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Abstract

The generalized Petersen graph GP (n, k) is a graph
whose vertex and edge sets are {u1, u2, · · · , un,
v1, v2, · · · , vn} and {uiui+1, uivi, vivi+k|i ∈ [n]}, respec-
tively. In this paper, for k ∈ [4], the Wiener polarity in-
dex and the Wiener index of generalized Petersen graph
GP (n, k) are obtained; for k ∈ [2], the Szeged index,
the edge-Szeged index, and the Pl index are educed; for
k ≥ 1, the exact values about the Randić index, the Gut-
man index, first and second zagreb index, and Harmonic
index are gained.

Keywords: Generalized Petersen graphs; Wiener polar-
ity index; Wiener index; Szeged index; Randić index

1 Introduction

All graphs considered in this paper are finite, undirected,
and simple. For integers a, b, a positive integer k and
a real number x, let [a, b] = {a, a + 1, · · · , b − 1, b},
[k] = {1, 2, · · · , k}, dxe and bxc denote the smallest in-
teger not less than x and the largest integer not greater
than x, respectively. In recent years, many parameters
and classes of graphs are studied. For example, in [2],
the restricted connectivity of Cartesian product graphs is
obtained, in [7, 11], some results on 3-equitable labeling
and the n-dimensional cube-connected complete graph
are gained, and in [9], graph energy is studied.

The generalized Petersen graph [1, 4, 13, 14,
16, 17] GP (n, k) is a graph whose vertex set
and edge set are {u1, u2, · · · , un, v1, v2, · · · , vn} and
{uiui+1, uivi, vivi+k|i ∈ [n]}, respectively, where the in-
dices are taken modular n and all of them belong to [n].
The most famous Petersen graph is GP (5, 2). In fact,
GP (n, k) = GP (n, n− k). Therefore, Petersen graph is
also GP (5, 3), and we just consider k ≤ n

2 in this paper.

For k < n
2 , the generalized Petersen graph GP (n, k) is a

cubic graph whose outer ring is a regular polygon, which
is the cycle Cn, inner ring is a n-pointed stars, which
is the circulant graph Cn (k), respectively, and the cor-
responding vertices are connected. The generalized Pe-
tersen graphs were first found by Coxeter in 1950 and
named by Watkins in 1969. Later, many scholars stud-
ied generalized Petersen graphs, including their hamilto-
nian path [14], hamiltonian cycle [1], coloring [4], metric
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dimension [13] and domination number [16].

The Wiener polarity index [12] and Wiener index [6, 8,
15] are related to the distance of vertices, and the Wiener
index can be used to explain the physical and chemi-
cal property of molecules, which was first proposed by
Harold Wiener in 1947. Later, many mathematicians
studied the Wiener index.

In this paper, some chemical indices of generalized Pe-
tersen graphs are studied, such as the Wiener polarity
index, the Wiener index, generalized Randić index, et
cetera.

2 The Wiener (polarity) index of gener-
alized Petersen graphs

In the following, let n, k, x be all nonnegative integers.

Definition 2.1. The Wiener polarity index of G is de-
noted by Wp (G) and defined as the number of the pairs
of vertices whose distances are 3:

Wp (G) = |{{u, v} |d(u, v) = 3, u, v ∈ V (G)}| ,

where d(u, v) denotes the distance between the vertices
u, v.

The Wiener index of a graph G, is defined as

W (G) =
∑

u,v∈V (G)

d (u, v).

The Wiener polarity index of generalized Petersen graph
GP (n, k) is denoted by Wp (n, k), and the Wiener index
is denoted by W (n, k).

According to the definition, the Wiener polarity index is
0 when the diameter of G is less then 3. Therefore, we
just consider Wp (n, k) (n > 6).

Theorem 2.2 For k ≥ 1, we have

Wp (n, k) =



4n, for k = 1 and n > 6,
7n, for k = 2, and even n > 12

or odd n > 7,
9n, for k = 3, 3|n and n > 18,

or 3 - n, and odd n > 11,
12n, for k = 4, 4|n and n > 24,

or 4 - n, and odd n > 15,

and Wp (n, k) ≤ 12n if n− k is large enough.

Proof. (1) For k = 1, from the definition of general-
ized Petersen graphs, when n > 6, the vertex on outer
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ring whose distance to ui is 3 is ui+3, and the vertices
on inner ring are vi+2 and vi−2. The vertex on inner
ring whose distance to vi is 3 is vi+3. (Although the dis-
tance between ui and ui−3 is also 3, to avoid repeated
calculation, we just consider ui+3, similarly hereinafter.)
Therefore, Wp (n, 1) = n+ 2n+ n = 4n.

(2) For k = 2, if n is odd and n > 7, or n is even and n >
12, then the vertex on outer ring whose distance to ui is
3 is ui+3, the vertices on inner ring are vi+4, vi−4, vi+3

and vi−3. The vertices on inner ring whose distance to
vi is 3 are vi+1 and vi+6. Therefore,

Wp (n, 2) = n+ 4n+ 2n = 7n.

(3) For k = 3, if 3|n and n > 18, or 3 - n, n > 11
and n is odd, then the vertex on outer ring whose dis-
tance to ui is 3 is ui+3, the vertices on inner ring are
vi+2, vi−2, vi+4, vi−4, vi+3 and vi−3. The vertices on in-
ner ring whose distance to vi is 3 are vi+1 and vi+9.
Therefore,

Wp (n, 3) = n+ 6n+ 2n = 9n.

(4) For k = 4, if 4|n and n > 24, or 4 - n, n > 15 and
n is odd, then the vertices on outer ring whose distance
to ui is 3 are ui+3, ui+4, and the vertices on inner ring
are vi+2, vi−2, vi+5, vi−5, vi+8, vi−8, vi+3 and vi−3. The
vertices on inner ring whose distance to vi is 3 are vi+1

and vi+12. Therefore,

Wp (n, k) = 2n+ 8n+ 2n = 12n.

(5) Assume that both n and k are large enough so that
the vertices whose distance to ui is 3 are maximum. Since
GP (n, k) is a cubic graph, for ui, three branches can be
found to take count of the vertices whose distance to ui is
3. Obviously, the distance between each pair of vertices
ui+1, vi, ui−1 and ui is 1. There are two branches in each
of three vertices above and as well as the next vertices.
All of the vertices whose distance to ui is 3 can be found
by doing so.

ui

ui+1

vi

ui−1

vi+1

ui+2

vi+k

vi−k

vi−1

ui−2

vi+1+k

vi+1−k

vi+2

ui+3

vi+2k

ui+k

vi−2k

ui−k

vi−1+k

vi−1−k

vi−2

ui−3

1 2 3
``````

Table 1. The vertices whose distance to ui is 3
Distance toui

Vertices

Table 1 is the total process of the work and there are 12
such vertices. Vertices whose distance to vi is 3 can be

found like this and there are 12 of those, too. Analyzing
every vertex of GP (n, k), each pair of vertices whose
distance is 3 is calculated twice. Therefore, the Wiener
polarity index of generalized Petersen graph is at most

Wp(n, k) = (12n+ 12n)× 1

2
= 12n.

That is to say, Wp (n, k) ≤ 12n. �

For the Wiener index, we have the following results.

Theorem 2.3 If k = 1, then

W (n, 1) =

{
n3

2 + n2, if n is even,
n3

2 + n2 − n
2 , if n is odd.

Proof. (1) If n is even, then the number of pairs whose
distance is 1 is 3n. The number of pairs whose distance
is 2, 3, · · · , (n

2 − 2) or
(
n
2 − 1

)
are all 4n. The number of

pairs whose distance is n
2 is 3n and the number of pairs

whose distance is (n
2 + 1) is n. Therefore, we have

W (n, 1) = 3n× 1 + 4n× 2 + 4n× 3 + · · ·
+4n×

(
n
2 − 1

)
+ 3n× n

2 + n ·
(
n
2 + 1

)
= 4n(1 + 2 + 3 + · · ·+ n−2

2 ) + 2n2

= 4n ·
n−2
2 (1+n−2

2 )

2 + 2n2

= n3

2 + n2.

(2) If n is odd, then the number of pairs whose dis-
tance is 1 is 3n. The number of pairs whose distance
is 2, 3, · · · , (n−3

2 ), or (n−1
2 ), are all 4n. The number of

pairs whose distance is n+1
2 is 2n. Therefore, we obtain

that

W (n, 1) = 3n× 1 + 4n× 2 + 4n× 3 + · · ·
+4n×

(
n−1
2

)
+ 2n× n+1

2
= 4n(1 + 2 + 3 + · · · n−12 ) + n2

= 4n ·
n−1
2 (1+n−1

2 )

2 + n2

= n3

2 + n2 − n
2 . �

Theorem 2.4 Suppose that n > 6. Then

W (n, 2) =


1
4n

3 + 3n2 − 5n for even n,
16x3 + 36x2 − 46x+ 9 for n = 4x− 1

and x ≥ 2,
16x3 + 60x2 − 2x− 4 for n = 4x+ 1

and x ≥ 2.

Proof. The Wiener index W (n, 2) of generalized Pe-
tersen graph GP (n, 2) is related to n. Assume that
W (n, 2) = an · n, then it is obvious that an is double
the average distance of GP (n, 2). So the main problem
is to get an.

(1) When n is even, it is obvious that an meet the con-
dition

(an+2 − an)− (an − an−2) = 2.

Assume that bn = an − an−2 (n ≥ 10 and is even),
then bn − bn−2 = 2. Using accumulation twice, we have
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bn = n+5 and an = 1
4n

2+3n−5, respectively. Therefore
W (n, 2) = an · n = 1

4n
3 + 3n2 − 5n.

(2) When n is odd, let x ≥ 2. Then n = 4x − 1 or
n = 4x + 1. Assume that bn = an − an−2, then we can
know that {

b4x+1 − b4(x−1)+1 = 4,
b4x−1 = b4x+1.

Therefore,{
b4x+1 = 2 · (4x+ 1)− 5 = 8x− 3,
b4x−1 = b4x+1 = 8x− 3.

Thus {
a4x+1 = 4x2 + 14x− 4,
a4x−1 = 4x2 + 10x− 9.

Because W (n, 2) = an · n, we have

W (4x− 1, 2) = (4x2 + 10x− 9)(4x− 1)
= 16x3 + 36x2 − 46x+ 9

if n = 4x− 1, and

W (4x+ 1, 2) = (4x2 + 14x− 4)(4x+ 1)
= 16x3 + 60x2 − 2x− 4

if n = 4x+ 1. �

By Theorem 2.4, we can obtain that W (n, 2) <
W (n+ 1, 2): we only consider the case of even n since
the other case is similar. If n = 4x− 2, then

W (4x− 2, 2) = 1
4 (4x− 2)3 + 3(4x− 2)2 − 5(4x− 2)

= 16x3 + 24x2 − 56x+ 20,

W (4x− 1, 2) = 16x3 + 36x2 − 46x+ 9,

and

W (n+ 1, 2)−W (n, 2) = W (4x− 1, 2)−W (4x− 2, 2)
= 12x2 + 10x− 11 > 0

for x ≥ 2. If n = 4x, then

W (4x, 2) =
1

4
·(4x)3+3·(4x)2−5·4x = 16x3+48x2−20x,

W (4x+ 1, 2) = 16x3 + 60x2 − 2x− 4,

and

W (n+ 1, 2)−W (n, 2) = W (4x+ 1, 2)−W (4x, 2)
= 12x2 + 18x− 4 > 0

for x ≥ 2.

Theorem 2.5 For n > 7, k = 3, x ≥ 1, we have

W (n, 3) =



36x3 + 144x2 − 30x for n = 6x,
36x3 + 162x2 + 2x− 4 for n = 6x+ 1,
36x3 + 180x2 + 56x for n = 6x+ 2,
36x3 + 198x2 + 132x+ 21

for n = 6x+ 3,
36x3 + 216x2 + 200x+ 48

for n = 6x+ 4,
36x3 + 234x2 + 254x+ 70

for n = 6x+ 5.

Proof. Assume that W (n, 3) = an · n. For n > 7, it is
well known that n = 6x + i for i ∈ [0, 5]. Suppose that
bn = an − an−2, then{

b6x+6 − b6x = 6,
b6x+3 = b6x.

Using accumulation, we have{
b6x = 6x+ 12,
b6x+3 = b6x = 6x+ 12.

Thus, {
a6x = 6x2 + 24x− 5,
a6x+3 = 6x2 + 30x+ 7.

a6x+1, a6x+2, a6x+4 and a6x+5 can be calculated in the
same way. So we have the following results.

If n = 6x, then W (6x, 3) = (6x2 + 24x − 5) · 6x =
36x3 + 144x2 − 30x.

If n = 6x+ 1, then W (6x+ 1, 3) = (6x2 + 26x− 4)(6x+
1) = 36x3 + 162x2 + 2x− 4.

If n = 6x+2, thenW (6x+ 2, 3) = (6x2+28x)(6x+2) =
36x3 + 180x2 + 56x.

If n = 6x+ 3, then W (6x+ 3, 3) = (6x2 + 30x+ 7)(6x+
3) = 36x3 + 198x2 + 132x+ 21.

If n = 6x+4, thenW (6x+ 4, 3) = (6x2+32x+12)(6x+
4) = 36x3 + 216x2 + 200x+ 48.

If n = 6x+5, thenW (6x+ 5, 3) = (6x2+34x+14)(6x+
5) = 36x3 + 234x2 + 254x+ 70. �

3 Other Chemical indices of generalized
Petersen graphs

Definition 3.1 The Randić index of G is defined as

R(G) =
∑

uv∈E(G)

1√
deg(u) · deg(v)

,

the First zagreb index of G is defined as

M1(G) =
∑

u∈V (G)

deg(u)2,

the second zagreb index is defined as

M2(G) =
∑

uv∈E(G)

deg(u) · deg(v),

the connectivity index of G is defined as

χ(G) =
∑

uv∈E(G)

[deg(u) + deg(v)]−
1
2 ,

and the Harmonic index of G is defined as

H(G) =
∑

uv∈E(G)

2

deg(u) + deg(v)
.

We simply use H(n, k) to denote the Harmonic index of
generalized Petersen graph GP (n, k), similarly for other
indices.
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Theorem 3.2 (1) If n 6= 2k, then R(n, k) = n,
M1(n, k) = 18n, M2(n, k) = 27n, and χ(n, k) =

√
6n
2 .

(2) If n = 2k, then R(2k, k) = 7+2
√
6

6 k, M1(2k, k) = 26k,
M2(2k, k) = 34k, and

χ(2k, k) =
10
√

6 + 12
√

5 + 15

30
k.

(3) H(n, k) = n if n 6= 2k, and H(n, k) = 37
15k if n = 2k.

Proof. (1) If n 6= 2k, then GP (n, k) is a cubic graph.
Thus we have

R(n, k) =
∑

uv∈E(GP )

1√
deg(u) · deg(v)

=3n · 1

3
= n,

M1(n, k) =
∑

u∈V (GP )

deg(u)2 = 2n · 9 = 18n,

M2(n, k) =
∑

uv∈E(GP )

deg(u) · deg(v) = 3n · 9 = 27n,

and

χ(n, k) =
∑

uv∈E(GP )

[deg(u) + deg(v)]
− 1

2

= 3n · 1√
6

=
√
6n
2 .

(2) If n = 2k, then there are n edges with two ends whose
degrees are 3 in GP (2k, k), n edges with two ends whose
degrees are 2 and 3, respectively, and n

2 edges with two
ends whose degrees are 2. Thus,

R(2k, k) =
∑

uv∈E(GP )

1√
deg(u)·deg(v)

= n · 13 + n · 1√
6

+ 1
2n ·

1
2

= 7+2
√
6

12 n = 7+2
√
6

6 k,

M1(2k, k) =
∑

u∈V (GP )

deg(u)2 = n · 9 +n · 4 = 13n = 26k,

M2(2k, k) =
∑

uv∈E(GP )

deg(u) · deg(v)

= n · 9 + n · 6 + n
2 · 4 = 17n = 34k,

and

χ(2k, k) =
∑

uv∈E(GP )

[deg(u) + deg(v)]
− 1

2

= n · 1√
6

+ n · 1√
5

+ n
2 ·

1
2

= 10
√
6+12

√
5+15

30 k.

(3) If n 6= 2k, then

H(n, k) =
∑

uv∈E(GP )

2

deg(u) + deg(v)
= 3n · 2

6
= n.

If n = 2k, then

H(n, k) =
∑

uv∈E(GP )

2
deg(u)+deg(v)

= n · 26 + n · 25 + n · 24 = 37
15k. �

For e = uv ∈ E(G), let nu(e) denote the number of
vertices of G whose distance to u is smaller than the one
to v and mu(e) the number of edges whose distance to u
is smaller than the one to v, respectively.

Definition 3.3 [3] The Gutman index and gen-
eralized terminal Wiener index are denoted by
Gut(G) and TWr(G), respectively, and are defined as
follows:

Gut(G) =
∑

u,v∈V (G)

deg(u)deg(v)d(u, v),

TWr(G) =
∑

u,v∈V (G)
deg(u)=deg(v)=r

d(u, v).

The Szeged index SZ(G), edge-Szeged index SZe(G), and
PI index PI(G) of G are defined as

SZ(G) =
∑

e=uv∈E(G)

nu(e)nv(e),

SZe(G) =
∑

e=uv∈E(G)

mu(e)mv(e),

and
PI(G) =

∑
e=uv∈E(G)

[mu(e) +mv(e)],

respectively.

Let SZ(n, k), SZe(n, k), PI(n, k), Gut(n, k) and
TWr(n, k) denote the Szeged index, edge-Szeged index,
PI index, the Gutman index and generalized terminal
Wiener index of generalized Petersen graph, respectively.

Theorem 3.4 (1) If n 6= 2k, then Gut(n, k) = 9W (n, k);

(2) If n = 2k, then

Gut(2k, k) =

{
9k3 + 5k2 + 28k − 16 for even k,
9k3 + 5k2 + 38k − 21 for odd k.

Proof. (1) If n 6= 2k, then deg(u) = deg(v) = 3. Thus

Gut(n, k) =
∑

u,v∈V (GP )

deg(u) deg(v)d(u, v) = 9W (n, k).

(2) If n = 2k, then for any u ∈ V (GP ), either deg(u) = 2
or deg(u) = 3.

1◦ If deg(u) = deg(v) = 3, then both u and v are on the
outer ring of GP (n, k). Thus∑
deg(u)=deg(v)=3

deg(u) deg(v)d(u, v) = 9
∑
d(u, v)

= 9× 1
2n[1× 2 + 2× 2 + · · ·+ (n

2 − 1)× 2 + n
2 × 1]

= 9
2n[

n
2 ·(

n
2−1)
2 × 2 + n

2 ] = 9
8n

3 = 9k3.

2◦ If deg(u) = 3 and deg(v) = 2, then u is on the outer
ring of GP (n, k), and v is on the inner ring of GP (n, k).
Thus ∑

deg(u)=3
deg(v)=2

deg(u) deg(v)d(u, v) = 6
∑

d(u, v).

IAENG International Journal of Applied Mathematics, 47:2, IJAM_47_2_01

(Advance online publication: 24 May 2017)

 
______________________________________________________________________________________ 



Case 1. If n
2 = k is even, then∑

d(u, v) = 1× 1 + 2× 3 + 3× 4 + · · ·+ (n
4 + 1)× 4

= 7 + 4× (n
4 +4)(n

4−1)
2

= n2

8 + 3
2 − 1 = 1

2k
2 + 3k − 1.

Case 2. If n
2 = k is odd, then∑

d(u, v) = 1× 1 + 2× 3 + 3× 4 + · · ·
+(n+2

4 )× 4 + (n+2
4 + 1)× 2

= 7 + 4× (n+2
4 +3)(n+2

4 −2)
2 + n+2

2 + 2

= n2

8 + 3
2n−

1
2 = 1

2k
2 + 3k − 1

2 .

Therefore, we have∑
deg(u)=3
deg(v)=2

deg(u) deg(v)d(u, v) = 6
∑
d(u, v)

=

{
3k2 + 18k − 6, if k is even,
3k2 + 18k − 3, if k is odd.

3◦ If deg(u) = deg(v) = 2, then both u and v are on the
inner ring of GP (n, k). Thus∑

deg(u)=deg(v)=2

deg(u) deg(v)d(u, v) = 4
∑

d(u, v).

Case 1. If n
2 = k is even, then∑

d(u, v) = 1× 1 + 3× 2 + 4× 4 + · · ·+ (n
4 + 2)× 4

= 7 + 4× (n
4 +6)(n

4−1)
2

= 1
8n

2 + 5
2n− 5 = 1

2k
2 + 5k − 5.

Case 2. If n
2 = k is odd, then∑

d(u, v) = 1× 1 + 3× 2 + 4× 4 + · · ·
+(n+2

4 + 1)× 4 + (n+2
4 + 2)× 2

= 7 + 4× (n+2
4 +5)(n+2

4 −2)
2

= 1
8n

2 + 5
2n−

9
2 = 1

2k
2 + 5k − 9

2 .

Therefore, we have∑
deg(u )=deg(v)=2

deg(u) deg(v)d(u, v) = 4
∑
d(u, v)

=

{
2k2 + 10k − 10, if k is even;
2k2 + 20k − 18, if k is odd.

In a word, we obtain that

Gut(2k, k) =
∑

u,v∈V (GP )

deg(u) deg(v)d(u, v)

=

{
9k3 + 5k2 + 28k − 16, if k is even,
9k3 + 5k2 + 38k − 21, if k is odd

for n = 2k. �

By the proof of Theorem 3.4, we arrive at the following
conclusions.

Corollary 3.5 If n 6= 2k, then TW2(n, k) = 0 and
TW3(n, k) = W (n, k). Moreover, we have

TW2(2k, k) =

{
1
2k

2 + 5k − 5, if k is even;
1
2k

2 + 5k − 9
2 , if k is odd,

and
TW3(2k, k) = k3.

The Szeged index SZ(G), edge-Szeged index SZe(G), and
PI index PI(G) of G are important indexes in computer
science.

Theorem 3.6 For the Szeged index, we have

SZ(n, 1) =

{
3n3 − 4n2 + 2n, if n is odd,
3n3, if n even,

and

SZ(n, 2) =

{
3n3 − 12n2 + 12n, if n is even,
3n3 − 16n2 + 22n, if n is odd.

Proof. (1)The edges of GP (n, 1) can be divided into
three types, that is, e1 = uiui+1, e2 = vivi+1 or e3 =
uivi. Then we have

nui
(e1) = nui+1

(e1) =

{
n− 1, if n is odd,
n, if n is even.

nvi(e2) = nvi+1(e2) =

{
n− 1, if n is odd;
n, if n is even,

and nui
(e3) = nvi

(e3) = n.

According to the definition, we have

SZ(n, 1) =
∑

e=uv∈E(GP )

nu(e)nv(e)

= n · [nui
(e1) · nui+1

(e1)]
+n · [nvi

(e2) · nvi+1
(e2)]

+n · [nui
(e3) · nvi

(e3)]

=

{
3n3 − 4n2 + 2n, if n is odd,
3n3, if n is even.

(2) If k = 2 and n > 9, then divide the edges of GP (n, 2)
into three parts as (1) similarly, i. e., e1 = uiui+1, e2 =
vivi+2, e3 = uivi. It can be easily known that apart from
the vertices whose distance to u is equal to the distance
to v, the number of GP (n, 2)’s vertices with a shorter
distance to u than to v is equal to the number of vertices
with a longer distance to u than to v. Firstly, the vertices
whose distance to u is equal to the distance to v should
be found.

Case 1. Assume that n is even.

For e1 = uiui+1, the set of vertices whose distance to ui
is equal to the distance to ui+1 is {vi−1, vi−3, vi+2, vi+4},
then nui

(e1) = nui+1
(e1) = 2n−4

2 = n− 2.

For e2 = uivi, the set of vertices whose distance to ui
is equal to the distance to vi is {ui+2, ui+3, ui−2, ui−3},
then nui

(e2) = nvi
(e2) = 2n−4

2 = n− 2.

If e3 = vivi+2, the set of vertices whose distance to vi
is equal to the distance to vi+2 is {ui+1, vi+1, ui+1+n

2
,

vi+1+n
2
}, then nvi

(e3) = nvi+2
(e3) = 2n−4

2 = n− 2.

Case 2. Assume that n is odd.
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For e1 = uiui+1, the set of vertices whose distance to
ui is equal to the distance to ui+1 is {vi−1, vi−3, vi+2,
vi+4, ui+dn2 e, vi+d

n
2 e}, then nui

(e1) = nui+1
(e1) =

2n−6
2 = n− 3.

For e2 = uivi, the set of vertices whose distance to ui
is equal to the distance to viis {ui+2, ui+3, ui−2, ui−3},
then nui(e2) = nvi(e2) = 2n−4

2 = n− 2.

If e3 = vivi+2, the set of vertices whose dis-
tance to vi is equal to the distance to vi+2 is
{ui+1, vi+1, ui+dn

2 e, vi+dn
2 e, ui+1+dn

2 e, vi+1+dn
2 e}, then

nvi
(e3) = nvi+2

(e3) = 2n−6
2 = n− 3.

According to the definition, we have

SZ(n, 2) =
∑

e=uv∈E(GP )

nu(e)nv(e)

= n · [nui(e1) · nui+1(e1)]
+n · [nvi

(e2) · nvi+1
(e2)]

+n · [nui
(e3) · nvi

(e3)]

=

{
3n3 − 12n2 + 12n, if n is even,
3n3 − 16n2 + 22n, if n is odd. �

Theorem 3.7 For edge-Szeged index and PI index, we
have

SZe(n, 1) =

{
11
2 n

3 − 9n2 + 9
2n, if n is odd,

11
2 n

3 − 12n2 + 8n, if n is even.

PI(n, 1) =

{
8n2 − 6n, if n is odd,
8n2 − 8n, if n is even,

SZe(n, 2) =


27
4 n

3 − 36n2 + 50n, if even n = 4x,
27
4 n

3 − 39n2 + 57n, if even n = 4x+ 2,
27
4 n

3 − 63
2 n

2 + 155
4 n, if n is odd,

and

PI(n, 2) =

 9n2 − 24n, if even n = 4x,
9n2 − 26n, if even n = 4x+ 2,
9n2 − 21n, if n is odd.

Proof. (1) The edge set of GP (n, 1) can be divided into
three categories as in Theorem 3.6, then we may get the
following results.

Case 1. If n is odd, then

mui
(e1) = mui+1

(e1) =
n− 1

2
+
n− 1

2
+
n− 1

2
=

3n− 3

2
,

mvi
(e2) = mvi+1

(e2) =
n− 1

2
+
n− 1

2
+
n− 1

2
=

3n− 3

2
,

and
mui(e3) = mvi(e3) = n.

Therefore, we have

SZe(n, 1) =
∑

e=uv∈E(GP )

mu(e)mv(e)

= n · [mui
(e1) ·mui+1

(e1)]
+n · [mvi(e2) ·mvi+1(e2)]
+n · [mui(e3) ·mvi(e3)]

= 11
2 n

3 − 9n2 + 9
2n,

and

PI(n, 1) =
∑

e=uv∈E(GP )

[mu(e) +mv(e)]

= n · [mui(e1) +mui+1(e1)]
+n · [mvi

(e2) +mvi+1
(e2)]

+n · [mui
(e3) +mvi

(e3)]
= 8n2 − 6n.

Case 2. If n is even, then

mui
(e1) = mui+1

(e1) =
n− 2

2
+
n

2
+
n− 2

2
=

3n− 4

2
,

mvi(e2) = mvi+1(e2) =
n− 2

2
+
n

2
+
n− 2

2
=

3n− 4

2
,

and
mui(e3) = mvi(e3) = n.

Therefore, we have

SZe(n, 1) =
∑

e=uv∈E(GP )

mu(e)mv(e)

= n · [mui(e1) ·mui+1(e1)]
+n · [mvi

(e2) ·mvi+1
(e2)]

+n · [mui
(e3) ·mvi

(e3)]
= 11

2 n
3 − 12n2 + 8n,

and

PI(n, 1) =
∑

e=uv∈E(GP )

[mu(e) +mv(e)]

= n · [mui
(e1) +mui+1

(e1)]
+n · [mvi(e2) +mvi+1(e2)]
+n · [mui(e3) +mvi(e3)]

= 8n2 − 8n.

(2) It can be easily known that apart from the primitive
edge and the edges whose distance to u is equal to the
distance to v, the number of GP (n, 2)’s edges of with a
shorter distance to u than to v is equal to the number
of edges with a longer distance to u than to v. First,
the edges whose distance to u is equal to the distance to
v should be found and they are related to the vertices
whose distance to u is equal to the distance to v.

Case 1. Assume that n is even.

If e1 = uiui+1, then the set of edges whose distance to
ui is equal to the distance to ui+1 is

{vi−1vi−3, ui−3vi−3, vi−3vi−5, vi+2vi+4,
ui+4vi+4, vi+4vi+6, ui+n

2
ui+1+n

2
},

so me1(ui) = me1(ui+1) = 3n−8
2 .

If e2 = uivi, then the set of edges whose distance to ui
is equal to the distance to vi is

{ui+2ui+3, ui+3ui+4, ui+3vi+3, ui−2ui−3, ui−3ui−4,
ui−3vi−3, ui−1+n

2
vi−2+n

2
, ui+1+n

2
vi+1+n

2
, vi−1+n

2
vi+1+n

2
},

so me2(ui) = me2(vi) = 3n−10
2 .

For e3 = vivi+2, if n
2 is even, then the set of edges whose

distance to vi is equal to the distance to vi+2 is{
ui+1vi+1, vi+1vi+3, vi−1vi+1, ui+1+n

2
vi+1+n

2
, vi+n

2
vi+2+n

2

}
.
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Thus me3(vi) = me3(vi+2) = 3n−6
2 . If n

2 is odd, then the
set of edges whose distance to vi is equal to the distance
to vi+2 is

{ui+1vi+1, vi+1vi+3, vi−1vi+1, ui+1+n
2
vi+1+n

2
,

vi+n
2
vi+2+n

2
, ui+n

2
ui+1+n

2
, ui+1+n

2
ui+2+n

2
}.

Hence me3(vi) = me3(vi+2) = 3n−8
2 .

Case 2. Assume that n is odd.

If e1 = uiui+1, then the set of edges whose distance to
ui is equal to the distance to ui+1 is

{vi−1vi−3, ui−3vi−3, vi−3vi−5, vi+2vi+4, ui+4vi+4,
vi+4vi+6, ui+dn

2 evi+dn
2 e, vi−1+dn

2 evi+1+dn
2 e},

thus me1(ui) = me1(ui+1) = 3n−9
2 .

If e2 = uivi, then the set of edges whose distance to ui
is equal to the distance to vi is

{ui+2ui+3, ui+3vi+3, ui+3ui+4,
ui−2ui−3, ui−3ui−4, ui−3vi−3},

so me2(ui) = me2(vi) = 3n−7
2 .

If e3 = vivi+2, the set of edges whose distance to vi is
equal to the distance to vi+2 is{

ui+1vi+1, vi−1vi+1, vi+1vi+3, ui+dn
2 eui+1+dn

2 e
}
,

then me3(vi) = me3(vi+2) = 3n−5
2 .

Therefore, we have

SZe(n, 2) =
∑

e=uv∈E(GP )

mu(e)mv(e)

= n · [mui
(e1) ·mui+1

(e1)]
+n · [mvi

(e2) ·mvi+2
(e2)]

+n · [mui
(e3) ·mvi

(e3)]

=


27
4 n

3 − 36n2 + 50n, if even n = 4x,
27
4 n

3 − 39n2 + 57n, if even n = 4x+ 2,
27
4 n

3 − 63
2 n

2 + 155
4 n, if n is odd.

and
PI(n, 2) =

∑
e=uv∈E(GP )

[mu(e) +mv(e)]

= n · [mui(e1) +mui+1(e1)]
+n · [mvi(e2) +mvi+2(e2)]
+n · [mui

(e3) +mvi
(e3)]

=

 9n2 − 24n, if even n = 4x,
9n2 − 26n, if even n = 4x+ 2,
9n2 − 21n, if n is odd.

Hence Theorem 3.7 is proved. �

Therefore we have drawn the conclusions below. For
k ∈ [4], we have got the Wiener polarity index W (n, k)
and the Wiener index Wp (n, k) of generalized Petersen
graph GP (n, k). For k ∈ [2], we have obtained the
Szeged index SZ(n, k), the edge-Szeged index SZe(n, k),
the Pl index PI(n, k), and generalized terminal Wiener
index TWr(n, k). For k ≥ 1, we have also gained the first
zagreb indexM1(n, k), the second zagreb indexM2(n, k),
the connectivity index χ(n, k), and the Harmonic index
H(n, k), the Randić index R(n, k), and the Gutman in-
dex Gut(n, k).
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