scales, see
[12].

Lemma 3. ([12]) Let A ∈ Rν is an n × n-matrix-valued
function on T and suppose that f : T → Rn is ld-continuous.
Let t0 ∈ T and y0 ∈ Rn . Then the initial value problem

y∇ = A(t)y + f(t), y(t0) = y0

has a unique solution y : T → Rn. Moreover, the solution is
given by

y(t) = êA(t, t0)y0 +

∫ t

t0

êA(t, ρ(τ))f(τ)∆τ.

Let T∗ be a non-empty subset of the time scale T
and t0 ∈ T∗ be a fixed number, define operators δ± :
[t0,∞) × T∗ → T∗. The operators δ+ and δ− associated

with t0 ∈ T∗(called the initial point) are said to be forward
and backward shift operators on the set T∗, respectively. The
variable s ∈ [t0,∞)T in δ±(s, t) is called the shift size. The
value δ+(s, t) and δ−(s, t) in T∗ indicate s units translation
of the term t ∈ T∗ to the right and left, respectively. The
sets

D± := {(s, t) ∈ [t0,∞)T × T∗ : δ∓(s, t) ∈ T∗}

are the domains of the shift operator δ±, respectively. Here-
after, T∗ is the largest subset of the time scale T such that
the shift operators δ± : [t0,∞)× T∗ → T∗ exist.

Definition 3. ([13]) (Periodicity in shifts δ±) Let T be a time
scale with the shift operators δ± associated with the initial
point t0 ∈ T∗. The time scale T is said to be periodic in
shifts δ± if there exists p ∈ (t0,∞)T∗ such that (p, t) ∈ D±
for all t ∈ T∗. Furthermore, if

P := inf{p ∈ (t0,∞)T∗ : (p, t) ∈ δ±, ∀t ∈ T∗} ̸= t0,

then P is called the period of the time scale T.

Definition 4. ([13]) (Periodic function in shifts δ±) Let T
be a time scale that is periodic in shifts δ± with the period
P . We say that a real-valued function f defined on T∗ is
periodic in shifts δ± if there exists ω ∈ [P,∞)T∗ such that
(ω, t) ∈ D± and f(δω±(t)) = f(t) for all t ∈ T∗, where
δω± := δ±(ω, t). The smallest number ω ∈ [P,∞)T∗ is called
the period of f .

Definition 5. (∇-periodic function in shifts δ±) Let T be a
time scale that is periodic in shifts δ± with the period P .
We say that a real-valued function f defined on T∗ is ∇-
periodic in shifts δ± if there exists ω ∈ [P,∞)T∗ such that
(ω, t) ∈ D± for all t ∈ T∗, the shifts δω± are ∇-differentiable
with ld-continuous derivatives and f(δω±(t))δ

∇ω
± (t) = f(t)

for all t ∈ T∗, where δω± := δ±(ω, t). The smallest number
ω ∈ [P,∞)T∗ is called the period of f .

Similar to the proofs of Lemma 2, Corollary 1 and
Theorem 2 in [13], we can get the following two lemmas.

Lemma 4. δω+(ρ(t)) = ρ(δω+(t)) and δω−(ρ(t)) = ρ(δω−(t))
for all t ∈ T∗.

Lemma 5. Let T be a time scale that is periodic in shifts
δ± with the period P , and let f be a ∇-periodic function
in shifts δ± with the period ω ∈ [P,∞)T∗ . Suppose that
f ∈ Cld(T), then∫ t

t0

f(s)∇s =
∫ δω±(t)

δω±(t0)

f(s)∇s.

Let T be a time scale that is periodic in shifts δ±. If one
takes v(t) = δω±(t), then one has v(T) = T and [f(v(t))]∇ =
(f∇ ◦ v)(t)v∇(t).

Now, we prove two properties of the nabla exponential
functions êA(t, t0) and shift operators δ± on time scales.

Lemma 6. Let T be a time scale that is periodic in shifts
δ± with the period P . Suppose that the shifts δω± are ∇-
differentiable on t ∈ T∗ where ω ∈ [P,∞)T∗ and A ∈ R is
∇-periodic in shifts δ± with the period ω. Then

êA(δ
ω
±(t), δ

ω
±(t0)) = êA(t, t0) for t, t0 ∈ T∗.
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Proof: Let Y (t) = F (δω±(t)), where F (t) = êA(t,
δω±(t0)), then

Y ∇(t) = [F (δω±(t))]
∇ = (F∇ ◦ δω±)(t)δ∇ω

± (t)

= A(δω±(t))δ
∇ω
± (t)êA(δ

ω
±(t), δ

ω
±(t0))

= A(t)êA(δ
ω
±(t), δ

ω
±(t0))

= A(t)Y (t),

and Y (t0) = êA(δ
ω
±(t0), δ

ω
±(t0)) = I . Hence Y solves the

IVP

Y ∇(t) = A(t)Y (t), Y (t0) = I,

which has exactly one solution according to Lemma 3, and
therefore we have

êA(δ
ω
±(t), δ

ω
±(t0)) = êA(t, t0) for t, t0 ∈ T∗.

This completes the proof.

Lemma 7. Let T be a time scale that is periodic in shifts
δ± with the period P . Suppose that the shifts δω± are ∇-
differentiable on t ∈ T∗ where ω ∈ [P,∞)T∗ and A ∈ R is
∇-periodic in shifts δ± with the period ω. Then

êA(δ
ω
±(t), ρ(δ

ω
±(s))) = êA(t, ρ(s)) for t, s ∈ T∗.

Proof: From Lemma 4, we know δω±(ρ(t)) = ρ(δω±(t)).
By Lemma 6, we can obtain

êA(δ
ω
±(t), ρ(δ

ω
±(s))) = êA(t, ρ(s)) for t, s ∈ T∗.

This completes the proof.
Set

X =
{
x(t) : x ∈ Cld(T,Rn), x(δω+(t)) = x(t)

}
with the norm defined by ∥x∥ = sup

t∈[t0,δω+(t0)]T

|x(t)|0, where

|x(t)|0 =
n∑

i=1

|xi(t)|, then X is a Banach space.

Lemma 8. The function x(t) ∈ X is an ω-periodic solution
in shifts δ± of equation (1) if and only if x(t) is an ω-periodic
solution in shifts δ± of

x(t) = f(t, x(t)) +

∫ δω+(t)

t

G(t, s)[A(s)f(s, x(s))

+b(s)g(s, x(τ(s)))]∇s, (2)

where

G(t, s) =
[
êA(t0, δ

ω
+(t0))− I

]−1
êA(t, ρ(s)) := (Gik)n×n.

Proof: If x(t) is an ω-periodic solution in shifts δ± of
equation (1). By Lemmas 2.3 and 2.2, for s ∈ [t, δω+(t)]T,
we have

x(s) = êA(s, t)x(t) +

∫ s

t

êA(s, ρ(θ))[f
∇(θ, x(θ))

+b(θ)g(θ, x(τ(θ)))]∇θ
= êA(s, t)x(t) + êA(s, s)f(s, x(s))

−êA(s, t)f(t, x(t))

−
∫ s

t

[êA(s, θ)]
∇f(θ, x(θ))∇θ

+

∫ s

t

êA(s, ρ(θ))b(θ)g(θ, x(τ(θ)))∇θ

= êA(s, t)x(t) + f(s, x(s))− êA(s, t)f(t, x(t))

×
∫ s

t

êA(s, ρ(θ))A(θ)f(θ, x(θ))∇θ

+

∫ s

t

êA(s, ρ(θ))b(θ)g(θ, x(τ(θ)))∇θ

= êA(s, t)x(t) + f(s, x(s))− êA(s, t)f(t, x(t))

+

∫ s

t

êA(s, ρ(θ))[A(θ)f(θ, x(θ))

+b(θ)g(θ, x(τ(θ)))]∇θ. (3)

Let s = δω+(t) in (3), we have

x(δω+(t)) = êA(δ
ω
+(t), t)x(t) + f(δω+(t), x(δ

ω
+(t)))

−êA(δω+(t), t)f(t, x(t))

+

∫ δω+(t)

t

êA(δ
ω
+(t), ρ(θ))[A(θ)f(θ, x(θ))

+b(θ)g(θ, x(τ(θ)))]∇θ.
Noticing that x(δω+(t)) = x(t), and f(δω+(t), x(δ

ω
+(t))) =

f(t, x(t)), then

x(t) = êA(δ
ω
+(t), t)x(t) + f(t, x(t))

−êA(δω+(t), t)f(t, x(t))

+

∫ δω+(t)

t

êA(δ
ω
+(t), ρ(θ))[A(θ)f(θ, x(θ))

+b(θ)g(θ, x(τ(θ)))]∇θ. (4)

Multipling on both sides of (4) by êA(t, δω+(t)), then

êA(t, δ
ω
+(t))x(t) = x(t) + (êA(t, δ

ω
+(t))− I)f(t, x(t))

+

∫ δω+(t)

t

êA(t, ρ(θ))[A(θ)f(θ, x(θ))

+b(θ)g(θ, x(τ(θ)))]∇θ,
that is

x(t) = f(t, x(t))

+

∫ δω+(t)

t

[êA(t, δ
ω
+(t))− I]−1êA(t, ρ(θ))

×[A(θ)f(θ, x(θ)) + b(θ)g(θ, x(τ(θ)))]∇θ.
Since êA(t, δω+(t)) = êA(t0, δ

ω
+(t0)), then x satisfies (2).

Let x(t) be an ω-periodic solution in shifts δ± of (2). By
(2) and Lemmas 1 and 2, we have

x∇(t) = f∇(t, x(t)) +A(t)x(t)−A(t)f(t, x(t))

+G(ρ(t), δω+(t))δ
∆ω
+ (t)

×[A(δω+(t))f(δ
ω
+(t), x(δ

ω
+(t)))

+b(δω+(t))g(δ
ω
+(t), x(τ(δ

ω
+(t))))]

−G(ρ(t), t)[A(t)f(t, x(t)) + b(t)g(t, x(τ(t)))]

= A(t)x(t) + f∇(t, x(t)) + b(t)g(t, x(τ(t))).

So, x(t) is an ω-periodic solution in shifts δ± of equation
(1). This completes the proof.

By using Lemma 6 and Lemma 7, it is easy to verify that
the Green’s function G(t, s) satisfies

G(δω+(t), δ
ω
+(s)) = G(t, s), ∀t ∈ T∗, s ∈ [t, δω+(t)]T. (5)

For convenience, we introduce the following notations:

Gu := max
1≤k≤n

sup
s,t∈[t0,δω+(t0)]T

|
n∑

i=1

Gik(t, s)|,

Au := max
1≤i≤n

∫ δω+(t0)

t0

|
n∑

k=1

aki(s)|∇s,
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Bu := max
1≤k≤n

∫ δω+(t0)

t0

|bk(s)|∇s.

Define an operator H : X → X by

(Hx)(t) = f(t, x(t)) +

∫ δω+(t)

t

G(t, s)[A(s)f(s, x(s))

+b(s)g(s, x(τ(s)))]∇s, (6)

and

(Hx)(t) = ((H1x)(t), (H2x)(t), · · · , (Hnx)(t))
T ,

where

(Hix)(t) =

∫ δω+(t)

t

n∑
k=1

Gik[
n∑

i=1

akifi(s, x(s))

+bk(s)gk(s, x(τ(s)))]∇s, i = 1, 2, · · · , n.

III. MAIN RESULTS

In this section, we shall state and prove our main results
about the existence of at least one periodic solution in shifts
δ± of equation (1). In order to prove the existence of a
nonzero periodic solution in shifts δ± of equation (1), we
assume that

(H1) f∇(t, 0)− b(t)g(t, 0) ̸= 0 for some t ∈ T∗.

Lemma 9. [14] (Krasnoselskii’s fixed point theorem) Let M
be a closed convex nonempty subset of a Banach space (X, ∥·
∥). Suppose that B and C map M into X , such that
(1) x, y ∈M , implies Bx+ Cy ∈M ,
(2) C is continuous and C(M) is contained in a compact
set,
(3) B is a contraction mapping.
Then there exists z ∈M with z = Bz + Cz.

In preparation for the next result, we need to construct two
mappings, one is a contraction and the other is compact. Let

(Hx)(t) = (Bx)(t) + (Cx)(t),

where B,C : X → X are given by

(Bx)(t) = f(t, x(t)), (7)

(Cx)(t) =

∫ δω+(t)

t

G(t, s)[A(s)f(s, x(s))

+b(s)g(s, x(τ(s)))]∇s. (8)

Hereafter, we make the following assumption:
(H2) There exist positive numbers Lf , Lg such that

|f(t, u)− f(t, v)|0 ≤ Lf |u− v|0,
|g(t, u)− g(t, v)|0 ≤ Lg|u− v|0,

for all t ∈ T, u, v ∈ X .

Lemma 10. [15] The operator B is a contraction provided
Lf < 1.

Lemma 11. Assume that (H2) holds. The operator C is
continuous and the image C(M) is contained in a compact
set, where M = {x ∈ X : ∥x∥ ≤ ζ}, ζ is a fixed constant.

Proof: Firstly, we show that C is continuous. By (H2),
for any ζ > 0 and ε > 0, there exists a η > 0 such that{
ϕ, ψ ∈ C(T,Rn), ∥ϕ∥ ≤ ζ, ∥ψ∥ ≤ ζ, ∥ϕ− ψ∥ < η

}

imply
|f(s, ϕ(s))− f(s, ψ(s))|0 <

ε

2GuAu
,

and

|g(s, ϕ(τ(s)))− g(s, ψ(τ(s)))|0 <
ε

2GuBu
.

Therefore, if x, y,∈ X with ∥x∥ ≤ ζ, ∥y∥ ≤ ζ, ∥x−y∥ < η,
then

|(Cx)(t)− (Cy)(t)|0

≤
n∑

i=1

∣∣∣∣ ∫ δω+(t)

t

n∑
k=1

Gik[
n∑

i=1

akifi(s, x(s))

+bk(s)gk(s, x(τ(s)))]∇s

−
∫ δω+(t)

t

n∑
k=1

Gik[
n∑

i=1

akifi(s, y(s))

+bk(s)gk(s, y(τ(s)))]∇s
∣∣∣∣

≤
∫ δω+(t)

t

n∑
k=1

|
n∑

i=1

Gik||
n∑

i=1

akifi(s, x(s))

−
n∑

i=1

akifi(s, y(s))|

+
n∑

k=1

|
n∑

i=1

Gik||bk(s)fk(s, x(τ(s)))

−bk(s)fk(s, y(τ(s)))|∇s

≤ Gu

(∫ δω+(t)

t

|A(s)f(s, x(s))−A(s)f(s, y(s))|0

+|b(s)f(s, x(τ(s)))− b(s)f(s, y(τ(s)))|0∇s
)

< Gu

(
Au ε

2GuAu
+Bu ε

2GuBu

)
= ε,

for all t ∈ [t0, δ
ω
+(t0)]T, which yields

∥Cx− Cy∥ = sup
t∈[t0,δω+(t0)]T

|(Cx)(t)− (Cy)(t)|0 ≤ ε,

that is, C is continuous.
Next, we show that C maps any bounded sets in X into

relatively compact sets. We firstly prove that f maps bounded
sets into bounded sets. Indeed, let ε = 1, for any ζ > 0,
there exists a η > 0 such that

{
x, y ∈ X, ∥x∥ ≤ ζ, ∥y∥ ≤

ζ, ∥x− y∥ < η, s ∈ [t0, δ
ω
+(t0)]T

}
imply

|f(s, x(s))− f(s, y(s))|0 < 1,

|g(s, x(τ(s)))− g(s, y(τ(s)))|0 < 1.

Choose a positive integer N such that ζ
N < η. Let x ∈ X

and define xk(·) = x(·)k
N , k = 0, 1, 2, · · · , N . If ∥x∥ < ζ,

then

∥xk − xk−1∥ = sup
t∈[t0,δω+(t0)]T

∣∣∣∣x(·)kN
− x(·)(k − 1)

N

∣∣∣∣
0

≤ ∥x∥ 1

N
≤ ζ

N
< η.

Thus

|f(s, xk(s))− f(s, xk−1(s))|0 < 1,

|g(s, xk(τ(s)))− f(s, xk−1(τ(s)))|0 < 1,
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for all s ∈ [t0, δ
ω
+(t0)]T, and these yield

|f(s, x(s))|0 = |f(s, xN (s))|0

≤
N∑

k=1

|f(s, xk(s))− f(s, xk−1(s))|0

+|f(s, 0)|0
< N + sup

s∈[t0,δω+(t0)]T

|f(s, 0)|0 =:W. (9)

Similarly, we have

|g(s, x(τ(s)))|0 < N + sup
s∈[t0,δω+(t0)]T

g(s, 0) =: U. (10)

It follows from (8)-(10) that for t ∈ [t0, δ
ω
+(t0)]T,

∥Cx∥ = sup
t∈[t0,δω+(t0)]T

n∑
i=1

|(Cix)(t)|

≤ Gu(AuW +BuU) := D.

Finally, for t ∈ T, we have

(Cx)∇(t) = A(t)(Cx)(t) +A(t)f(t, x(t))

+b(t)g(t, x(τ(t))).

So

∥(Cx)∇∥ = sup
t∈[t0,δω+(t0)]T

|A(t)(Cx)(t) +A(t)f(t, x(t))

+b(t)g(t, x(τ(t)))|0
≤ Â(D +W ) + B̂U,

where Â := max
1≤i≤n

sup
t∈[t0,δω+(t0)]T

|
n∑

k=1

aki(t)|, B̂ :=

max
1≤k≤n

sup
t∈[t0,δω+(t0)]T

|bk(t)|.

To sum up,
{
Cx : x ∈ X, ∥x∥ ≤ ζ

}
is a family

of uniformly bounded and equicontinuous functionals on
[t0, δ

ω
+(t0)]T. By a theorem of Arzela-Ascoli, we know that

the functional C is completely continuous, that is, C(M) is
compact. This completes the proof.

Theorem 1. Assume that (H1) − (H2) hold. Let α =
∥f(·, 0)∥, β = ∥g(·, 0)∥. Let R0 be a positive constant
satisfies

LfR0 + α+Gu[Au(LfR0 + α)

+Bu(LgR0 + β)] ≤ R0. (11)

Then equation (1) has a nonzero periodic solution in shifts
δ± in M = {x ∈ X : ∥x∥ ≤ R0}.

Proof: Define M = {x ∈ X : ∥x∥ ≤ R0}. By Lemma
11, the mapping C defined by (8) is continuous and C(M)
is contained in a compact set. By Lemma 10, the mapping B
defined by (7) is a contraction and it is clear that B : X →
X .

Next, we show that if x, y ∈ M , we have ∥Bx+ Cy∥ ≤
R0. In fact, let x, y ∈M with ∥x∥, ∥y∥ ≤ R0. Then

∥Bx+ Cy∥ = sup
t∈[t0,δω+(t0)]T

|f(t, x(t))

+

∫ δω+(t)

t

G(t, s)[A(s)f(s, y(s))

+b(s)g(s, y(τ(s)))]∇s|0

≤ sup
t∈[t0,δω+(t0)]T

[
|f(t, x(t))− f(t, 0)|0

+|f(t, 0)|0

+

∫ δω+(t)

t

n∑
k=1

|
n∑

i=1

Gik||
n∑

i=1

akifi(s, y(s))

+bk(s)gk(s, y(τ(s)))|∇s
]

≤ Lf∥x∥+ α+Gu[Au(Lf∥y∥+ α)

+Bu(Lg∥y∥+ β)]

≤ LfR0 + α+Gu[Au(LfR0 + α)

+Bu(LgR0 + β)]

≤ R0.

Thus Bx+Cy ∈M . Hence all the conditions of Krasnosel-
skii’s theorem are satisfied, that is, there exists a fixed point
z ∈ M , such that z = Bz + Cz. By Lemma 9, equation
(1) has a nonzero periodic solution in shifts δ±. The proof
is completed.

Theorem 2. Assume that (H1)− (H2) hold. If

Lf +Gu(AuLf +BuLg) < 1, (12)

then equation (1) has a unique nonzero periodic solution in
shifts δ±.

Proof: Let the mapping H is given by (6). For any
x, y ∈ X , we have

∥Hx−Hy∥ = sup
t∈[t0,δω+(t0)]T

|(Hx)(t)− (Hy)(t)|0

= sup
t∈[t0,δω+(t0)]T

∣∣∣∣f(t, x(t))
+

∫ δω+(t)

t

G(t, s)[A(s)f(s, x(s))

+b(s)g(s, x(τ(s)))]− f(t, y(t))

−
∫ δω+(t)

t

G(t, s)[A(s)f(s, y(s))

+b(s)g(s, y(τ(s)))]

∣∣∣∣
0

≤ Lf∥x− y∥+Gu(AuLf∥x− y∥
+BuLg∥x− y∥)

= [Lf +Gu(AuLf +BuLg)]∥x− y∥.

This completes the proof by invoking the contraction map-
ping principle.

IV. NUMERICAL EXAMPLES

Example 1. Let T = R, t0 = 0, ω = 2π, then δω+(t) =
t+2π. For small positive ε1 and ε2, we consider the perturbed
Van Der Pol equation

x∇∇+(ε2x
2−1)x∇+x−ε1(sin t·x2)∇−ε2 cos t = 0. (13)

Using the transformation x∇1 = x2, we can transform the
above equation to(

x1
x2

)∇

=

(
0 1
−1 1

)(
x1
x2

)
+

(
0

ε1 sin tx
2
1

)∇

+

(
0

ε2 cos t− ε2x2x
2
1

)
,
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that is, A =

(
0 1
−1 1

)
, f(t, x) =

(
0

ε1 sin tx
2
1

)
, g(t, x) =(

0
ε2 cos t− ε2x2x

2
1

)
.

Let x(t) = (x1(t), x2(t)), y(t) = (y1(t), y2(t)). Define
M = {x ∈ X : ∥x∥ ≤ R0}, where R0 is a positive constant.

Then for x, y ∈M , we have

∥f(·, x)− f(·, y)∥ ≤ 2ε1R0∥x− y∥,

and

∥g(·), x(·))− g(·, y(·))∥

≤ ε2 sup
t∈[t0,δω+(t0)]T

∣∣∣∣(x2(t)(x1(t) + y1(t)), y
2
1(t))

×
(
x1(t)− y1(t)
x2(t)− y2(t)

) ∣∣∣∣
≤ 2ε2R

2
0∥x− y∥.

Hence, let Lf = 2ε1R0, Lg = ε2R
2
0, α = ∥f(t, 0)∥ = 0 and

β = ∥g(t, 0)∥ = ε2. Thus, inequality (11) becomes

2ε1R
2
0 +Gu[Au(2ε1R

2
0) +Bu(ε2R

3
0 + ε2)] ≤ R0,

which is satisfied for small ε1 and ε2. By Theorem 1, (13) has
a nonzero periodic solution in shifts δ± with period ω = 2π.

Moreover,

2ε1R0 +Gu(2Auε1R0 +Buε2R
2
0) < 1

is also satisfied for small ε1 and ε2. By Theorem 2, (13) has
a unique nonzero periodic solution in shifts δ± with period
ω = 2π.

Example 2. Let T = 2N0 , ω = 4, t0 = 1, then δω+(t) =
4t. For small positive ε1 and ε2, we consider the following
perturbed dynamic equation(

x1
x2

)∇

=

(
0 1

t
−1

t
1
t

)(
x1
x2

)
+

(
0

ε1x
2
1

)∇

+

(
0

ε2 − ε2x2x
2
1

)
,

(14)

that is, A =

(
0 1

t
− 1

t
1
t

)
, f(t, x) =

(
0

ε1 sin tx
2
1

)
, g(t, x) =(

0
ε2 − ε2x2x

2
1

)
.

Let x(t) = (x1(t), x2(t)), y(t) = (y1(t), y2(t)). Define
M = {x ∈ X : ∥x∥ ≤ R0}, where R0 is a positive constant.

Then for x, y ∈M , we have

∥f(·, x)− f(·, y)∥ ≤ 2ε1R0∥x− y∥,

and

∥g(·), x(·))− g(·, y(·))∥

≤ ε2 sup
t∈[t0,δω+(t0)]T

∣∣∣∣(x2(t)(x1(t) + y1(t)), y
2
1(t))

×
(
x1(t)− y1(t)
x2(t)− y2(t)

) ∣∣∣∣
≤ 2ε2R

2
0∥x− y∥.

Hence, let Lf = 2ε1R0, Lg = ε2R
2
0, α = ∥f(t, 0)∥ = 0 and

β = ∥g(t, 0)∥ = ε2. Thus, inequality (11) becomes

2ε1R
2
0 +Gu[Au(2ε1R

2
0) +Bu(ε2R

3
0 + ε2)] ≤ R0,

which is satisfied for small ε1 and ε2. By Theorem 1, (14) has
a nonzero periodic solution in shifts δ± with period ω = 4.

Moreover,

2ε1R0 +Gu(2Auε1R0 +Buε2R
2
0) < 1

is also satisfied for small ε1 and ε2. By Theorem 2, (14) has
a unique nonzero periodic solution in shifts δ± with period
ω = 4.

V. CONCLUSION

This paper developed the theory of nabla exponential
function and shift operators on time scales, and studied the
existence of nonzero periodic solutions in shifts δ± for a
neutral nabla dynamic equation. It is important to notice that
the methods used in this paper can be extended to other
types of biological models [16-18]. Future work will include
biological dynamic systems modeling and analysis on time
scales.
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[8] E. Çetin, “Positive periodic solutions in shifts δ± for a nonlinear first-
order functional dynamic equation on time scales,” Adv. Differ. Equ.,
Vol. 2014, 2014:76.
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