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Abstract—In this paper, a new nonisospectral parameter
whose varying with time obeys the sine function of spectral
parameter is first embedded into the famous Ablowitz–Kaup–
Newell–Segur (AKNS) spectral problem. Starting from the
AKNS spectral problem equipped with such a nonisospectral
parameter and its corresponding time evolution equation, we
then derive a new and more general nonisospectral AKNS sys-
tem including infinite number of terms. Based on a systematic
analysis of the time dependence of related scattering data, exact
solutions of the derived AKNS system are further formulated
through the inverse scattering transform (IST) method. Finally,
in the case of reflectionless potentials, the obtained exact solu-
tions are reduced to explicit n-soliton solutions. It is graphically
shown that dynamical evolutions of the reduced soliton solutions
can possess not only time-varying speeds and amplitudes but
also singular points.

Index Terms—Nonisospectral AKNS system; Exact solution;
Soliton solution; Dynamical evolution; IST method.

I. INTRODUCTION

IN soliton theory, nonlinear evolution equations (NLEEs)
associated with some linear spectral problems can be

generally classified as the isospectral equations which often
describe solitary waves in lossless and uniform media and
the nonisospectral equations describing the solitary waves
in a certain type of nonuniform media. Specifically, when
the spectral parameter of the associated linear spectral prob-
lem is independent of time, we could construct isospectral
NLEEs. While starting from the spectral problem with a
time-dependent spectral parameter, nonisospectral NLEEs
are usually derived. As early as in 1974, Ablowitz, Kaup,
Newell and Segur [1] successfully constructed a hierarchy
of isospectral NLEEs here written as(

q
r

)
t

= Ln
(
−q
r

)
, (n = 0, 1, 2, · · ·), (1)

via the compatibility condition

Mt −Nx + [M,N ] = 0, (2)

of the following spectral problem, i.e., the famous AKNS
spectral problem

ϕx = Mϕ, M =

(
−ik q
r ik

)
, ϕ =

(
ϕ1

ϕ2

)
, (3)

and its accompanied time evolution equation
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ϕt = Nϕ, N =

(
A B
C −A

)
, (4)

where the potential functions q = q(x, t), r = r(x, t) and
their derivatives of any order with respect to x and t are
smooth and vanish as x tends to infinity, the spectral param-
eter k is a constant, A, B, C are undetermined functions
related to t, x, q, r and k, and the operator L is employed
as

L = σ∂ + 2

(
q
−r

)
∂−1(r, q), σ =

(
−1 0
0 1

)
, (5)

with the help of ∂ = ∂/∂x, ∂−1 = (
∫ x
−∞ dx−

∫ +∞
x

dx)/2.
It is easy to see that (1) includes the following two

nontrivial systems (n = 1, 2)(
q
r

)
t

=

(
−qxx + 2q2r
rxx − 2qr2

)
, (6)

and (
q
r

)
t

=

(
qxxx − 6qrqx
rxxx − 6qrrx

)
. (7)

If we set q = u, r = −1 and q = v and r = ∓v, then (7)
reduces to the celebrated Korteweg–de Vries (KdV) equation
ut = uxxx + 6uux and the modified KdV (mKdV) equation
vt = vxxx + 6v2vx, respectively.

Subsequently, in the case of spectral parameter k being
dependent of time t, Celogero and Degasperis [2], [3], [4]
and Li [5] proposed effective methods to derive different
hierarchies of nonisospectral NLEEs. For example, the non-
isospectral AKNS hierarchy [6](

q
r

)
t

= Ln
(
−xq
xr

)
, (n = 0, 1, 2, · · ·), (8)

can be constructed as long as we select ikt = (2ik)n/2
and use (2)–(4). A direct computation tells that (8) gives the
following three nonisospectral systems when n = 1, 2, 3(

q
r

)
t

=

(
q + xqx
r + xrx

)
, (9)(

q
r

)
t

=

(
−2qx − xqxx + 2q∂−1(qr) + 2xq2r
2rx + xrxx − 2r∂−1(qr)− 2xqr2

)
,

(10)

(
q
r

)
t

=



3qxx + xqxxx − 2qx∂
−1(qr)

−4xqrqx − 2xq2rx − 8q∂−1(qxr)
−2xqrqxx + 2xq2rxx

3rxx + xrxxx − 2rx∂
−1(qr)

−4xqrrx − 2xr2qx − 8r∂−1(qrx)
−2xqrrxx + 2xr2qxx

 . (11)

Being appearance of nonisospectral NLEEs, the types of
integrable equations were substantially enriched. From then
on, constructing nonisospectral NLEEs has attached much
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attention like those in [7], [8], [9], [10] and become one
of the most important and significant research directions in
nonlinear science. In this paper, we have two motivations: the
first one is to embed a nonisospectral parameter k satisfying

ikt =
1

2
sin 2ik, (12)

into the AKNS spectral problem (3) for constructing a
new and more general nonisospectral AKNS system which
includes infinite number of terms(

q
r

)
t

=
+∞∑
j=0

(−1)j
1

(2j + 1)!
L2j+1

(
−xq
xr

)
, (13)

the other one is to exactly solve such a nonisospectral
AKNS system (13) by the IST method [11] and then analyze
the dynamical characteristics of the obtained exact soliton
solutions in the process of evolutions. It should be noted that
the nonisospectral AKNS system (13) cannot be contained
by the known AKNS hierarchy (8) and it is more general
than (9)–(11).

Since the initial-value problem of the celebrated KdV
equation was exactly solved by the IST method in 1967
[11], many effective methods have been proposed for solving
NLEEs, such as those in [12], [13], [14], [15], [16], [17],
[18], [19], [20]. One of the advantages over other existing
methods is that the IST can solve a whole hierarchy of
NLEEs associated with the same spectral problem. As a
famous technique in mathematical physics, the IST has de-
veloped to a systematic method and received a wide range of
applications [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38]. However,
to the best of our knowledge, the IST has not been extended
to such systems associated with a nonisospectral parameter
as introduced in (12).

The rest of the paper is organized as follows. Starting
from the AKNS spectral problem (3) with the embedded
nonisospectral parameter k determined by (12), in Section 2
we derive the nonisospectral AKNS system (13). In Section
3, we exactly solve the AKNS system (13) through the IST
method. In more detail, based on a systematic analysis of
the time dependence of related scattering data, the uniform
formulae of exact solutions of the AKNS system (13) are
obtained. Then the obtained exact solutions are reduced to
explicit n-soliton solutions in the special case of reflec-
tionless potentials. To analyze the dynamical characteristics
of the obtained exact soliton solutions in the process of
evolutions, we select n = 1, 2 to show by figures that the
one-soliton solutions and two-soliton solutions possess not
only time-varying speeds and amplitudes but also singular
points. In Section 4, we conclude this paper.

II. DERIVATION OF THE AKNS SYSTEM

Firstly, substituting the matrixes M and N of (3) and (4)
into (2), then we reduce (2) as

Ax = qC − rB − ikt, (14)

qt = Bx + 2ikB + 2qA, (15)

rt = Cx − 2ikC − 2rA. (16)

Further integrating (14) with respective to x and using (12)
yields

A = ∂−1(r, q)

(
−B
C

)
− 1

2
x sin 2ik +A0, (17)

where A0 is an arbitrary function of k and t. For convenience,
we set A0 = 0 and use Talor series expansion formula to
rewrite sin 2ik as

sin 2ik =
+∞∑
j=0

(−1)j
1

(2j + 1)!
(2ik)2j+1. (18)

Then from (15) and (16) we have(
q
r

)
t

= L

(
−B
C

)
− 2ik

(
−B
C

)

+
+∞∑
j=0

(−1)j
1

(2j + 1)!
(2ik)2j+1

(
−xq
xr

)
, (19)

Secondly, we suppose that(
−B
C

)
=

+∞∑
s=1

(
−bs
cs

)
(2ik)s−1, (20)

where when n is odd and n→ +∞ the following asymptotic
condition is assumed(

−bn
cn

)
= (−1)

n−1
2

1

n!

(
−xq
xr

)
. (21)

Substituting (20) into (19) and comparing the coefficients of
the same powers of 2ik in (19), we have(

q
r

)
t

= L

(
−b1
c1

)
, (22)

(
−bs−1

cs−1

)
= L

(
−bs
cs

)

+
(−1)

s
2 +1 − (−1)

3s
2 +2

2(s− 1)!

(
−xq
xr

)
, s = 2, 3, · · · . (23)

Making use of (23), we have(
−b1
c1

)
=

+∞∑
j=1

(−1)j
1

(2j + 1)!
L2j

(
−xq
xr

)
. (24)

Finally, substituting (24) into (22) we obtain the AKNS
system (13).

III. EXACT SOLUTIONS AND SOLITON DYNAMICS

In this section, the time dependence of scattering data is
first determined for the AKNS spectral problem (3) equipped
with the nonisospectral k in (12). Based on the determined
scattering data, exact solutions of the AKNS hierarchy (13)
are then obtained. Finally, the obtained exact solutions are
reduced to soliton solutions and the dynamical characteristics
of such soliton solutions are analyzed.
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Fig. 1. Spatial structure of bright and dark one-soliton determined by
solution (85)

Fig. 2. Spatial structure of bright and dark one-soliton determined by
solution (86)

A. The time dependence of the scattering data

Theorem 1: If the spectral problem (3) is equipped with
the nonisospectral k in (12), then the scattering data{

κj(t), cj(t), R(t, k) =
b(k, t)

a(k, t)
, j = 1, 2, · · · , n

}
,{

κ̄m(t), c̄m(t), R̄(k, t) =
b̄(k, t)

ā(k, t)
, m = 1, 2, · · · , n̄

}
,

possess the following time dependence

κj(t) =
1

2
ln

(e2κj(0) + 1)e−t + e2κj(0) − 1

(e2κj(0) + 1)e−t − e2κj(0) + 1
, (25)

c2j (t) = c2j (0)e

∫ t
0

sin(2iκj(w))dw
, (26)

a(k, t) = a(k, 0), (27)

b(k, t) = b(k, 0), (28)

κ̄m(t) =
1

2
ln

(e2κ̄m(0) + 1)e−t + e2κ̄m(0) − 1

(e2κ̄m(0) + 1)e−t − e2κ̄m(0) + 1
, (29)

c̄2m(t) = c̄2m(0)e
−
∫ t

0
sin(2iκm(w))dw

, (30)

ā(k, t) = ā(k, 0), (31)

b̄(k, t) = b̄(k, 0), (32)

where c2j (0), c̄2m(0), κj(0), κ̄m(0), R(k, 0) = b(k, 0)/a(k, 0)
and R̄(k, 0) = b̄(k, 0)/ā(k, 0) are the corresponding scatter-
ing data of (3) in the case of (q(x, 0), r(x, 0))T .

Proof: We can easily see if φ(x, k) is a solution of (3)
equipped with the nonisospectral k in (12) then P (x, k) =
φt(x, k)−Nφ(x, k) is another solution of (3). Thus, P (x, k)
can be represented by φ(x, k) and φ̃(x, k) which also satis-
fies (3) but is independent of φ(x, k), i.e., there exist two
functions α(k, t) and β(k, t) so that

φt(x, k)−Nφ(x, k) = α(k, t)φ(x, k) +β(k, t)φ̃(x, k).(33)

Firstly, we consider the discrete spectral k = κj(Imκj >
0). Since when x → +∞, φ(x, κj) decays exponentially
while φ̃(x, κj) must increases exponentially, we then have
β(k, t) = 0. Thus, (33) is simplified as:

φt(x, κj)−Nφ(x, κj) = α(κj , t)φ(x, κj). (34)

Using the inner product (φ2(x, κj), φ1(x, κj)) to left-
multiply (34), we have

d

dt
φ1(x, κj)φ2(x, κj)− [Cφ2

1(x, κj) +Bφ2
2(x, κj)]

= 2α(κj , t)φ1(x, κj)φ2(x, κj). (35)

When φ(x, κj) is presumed to be a normalization eigen-
function, using

2

∫ ∞
−∞

c2j (t)φ1(x, κj)φ2(x, κj)dx = 1, (36)

we then have

α(κj , t) = −c2j (t)
∫ ∞
−∞

[Cφ2
1(x, κj) +Bφ2

2(x, κj)]dx,

(37)
which can be rewritten as:

α(κj , t) = −c2j (t)((φ2
2(x, κj), φ

2
1(x, κj))

T , (B,C)T ), (38)

where the following inner product had been used

(f(x), g(x)) =

∫ ∞
−∞

[f1(x)g1(x) + f2(x)g2(x)]dx (39)

for arbitrary two vectors f(x) = (f1(x), f2(x))T and g(x) =
(g1(x), g2(x))T .

From (3), we have

ϕ1x(x, κj) + iκjϕ1(x, κj) = q(x)ϕ2(x, κj), (40)

ϕ2x(x, κj)− iκjϕ2(x, κj) = r(x)ϕ1(x, κj), (41)

and then obtain

[ϕ1(x, κj)ϕ2(x, κj)]x = q(x)ϕ2
2(x, κj) + r(x)ϕ2

1(x, κj).
(42)

The integration of (42) with respect to x from −∞ to +∞
gives ∫ ∞

−∞
[q(x)φ2

2(x, κj) + r(x)φ2
1(x, κj)]dx

=

∫ ∞
−∞

[φ1(x, κj)φ2(x, κj)]xdx = 0. (43)
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Fig. 3. Dynamical evolutions of one-soliton determined by solution (85).

In the other hand, (20) can be rewritten as(
B
C

)
= lim
n→+∞

n∑
s=1

n∑
j=s

(−1)
j−1

2
1

j!
L̄j−s

(
xq
xr

)
(2iκj)

s−1,

(44)
by introducing

L̄ = σ∂ − 2

(
q
r

)
∂−1 (−r, q) ,

and then from (38) we obtain

α(κj , t) = −c2j (t)

(
(φ2

2(x, κj), φ
2
1(x, κj))

T ,

lim
n→+∞

n∑
s=1

n∑
j=s

(−1)
j−1

2
1

j!
L̄j−s

(
xq
xr

)
(2iκj)

s−1

)

=
1

2
lim

n→+∞

n−1∑
l=0

(−1)l
1

(2l + 1)!
(2iκj)

2l+1 =
1

2
sin 2iκj ,

(45)
by means of the following results

L̄∗j−s(φ2
2(x, κj), φ

2
1(x, κj))

T

= (2iκj)
j−s(φ2

2(x, κj), φ
2
1(x, κj))

T ,(
(φ2

2(x, κj), φ
2
1(x, κj))

T ,

(
xq
xr

))
=

∫ ∞
−∞

x[φ1(x, κj)φ2(x, κj)]xdx = − 1

2c2j (t)
,

where L̄∗ is the conjugation operator of L̄ [24]

L̄∗ = −σ∂ + 2

(
−r
q

)
∂−1 (q, r) , L̄ = σLσ.

In view of (45), (34) is simplify as

φt(x, κj)−Nφ(x, κj) =
1

2
sin 2iκjφ(x, κj). (46)

Since

N →
(
− 1

2x sin 2iκj 0
0 1

2x sin 2iκj

)
, (47)

φ(x, κj)→ cj(t)

(
0
1

)
eiκjx, (48)

φt(x, κj)→ cjt(t)

(
0
1

)
eiκjx + iκjtxcj(t)

(
0
1

)
eiκjx,

(49)

κjt = − i
2

sin 2iκj , (50)

as x→ +∞, then (46)–(50) give

cjt(t) =
1

2
cj(t) sin 2iκj . (51)

Similarly, we have

c̄mt(t) = −1

2
c̄m(t) sin 2iκ̄m. (52)

Secondly, we consider k as a real continuous spectral
and take a solution ϕ(x, k) of (3) equipped with the non-
isospectral k in (12), then Q(x, k) = ϕt(x, k) − Nϕ(x, k)
is another solution of (3) and hence can be represented
linearly by ϕ(x, k) and ϕ̄(x, k) which also satisfies (3) but is
independent of ϕ(x, k), i.e., there exist two functions ω(k, t)
and ϑ(k, t) so that

ϕt(x, k)−Nϕ(x, k) = ω(k, t)ϕ(x, k) + ϑ(k, t)ϕ̄(x, k).
(53)

Noting the asymptotical properties

ϕt(x, k)→ −iktx
(

1
0

)
e−ikx, ϕ(x, k)→

(
1
0

)
e−ikx,

(54)

ϕ̄(x, k)→
(

0
−1

)
eikx, (55)

as x→ −∞, from (53) and (12) we obtain ϑ(k, t) = 0 and
ω(k, t) = 0.
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Fig. 4. Dynamical evolutions of one-soliton determined by solution (86).

Substituting Jost relationship ϕ(x, k) = a(k, t)φ̄(x, k) +
b(k, t)φ(x, k) into (53) yields

[a(k, t)φ̄(x, k) + b(k, t)φ(x, k)]t −N [a(k, t)φ̄(x, k)

+b(k, t)φ(x, k)] = 0. (56)

Letting x→ +∞ and using

φ(x, k)→
(

0
1

)
eikx, φ̄(x, k)→

(
1
0

)
e−ikx, (57)

from (56) we derive

da(k, t)

dt
= 0,

db(k, t)

dt
= 0. (58)

Fig. 5. Spatial structure of bright and dark two-soliton determined by
solution (83).

Fig. 6. Spatial structure of bright and dark two-soliton determined by
solution (84).

Similarly, we have

dā(k, t)

dt
= 0,

db̄(k, t)

dt
= 0. (59)

Finally, (25)–(32) can be obtained by directly solving
(50)–(52), (58) and (59). Therefore, the proof is end.

Based on Theorem 1, the following Theorem 2 is reached.
Theorem 2: Given the scattering data for the spectral

problem (3) equipped with the nonisospectral k in (12), exact
solutions of the AKNS system (13) can be determined as
follows:

q(x, t) = −2K1(t, x, x), (60)

r(x, t) =
K2x(t, x, x)

K1(t, x, x)
, (61)

where K(t, x, y) = (K1(t, x, y),K2(t, x, y))T satisfies the
Gel’fand–Levitan–Marchenko (GLM) integral equation:

K(t, x, y)−
(

1
0

)
F̄ (t, x+ y)

+

(
0
1

)∫ ∞
x

F (t, z + x)F̄ (t, z + y)dz
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+

∫ ∞
x

K(t, x, s)

∫ ∞
x

F (t, z + s)F̄ (t, z + y)dzds = 0,

(62)
with

F (t, x) =
1

2π

∫ ∞
−∞

R(t, k)eikxdk +
n∑
j=1

c2je
iκjx, (63)

F̄ (t, x) =
1

2π

∫ ∞
−∞

R̄(t, k)e−ik̄xdk −
n∑

m=1

c̄2me
iκ̄mx. (64)

In order to give explicit form of solutions (60) and (61),
we consider here the reflectionless potentials q(x, t) and
r(x, t), i.e., R(t, k) = R̄(t, k) = 0. In this case, the GLM
integral equation (62) can be solved exactly. For the sake of
convenience, we use K(t, x, y) = (K1(t, x, y),K2(t, x, y))T

to rewrite (62) as:

K1(t, x, y)− F̄d(t, x+ y)

+

∫ ∞
x

K1(t, x, s)

∫ ∞
x

Fd(t, z + s)F̄d(t, z + y)dzds = 0,

(65)

K2(t, x, y)−
∫ ∞
x

Fd(t, z + x)F̄d(t, z + y)dz

+

∫ ∞
x

K2(t, x, s)

∫ ∞
x

Fd(t, z + s)F̄d(t, z + y)dzds = 0.

(66)
Taking advantage of (63) and (64), we get∫ ∞

x

Fd(t, s+ z)F̄d(t, z + y)dz

= −
n∑
j=1

n̄∑
m=1

ic2j (t)c̄
2
m(t)

κj − κ̄m
eiκj(x+s)−iκ̄m(x+y). (67)

We suppose that

K1(x, y, t) =
n̄∑
p=1

c̄p(t)gp(t, x)e−iκ̄py, (68)

K2(x, y, t) =
n̄∑
p=1

c̄p(t)hp(t, x)e−iκ̄py. (69)

and substitute (68) and (69) into (65) and (66), then we have

gm(t, x) + c̄m(t)e−iκ̄mx

+
n∑
j=1

n̄∑
p=1

c2j (t)c̄m(t)c̄p(t)

(κj − κ̄m)(κj − κ̄p)
ei(2κj−κ̄m−κ̄p)xgp(x, t) = 0,

(70)

hm(x, t)−
n∑
j=1

ic2j (t)c̄m(t)ei(2κj−κ̄m)x

κj − κ̄m
n∑
j=1

n̄∑
p=1

c2j (t)c̄m(t)c̄p(t)

(κj − κ̄m)(κj − κ̄p)
ei(2κj−κ̄m−κ̄p)xhp(x, t) = 0.

(71)
We induce the following vectors

g(x, t) = (g1(x, t), g2(x, t), · · · , gn̄(x, t))T , (72)

h(x, t) = (h1(x, t), h2(x, t), · · · , hn̄(x, t))T , (73)

Λ = (c1(t)e−iκ1x, c2(t)e−iκ2x, · · · , cn(t)e−iκnx)T , (74)

Λ̄ = (c̄1(t)e−iκ̄1x, c̄2(t)e−iκ̄2x, · · · , c̄n̄(t)e−iκ̄n̄x)T , (75)

(62) can be written in the matrix from

W (x, t)g(x, t) = −Λ̄(x, t), (76)

W (x, t)h(x, t) = iP (x, t)Λ(x, t). (77)

Supposing W−1(x, t) exists, then one has

g(x, t) = −W−1(x, t)Λ̄(x, t), (78)

h(x, t) = iW−1(x, t)P (x, t)Λ(x, t), (79)

in which W (x, t) = E + P (x, t)PT (x, t),

P (x, t) =

(
cj(t)c̄m(t)

κj − κ̄m
ei(κj−κ̄m)x

)
n̄×n

, (80)

and E is a n̄× n̄ unit matrix. Substituting (78) and (79) into
(68) and (69) yields

K1(x, y, t) = −Λ̄T (y, t)W−1(x, t)Λ̄(x, t), (81)

K2(x, y, t) = itr(W−1(x, t)P (x, t)Λ(y, t)Λ̄T (y, t)), (82)

where tr(·) means the trace of a given matrix.
Substituting (81) and (82) into (60) and (61), we obtain

n-soliton solutions of the AKNS system (13)

q(x, t) = 2tr(W−1(x, t)Λ̄(x, t)Λ̄T (x, t)), (83)

r(x, t) = −
d

dx tr(W−1(x, t)P (x, t) d
dxP

T (x, t))

tr(W−1(x, t)Λ̄(x, t)Λ̄T (x, t))
. (84)

Particularly, when n = n̄ = 1 (83) and (84) give one-
soliton solutions, the simplified forms of which are listed as
follows

q =
2c̄21(0)e

∫ t
0

Ψ(w)dw−2iκ̄1(t)x

1 +
c21(0)c̄21(0)e

∫ t
0

[Φ(w)+Ψ(w)]dw+2i[κ1(t)−κ̄1(t)]x

[κ1(t)−κ̄1(t)]2

, (85)

r =
2c21(0)e

∫ t
0

Φ(w)dw+2iκ1(t)x

1 +
c21(0)c̄21(0)e

∫ t
0

[Φ(w)+Ψ(w)]dw+2i[κ1(t)−κ̄1(t)]x

[κ1(t)−κ̄1(t)]2

, (86)

where κ1(t) and κ̄1(t) are determined by (25) and (29)
respectively, and

Φ(w) = sin(2iκ1(w)), (87)

Ψ(w) = − sin(2iκ̄1(w)). (88)

It is easy to see that solutions (85) and (86) possess
singularity. In Figs. 1 and 2, two spatial structures of singular
bright and dark one-solitons determined by solutions (85) and
(86) are shown in the condition of t ≤ ln[(e4+1)/(e4−1)] ≈
0.0366354, there we select the parameters as c1(0) = 0.01,
c̄1(0) = 1, κ1(0) = −2, κ̄1(0) = 0.01. In Figs. 3 and
4, we describe the corresponding dynamical characteristics
of these bright and dark one-solitons at times t = −5,
t = −2 and t = 0. Figs. 1–4 show that the bright and dark
one-solitons determined by solutions (85) and (86) possess
time-varying amplitudes and singular points in the process
of evolutions. In Figs. 5 and 6, we select c1(0) = 0.1,
c̄1(0) = 1, c2(0) = 3, c̄2(0) = 2, κ1(0) = −0.02,
κ̄1(0) = −0.1, κ2(0) = −0.3, κ̄2(0) = −0.1 and show
two spatial structures of singular bright and dark two-solitons
determined by solutions (83) and (84) in the condition of
t ≤ ln[(e4 + 1)/(e4 − 1)] ≈ 0.0366354. Figs. 7 and 8 are
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Fig. 7. Dynamical evolutions of two-soliton determined by solution (83).

used to describe the corresponding dynamical characteristics
of these bright and dark two-solitons at times t = −0.5, t = 0
and t = 0.0366. From Figs. 5–8 we can see that the bright
and dark two-solitons determined by solutions (83) and
(84) possess not only singular points but also time-varying
velocities and amplitudes in the process of evolutions.

IV. CONCLUSION

In summary, we have generalized the AKNS spectral
problem (3) by embedding a nonisospectral parameter which
varies with time obeying sine function of spectral parameter
determined in (12). Starting from the generalized AKNS

spectral problem (3) and its corresponding time evolution
equation (4), together with (5), we constructed a new and
more general nonisospectral AKNS system (13) with infinite
number of terms. In order to solve the derived AKNS system
(13), the IST method is employed. As a result, exact solutions
(60) and (61) are formulated and then reduced to explicit n-
soliton solutions (83) and (84) in the case of reflectionless
potentials. This paper shows by figures that the dynamical
evolutions of one-soliton solutions (n = 1) and two-soliton
solutions (n = 2) possess time-varying speeds, amplitudes
and singular points. To the best of our knowledge, the derived
AKNS system (13) and the obtained n-soliton solutions (83)
and (84) have not been reported in literatures. Recently,
fractional-order differential calculus and its applications have
attached much attention [39], [40], [41], [42], [43], [44],
[45]. How to construct hierarchies of fractional-order NLEEs
and their exact solutions in the framework of IST method is
worthy of study.
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