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Abstract—Biogeography-based optimization (BBO) 
algorithm realizes the information circulation and sharing by 
the species migration among habitats and achieves the global by 
improving the adaptability of habitats. Based on the population 
adaptive migration mechanism of BBO algorithm, the 
unconstrained function optimization problem is solved with six 
species migration models. For performance comparison, the ant 
colony optimization (ACO) algorithm, the differential evolution 
(DE) algorithm and the particle swarm optimization (PSO) 
algorithm are adopted to solving six unconstrained functions 
optimization problems. Simulation results show that the 
convergence speed, optimization accuracy and solution 
uniformity of BBO algorithm have been improved significantly, 
and BBO algorithm is more efficient to solve the unconstrained 
function optimization problem.   

 
Index Terms—biogeography-based optimization algorithm, 

function optimization, performance comparison 

 

I. INTRODUCTION 

HE nature of function optimization problem is to find 
the optimal solution of an objective function through 

iterative [1]. The function features are usually described as 
continuous, discrete, linear, non-linear, convex function, etc. 
In that the constraint function optimization problem can be 
converted into unconstrained problem by using the designed 
special operators and penalty functions to make solution 
always feasible, the unconstrained function optimization 
problem is the main research focus. The swarm intelligent 
optimization algorithms [2] are a kind of random search 
algorithm to simulate the biological population evolution and 
evolution, which solves the complex global optimization 

 
Manuscript received June 17, 2016; revised October 5, 2016. This work 

was supported by the Project by National Natural Science Foundation of 
China (Grant No. 21576127), the Program for Liaoning Excellent Talents in 
University (Grant No. LR2014008), the Project by Liaoning Provincial 
Natural Science Foundation of China (Grant No. 2014020177), the Program 
for Research Special Foundation of University of Science and Technology of 
Liaoning (Grant No. 2015TD04) and the Opening Project of National 
Financial Security and System Equipment Engineering Research Center 
(Grant No. USTLKFGJ201502 and USTLKEC201401). 

Jie-Sheng Wang is with the School of Electronic and Information 
Engineering, University of Science and Technology Liaoning, Anshan, 
114051, PR China; National Financial Security and System Equipment 
Engineering Research Center, University of Science and Technology 
Liaoning. (phone: 86-0412-2538246; fax: 86-0412-2538244; e-mail: 
wang_jiesheng@126.com). 

Jiang-Di Song is a postgraduate student in the School of Electronic and 
Information Engineering, University of Science and Technology Liaoning, 
Anshan, 114051, PR China (e-mail: sjd2011@163.com). 

 

problems through individual cooperation and competition 
between species, and is applied in many fields, such as 
multi-objective optimization, data mining, network routing, 
signal processing, pattern recognition, etc. The typical swarm 
intelligence optimization algorithms include Ant Colony 
Optimization (ACO) algorithm [3], Genetic Algorithm (GA) 
[4], Bat Algorithm (BA) [5], Artificial Bee Colony (ABC) 
algorithm [6], etc. 

Artificial bee colony (ABC) algorithm is inspired by the 
foraging behavior of honey bee swarm. Inspired by PSO, an 
improved artificial bee colony (ABC) algorithm called 
gbest-guided ABC (GABC) algorithm was proposed by 
incorporating the information of global best (gbest) solution 
into the solution search equation to improve the exploitation 
[7]. In that ABC is good at exploration but poor at 
exploitation, and its convergence speed is also an issue in 
some cases, an improved ABC algorithm called I-ABC was 
proposed, where inertia weight and acceleration coefficients 
are introduced to modify the search process [8]. A new 
modified genetic algorithm with adaptive elitist-population 
strategies was proposed for multimodal function optimization, 
which is based on the concept of adaptively adjusting the 
population size according to the individuals’ dissimilarity and 
a novel direction dependent elitist genetic operator [9]. A 
hybrid niching algorithm based on the PSO was proposed to 
deal with multimodal function optimization problems [10], 
where the recombination-replacement crowding strategy that 
works on the archive population is introduced to improve the 
exploration capability. An ensemble of differential evolution 
algorithms employing the variable parameter search and two 
distinct mutation strategies in the ensemble was proposed to 
solve real-parameter constrained optimization problems, 
which was tested using benchmark instances [11]. An 
improved fruit fly optimization (IFFO) algorithm was 
proposed for solving continuous function optimization 
problems. A new control parameter is introduced to tune the 
search scope around its swarm location adaptively and a new 
solution generating method is developed to enhance accuracy 
and convergence rate of the algorithm [12]. Cuckoo search 
algorithm which reproduces the breeding strategy of the best 
known brood parasitic bird, the cuckoos has demonstrated its 
superiority in obtaining the global solution for numerical 
optimization problems. An improved cuckoo search 
algorithm with adaptive step size adjustment is introduced 
and its feasibility on a variety of benchmarks is validated [13]. 

Biogeography-based optimization (BBO) Algorithm is put 
forward by Simon in 2008 [14-15], whose basic idea is the 
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species migration to complete the information flows among 
habitats. By adjusting immigration rate, emigration rate, 
migration topology, migration interval and migration 
strategies, the information sharing is realized in the migration 
process in order to improve the suitability of habitats and 
obtain the optimal solution [16]. BBO algorithm has been 
successfully applied in economic load assignment [17], 
combinatorial optimization [18], power distribution of 
wireless sensor network [19], function optimization [20], etc. 
In this paper, based on the population adaptive migration 
mechanism of BBO algorithm, the unconstrained function 
optimization problem is solved with six species migration 
models. The remainder of this paper is organized as follows. 
In Section 2, the BBO algorithm is introduced. The simulation 
experiments and the analysis of the results are discussed in 
detail in Section 3. The concluding remarks are presented in 
the last section.  

II. BIOGEOGRAPHY-BASED OPTIMIZATION ALGORITHM 

A. Biogeography 

BBO algorithm [14] is derived from biogeography, whose 
main contents is to establish mathematical models for a series 
of events include residence, migration routes, production of 
new species, and extinction of species in nature. Figure 1 
introduces this migration relationship among habitants. 

 
Fig. 1. Multi-habitats in biological geography 

In addition to the relationship among these islands, each 
island has its own factors and survival indicators. For those 
islands suitable for breeding populations, a higher habitat 
suitable index (HSI) is obtained. The un-isolated index 
variables affecting HIS are named as independent habitat 
variable. However, when the HSI is high, the population on 
the corresponding island is more crowded, many populations 
will migrate to other neighboring islands to multiply. 
Meanwhile, there are other populations from other low HSI 
islands migrating into this island with higher HSI. The 
immigration rate of the island with lower HIS is higher than 
the island with higher HIS. The habitat migration operator in 
BBO algorithm is set up based on probability theory to realize 
the information sharing among each individual in the 
population. Each individual has its emigration rate   and 

immigration rate   for controlling the moving probability of 

individuals. 

B. Mathematical model of biogeography 

The species migratory model of monomer HIS shown in 

figure 2[14] is described as follows. Based on emigration rate 
  and immigration rate  , the function of the number of 

species on the island is established. Is can be seen from Figure 
2, the larger the number of species, the larger the emigration 
rate. When the number of species reached maximum number 

of species capacity maxS , the emigration rate reaches its 

maximum value E. On the other hand, when the number of 
species on the island is 0, the immigration rate is the largest 
value I . The equilibrium point of the number of species on 

this island is 0S , where the immigration rate equals to the 

emigration rate.  

 

Fig. 2. Species migration model of single island  

In BBO algorithm, an island has S species, whose 

probability is sP . sP  changes within the time 

 ,t t t  described as follows. 

   

( ) ( )(1 )
1 1 1

P t t P t t t P t P t
s s s s s s s s

             
  

                      (1) 
 
When the number of species of the island is S , the 

emigration rate is s ,= and the immigration rate is s . 

Suppose Eq. (1) is established, the number of species is S  at 

the time t t  . Aiming at this situation, it must satisfy at least 

one of the following conditions. 
 (1) At the time t , there are S  species in this island. At the 

time t t  , no species emigrate and immigrate. 

 (2) At the time t , there are 1S   species in this island. At 

the time t t  , there is a specie to emigrate. 

 (3) At the time t , there are 1S   species in this island. At 

the time t t  , there is a specie to immigrate.  

If t  is small enough, the probability of 

emigration/immigration can be neglected for this species. 

Define maxn S  and ( 0,1, , )sP S n  . Then equation 

0 1[ , , , ]T
nP P P P   can be represented as a matrix: 

 
 P AP                                         (2) 

 
where A is given in the Eq. (4).  
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(4) 
 
In order to facilitate our research, Figure 2 can be changed 

to Figure 3 assumed E I . 

  

Fig. 3. Simplified species migration model of single island 
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where maxn S  and k  equals the number of species. Eq. (4) 

can be further changed as: 
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The probability to accommodate the number of species of 

each island is given by the following formula: 
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If each island (solution) has the same species migratory 

curve, that is to say 2S  represents a solution with  higher HIS 

and 1S  represents a solution with lower HIS. The emigration 

rate of 1S  is lower than the corresponding value of 2S , while 

the immigration rate of 1S  is higher than the corresponding 

value of 2S . Through the mobility of each solution, it can 

make the information sharing among islands. Six species 
migration models of BBO algorithm are shown in Figure 4. 

 

(a) Model 1 

 

(b) Model 2 

 

(c) Model 3 

 

(d) Model 4 
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(e) Model 5 

 

(f) Model 6 

Fig. 4. Six species migration models of BBO algorithm 

C. BBO algorithm 

The BBO algorithm is a method composed by n  habitats 

with D -dimension SIV  fitness vector. iH  represents the 

fitness value of the habitat i . By comparing the habitat values 

of iH  with maxS , the number of all species are denoted as n . 

Then the rest habitat population iS  is realized the successive 

reduction i  according to iH  from good to bad, that is to say 

maxiS S i   ( 1,2, ,i n  ). By the above calculatation, the 

emigration rate   and immigration rate   of iH  in the 

different migration model can be obtained. Also the species 

contained probability ( )iP K  of iH  can be calculated. 

 

max

max

.(1 )S
S

P
M M

P
                                 (9) 

 

So the mutation rate iM  of each iH  is obtained. The 

global variable is composed of the maximum emigration rate 

E , the immigration rate I , the mutation rate maxM , the 

individual reservations elitist number Z  and the global 

mobility rate modP  of species.  

The flowchart of BBO algorithm is shown in Figure 5. The 
algorithm procedure is described as follows.  

Step 1: Initialize the parameters of BBO algorithm and the 

iH  vector of any habitat. 

Step 2: For different suitability iH , sort the habitats from 

good to bad. Generally the update rate of habitats 1i  . 

Step 3: By comparison, judge whether the desired optimum 
is satisfied or not. If it is satisfied, the optimum is output and 
algorithm procedure is terminated. Otherwise, turn to Step 4. 

Step 4: Suppose the maximum number of a specie in a 

habitat maxS n . Then by means of maxiS S i 

（ 1,2, ,i n  ), the populations value iS  of habitat i  is 

obtained, which is further brought into the migration model to 

obtain its i  and i . 

Step 5: After the cyclic operation of modP , whether i  has 

entered into the immigration pattern (the number n  of i  is 

defined as the number of cycles) can be determined. If habitat 
i  is carried out the immigration operation, the habitat 

immigration rate i  (the dimension D  of SIV  as the 

number of cycles) is used to judge its characterized 

component ijSIV  whether to be immigrated or not. If ijSIV  is 

implemented with the immigration, then, through its 

emigration rate m  ( 1,2, , ,m n  m i ) it can be 

performed by selecting, and then the feature component ijSIV  

of the i  is replaced by a component of selected m . 

Step 6: By calculating iM  of the corresponding habitat, the 

related variable of the Habitat i  is judged to see whether the 

mutation has occurred. The results are compared and turn to 
Step 2. 

 

Fig. 5. Flowchart of BBO algorithm  

III. SIMULATION EXPERIMENTS  

In this paper, ant colony optimization (ACO) algorithm, 
differential evolution (DE) algorithm and particle swarm 
optimization (PSO) algorithm are chosen for realizing the 
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performance comparison with six Benchmark functions 
(Ackley function, Griewank function, Rastrigin function, 
Sphere function, Step function and Quartic function). Their n 

input parameters are defined as ( 1,2, , )ix i n  . The global 

minimum point is * (0, ,0)x    and the minimum of the 

objective function is *( ) 0f x  . These six testing functions 

are described as follows. 
 In this paper, the parameters of each optimization 

algorithm are roughly adjusted in order to obtain better 
performance, but the parameters of any algorithm are not 
fine-tuned specially. The adopted parameters are described as 

follows. In ACO algorithm, the pheromone evaporation 
coefficient is 0.9 and the quality factor of the pheromone is 1. 
In DE algorithm, the weight factor and the cross-constant are 
0.5. In PSO algorithm, the inertia constant is 0.3, the cognitive 
constant is 1 and the particle swarm interaction constant is 1. 
In BBO algorithm, the habitat update probability is 1, the 
mobility range of each generation is [0, 1], the step length of 
probability integral calculation, the maximum immigration 
and the emigration rate are all 1. For each algorithm, the 
population size is 50 and the maximum iteration number is 50.  

The simulation results are shown in Figure 6-11. The 
statistics results are shown in Table 1 and Table 2. 

(1) Ackley function:
2
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Fig. 6. Simulation results for Ackley function 
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Fig. 7. Simulation results for Griewank function 
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Fig. 8. Simulation results for Quartic function 
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Fig. 9. Simulation results for Rastrigin function 

IAENG International Journal of Applied Mathematics, 47:1, IJAM_47_1_12

(Advance online publication: 23 February 2017)

 
______________________________________________________________________________________ 



 

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

Generation

M
in

im
u
m

 C
o

st
Sphere

 

 

ACO

BBO

DE

PSO

 

Fig. 10. Simulation results for Sphere function 
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Fig. 11. Simulation results for Step function 

TABLE 1. OPTIMAL SOLUTION UNDER FOUR ALGORITHMS 

Function ACO BBO DE PSO 

Ackley 13.4783 14.3126 16.901 12.1444 

Griewank 7.6377 5.9489 28.9109 102.6348 

Rastrigin 175.6749 18.51 137.1462 176.2998 

Sphere 38.3087 1.8444 5.7803 21.5655 

Step 1514 812 2445 8121 

Quartic 1.1613 0.26099 0.27211 5.8301 

 

TABLE 2. AVERAGE FUNCTION VALUES UNDER FOUR ALGORITHMS 

Function ACO BBO DE PSO 

Ackley 20.1244 20.2531 20.0362 14.0955 

Griewank 116.1742 17.1637 49.235 314.7486 

Rastrigin 359.658 28.4341 187.2935 302.6841 

Sphere 165.911 5.6114 12.4625 99.4257 

Step 16018.68 1807.16 4298.18 40422 

Quartic 29.3765 2.2185 1.5771 150.0125 

It can be seen form Figure 6-11, the BBO algorithm is 
behaved very well compared with other three swarm 
intelligent algorithms in five benchmark functions in addition 
to seem slightly less in Ackley function. The iteration number 
of BBO algorithm is about 20 times to be leveled to the 
minimum, which proves that the algorithm is more rapid and 
efficient in global function optimization problem. Seen form 
the simulation results, the optimal solution and the average 
value of the BBO algorithm for five benchmark functions are 
both at the forefront position. For Ackley function, it is 
slightly inferior to ACO and DE algorithm. The simulation 
results may indicate that BBO algorithm is the most effective 
in terms of solving function optimization problems, the DE 
and ACO algorithm secondly, the PSO algorithm has worst 
performance. 

IV. CONCLUSION 

In that the current optimization algorithms have poor 
convergence in solving function optimization problems, the 
BBO algorithm is used to solve the function optimization 
problem. The simulation experiments are carried out with 
multiple test functions to verify it’s optimization performance. 
Simulation results show that BBO algorithm can solve 
function optimization problems more efficiently. The 
convergence speed and optimization accuracy are higher than 
other intelligent optimization algorithms. These results also 
indicate deep-seated that the biogeography mechanism is the 
law of nature in the formation of long-term evolution and it is 
unique and effective in handling all kinds of optimization 
problems. 
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