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Chemical Indices of Generalized Petersen Graph*
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Abstract

The generalized Petersen graph GP (n,k) is a graph
whose vertex and edge sets are {uj,ug, -, up,
V1, U2, Up b and {ugtigr, wivg, V04|t € [n]}, respec-
tively. In this paper, for k € [4], the Wiener polarity in-
dex and the Wiener index of generalized Petersen graph
GP (n,k) are obtained; for k € [2], the Szeged index,
the edge-Szeged index, and the Pl index are educed; for
k > 1, the exact values about the Randié¢ index, the Gut-
man index, first and second zagreb index, and Harmonic
index are gained.

Keywords: Generalized Petersen graphs; Wiener polar-
ity index; Wiener index; Szeged index; Randié¢ index

1 Introduction

All graphs considered in this paper are finite, undirected,
and simple. For integers a, b, a positive integer k and
a real number z, let [a,b] = {a,a + 1,---,b — 1,0},
[k] = {1,2,--- ,k}, [2] and |z| denote the smallest in-
teger not less than x and the largest integer not greater
than z, respectively. In recent years, many parameters
and classes of graphs are studied. For example, in [2],
the restricted connectivity of Cartesian product graphs is
obtained, in [7, 11], some results on 3-equitable labeling
and the n-dimensional cube-connected complete graph
are gained, and in [9], graph energy is studied.

The generalized Petersen graph [1, 4, 13, 14,
16, 17 GP(n,k) is a graph whose vertex set
and edge set are {uj,us, -, Up,v1,v2, - ,U,} and
{uitit1, UiV, ViV k|t € [n]}, respectively, where the in-
dices are taken modular n and all of them belong to [n].
The most famous Petersen graph is GP(5,2). In fact,
GP (n,k) = GP (n,n — k). Therefore, Petersen graph is
also GP(5,3), and we just consider k¥ < 7 in this paper.

For k < %, the generalized Petersen graph GP (n, k) is a
cubic graph whose outer ring is a regular polygon, which
is the cycle C},, inner ring is a n-pointed stars, which
is the circulant graph C,, (k), respectively, and the cor-
responding vertices are connected. The generalized Pe-
tersen graphs were first found by Coxeter in 1950 and
named by Watkins in 1969. Later, many scholars stud-
ied generalized Petersen graphs, including their hamilto-
nian path [14], hamiltonian cycle [1], coloring [4], metric
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dimension [13] and domination number [16].

The Wiener polarity index [12] and Wiener index [6, 8,
15] are related to the distance of vertices, and the Wiener
index can be used to explain the physical and chemi-
cal property of molecules, which was first proposed by
Harold Wiener in 1947. Later, many mathematicians
studied the Wiener index.

In this paper, some chemical indices of generalized Pe-
tersen graphs are studied, such as the Wiener polarity
index, the Wiener index, generalized Randié¢ index, et
cetera.

2 The Wiener (polarity) index of gener-
alized Petersen graphs

In the following, let n, k, x be all nonnegative integers.

Definition 2.1. The Wiener polarity index of G is de-
noted by W, (G) and defined as the number of the pairs
of vertices whose distances are 3:

Wy (G) = |{{u7v} ‘d(uvv) =3,u,v € V(G)}l )

where d(u,v) denotes the distance between the vertices
u, .

The Wiener index of a graph G, is defined as

Z d (u,v).

u, eV (G)

W (G) =

The Wiener polarity index of generalized Petersen graph
GP (n, k) is denoted by W, (n, k), and the Wiener index
is denoted by W (n, k).

According to the definition, the Wiener polarity index is
0 when the diameter of G is less then 3. Therefore, we
just consider W, (n, k) (n > 6).

Theorem 2.2 For k£ > 1, we have

4dn, for k=1 and n > 6,
™, for k =2, and even n > 12
or oddn > 17,
On, for k= 3,3|n and n > 18,
or 3tn,and odd n > 11,
12n, for k = 4,4|n and n > 24,
or 4t n,and odd n > 15,

and W), (n, k) < 12n if n — k is large enough.

Proof. (1) For k = 1, from the definition of general-
ized Petersen graphs, when n > 6, the vertex on outer
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ring whose distance to w; is 3 is w;y3, and the vertices
on inner ring are v;1o and v;—o. The vertex on inner
ring whose distance to v; is 3 is v;13. (Although the dis-
tance between u; and u;_3 is also 3, to avoid repeated
calculation, we just consider u;3, similarly hereinafter.)
Therefore, Wy (n,1) =n+2n+n = 4n.

(2) For k=2, ifnisodd and n > 7, or n is even and n >
12, then the vertex on outer ring whose distance to w; is
3 is w43, the vertices on inner ring are v;i4,v;—4, Vit3
and v;_3. The vertices on inner ring whose distance to
v; is 3 are v;41 and v;yg. Therefore,

Wy (n,2) =n+4n+2n = Tn.

(3) For k = 3, if 3j]n and n > 18, or 3 f n, n > 11
and n is odd, then the vertex on outer ring whose dis-
tance to w; is 3 is u;y3, the vertices on inner ring are
Vit2,Vi—2, Vitd, Vi—4, Vi3 and v;_3. The vertices on in-
ner ring whose distance to v; is 3 are v;y1 and ;9.
Therefore,

W, (n,3) =n+6n+2n = 9n.

(4) For k = 4, if 4n and n > 24, or 4 t n, n > 15 and
n is odd, then the vertices on outer ring whose distance
to u; is 3 are u;y3,u;14, and the vertices on inner ring
are vVij42,V;—2,0Ui+5,V;—5,0Vi4+8,V;j—8, Vi4+3 and Vi—3. The
vertices on inner ring whose distance to v; is 3 are v;11
and v;112. Therefore,

Wy, (n, k) =2n+ 8n+ 2n = 12n.

(5) Assume that both n and k are large enough so that
the vertices whose distance to u; is 3 are maximum. Since
GP (n, k) is a cubic graph, for u;, three branches can be
found to take count of the vertices whose distance to u; is
3. Obviously, the distance between each pair of vertices
Wjy1, Vi, u;—1 and u; is 1. There are two branches in each
of three vertices above and as well as the next vertices.
All of the vertices whose distance to u; is 3 can be found
by doing so.

Table 1. The vertices whose distance to u; is 3

istancetouy
WVertices ' 1 2 3

Ui—3

Ui—2
u Vi—2
i—1

Vi—1—k
Vi—1

Vi—1+k

Ui—k
Vi—k

Vi—2k

Uq (% a
itk

Vit+k

Vit2k

Ui+3
Ui+42 o

i+2
Ui+1

Vi+1—k
Vi+1

Vi+1+k

Table 1 is the total process of the work and there are 12
such vertices. Vertices whose distance to v; is 3 can be

found like this and there are 12 of those, too. Analyzing
every vertex of GP (n,k), each pair of vertices whose
distance is 3 is calculated twice. Therefore, the Wiener
polarity index of generalized Petersen graph is at most

1
Wy(n, k) = (12n + 12n) x 3= 12n.

That is to say, W), (n, k) < 12n. |
For the Wiener index, we have the following results.

Theorem 2.3 If kK = 1, then

3 . .
5 +n2,if nis even,

3
n 2 n s ;
5 +n— 5, if nisodd.

W(n,1) = {
Proof. (1) If n is even, then the number of pairs whose
distance is 1 is 3n. The number of pairs whose distance
is2,3,---,(5 —2)or (g — 1) are all 4n. The number of

pairs whose distance is % is 3n and the number of pairs

whose distance is (5 + 1) is n. Therefore, we have

Wn,1)=3nx14+4nx2+4nx3+---
+4n><(gf )+3nxﬂ+n~(g+1)

:4n(1+2+3+~~+%)+2n2

n—2 n—2
—4n - T(lg‘T) + 2n2
= n—a +n2
5 .

(2) If n is odd, then the number of pairs whose dis-
tance is 1 is 3n. The number of pairs whose distance
is 2,3,--- ,("T_?’), or (”51), are all 4n. The number of
pairs whose distance is 2L is 2n. Therefore, we obtain

2
that

Wn,1)=3nx14+4nx2+4nx3+---
+4n><(”771)+2n><”7+1
=4dn(14+2+3+---251) +n?
:4n-7n771(1+%1) +n?
A 2

—n 2_n
=% +n 5. [ |

Theorem 2.4 Suppose that n > 6. Then

%ng +3n? —5n for even n,

162> + 3622 — 462 + 9 for n = 4x — 1
and x > 2,

162 + 6022 — 22 — 4 for n =4x +1
and x > 2.

W (n,2) =

Proof. The Wiener index W(n,2) of generalized Pe-
tersen graph GP (n,2) is related to n. Assume that
W(n,2) = a, - n, then it is obvious that a, is double
the average distance of GP (n,2). So the main problem
is to get a,,.

(1) When n is even, it is obvious that a,, meet the con-
dition
(Gny2 — an) — (an — apn—2) = 2.

Assume that b, = a, — an—2 (n > 10 and is even),
then b,, — b,—2 = 2. Using accumulation twice, we have
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b, =n+>5and a, = in2+3n—5, respectively. Therefore
W (n,2) = a, -n=in®+3n? - b5n.

(2) When n is odd, let « > 2. Then n = 4z — 1 or
n = 4x + 1. Assume that b, = a,, — a,,_2, then we can

know that
bizs1 — b4(x—1)+1 =4,
b4zfl - b4z+1~
Therefore,

b4m+1 :2(41'4*1)75:81'*3,
baz—1 = b4x+1 =8z — 3.

Thus
A4pt1 = 422 + 14z — 4,
Aap_1 = 422 + 102 — 9.

Because W(n,2) = ay, - n, we have

W (4 — 1,2) = (42% + 10z — 9)(4z — 1)
= 1623 + 3622 — 462 + 9

if n =4z — 1, and

W (4x + 1,2) = (422 + 142 — 4)(4x + 1)
= 1623 + 602% — 22 — 4

fn=4z+1. 1

By Theorem 2.4, we can obtain that W (n,2) <
W (n+1,2): we only consider the case of even n since
the other case is similar. If n = 4x — 2, then

W4z —2,2) = 1(4a — 2)3 + 3(4z — 2)* — 5(4z — 2)
= 1623 + 2422 — 562 + 20,

W(4x —1,2) = 162> + 3622 — 46 + 9,
and

W(n+1,2) —W(n,2) =Wz —1,2) — W4z — 2,2)
=1222+ 10z — 11 >0

for x > 2. If n = 4z, then
1 3 2 3 2
W(4z,2) = 1(4;10) +3-(4z)”—5-dx = 162° +48z= —20z,

W (4x +1,2) = 1623 + 602* — 22 — 4,
and

W(n+1,2) —W(n,2) =Wz +1,2) — W(4z,2)
=122+ 182 -4>0

for x > 2.
Theorem 2.5 Forn > 7, k=3, x > 1, we have

3623 + 14422 — 30z for n = 6z,
3623 + 16222 +2x — 4 for n =6z + 1,
3623 + 18022 + 56z for n = 6z + 2,
3623 + 19822 + 132z + 21

for n="6x+ 3,
3623 + 21622 + 200x + 48

for n="06x+4,
3623 + 23422 + 2542 + 70

for n=6x+5.

W(n,3) =

Proof. Assume that W(n,3) = a, -n. Forn > 7, it is
well known that n = 6x + ¢ for i € [0,5]. Suppose that
bn = anp — an-2, then

{ bez+6 — b = 6,
bez+3 = bee-

Using accumulation, we have

bgx = 62 + 12,
bez+3 = bey = 6 + 12.

Thus,
age = 622 + 24z — 5,
Ap+3 = 622 + 30x + 7.

G641, A6z+2, G6z+4 and agz4+5 can be calculated in the
same way. So we have the following results.

If n = 6x, then W (6x,3) = (622 + 242 — 5) - 62 =
3623 + 14422 — 30z.

If n = 62+ 1, then W (6x + 1,3) = (622 + 262 — 4) (62 +
1) = 362° + 16222 + 2z — 4.

If n = 62+2, then W (6x + 2,3) = (622 +28z)(62+2) =
362 + 18022 + 56u.

If n = 62 + 3, then W (6x + 3, 3) = (622 + 30z + 7)(6z +
3) = 3627 + 19822 + 1322 + 21.

If n = 6x+4, then W (6z + 4, 3) = (62%+ 32z +12)(6x+
4) = 3623 + 21622 + 200z + 48.

If n = 62+5, then W (6x + 5,3) = (622 + 34z +14)(6z+
5) = 362 + 23422 + 2542 +70. W

3 Other Chemical indices of generalized
Petersen graphs
Definition 3.1 The Randié index of GG is defined as
Z 1
WEE(G) deg(u) : deg(v) )

the First zagreb index of G is defined as

M (G) = Z deg(u)?,

ueV(QG)

R(G) =

the second zagreb index is defined as

S deg(u) - deg(v),

weE(G)

My(G) =

the connectivity index of G is defined as
_1
X(G) = > [deg(u)+deg(v)] "2,
uwv€EE(G)

and the Harmonic index of GG is defined as

HG) = 3 2

weB(G) deg(u) + deg(v)

We simply use H(n, k) to denote the Harmonic index of
generalized Petersen graph GP(n, k), similarly for other
indices.
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Theorem 3.2 (1) If n # 2k, then R(n,k) = n,
Mi(n, k) = 18n, Ma(n, k) = 27n, and x(n, k) =

(2) If n = 2k, then R(2k, k) =
Moy (2k, k) = 34k, and

TL2V6 kM, (2k, k) = 26K,

10v6 + 125 + 151(J

2%, k) =
X(2k, k) 30

(3) H(n,k) =n if n # 2k, and H(n, k) = 3Lk if n = 2k.

Proof. (1) If n # 2k, then GP(n,k) is a cubic graph.
Thus we have

1 1
R(n, k) = =3n--=n,
e et e
Mi(n, k) = Z deg(u)? =2n -9 = 18n,
ueV(GP)
My(n, k) = z deg(u) - deg(v) = 3n -9 = 27n,
uveE(GP)
and
_1
x(n k)= 3 [deg(u)+deg(v)] *
uwweE(GP)
1 fn
=3n- 75T 2

(2) If n = 2k, then there are n edges with two ends whose
degrees are 3 in GP(2k, k), n edges with two ends whose
degrees are 2 and 3, respectively, and 5 edges with two
ends whose degrees are 2. Thus,

R(2k, k) = 1
( ) uve%(:GP) deg(u)-deg(v)
=n-§+n-+in-g
= %n — H%,\/ék,
My (2k, k) = Z deg(u)2:n.9_~_n.4:13n:26k7
wEV (GP)
]\42(2k7 k) = Z deg(u) . deg(’U)
uwweE(GP)
:n'9+n'6+g~4:17n:34k,
and
uvEE(GP)
1 1 n 1
— wk
- 30 :

(3) If n # 2k, then

2 2
H(n, k) = Z —  _=3n-Z=n.
B Er) deg(u) + deg(v) 6
If n = 2k, then
B 2
H(n, k) = MGEZ(GP) Teg(a)+deg ()

.2 2 2 _ 37
=n-sg+n-z 24n- —15k. [ |

For e = wv € E(QG), let ny(e) denote the number of
vertices of G whose distance to u is smaller than the one
to v and m,,(e) the number of edges whose distance to u
is smaller than the one to v, respectively.

Definition 3.3 [3] The Gutman index and gen-
eralized terminal Wiener index are denoted by
Gut(G) and TW,.(G), respectively, and are defined as

follows:
Gut(G) = Z deg(u)deg(v)d(u,v),
u,weV(G)
TW,(G) = > d(uv).
wveV(Q)

deg(u)=deg(v)=r

The Szeged index Sz (G), edge-Szeged index Sz.(G), and
PI index PI(G) of G are defined as

Sz (G) = Z nu(e)nv(6)7
e=uwv€E(G)
Sz.(G) = Z my(e)my(e),

e=uwveE(G)

and
PI(G) = Z [ma(e) +my(e)],
e=uwveEE(G)

respectively.
Let Sz(n,k), Sze(n,k), PI(n,k), Gut(n,k) and

TW,(n, k) denote the Szeged index, edge-Szeged index,
PI index, the Gutman index and generalized terminal
Wiener index of generalized Petersen graph, respectively.

Theorem 3.4 (1) If n # 2k, then Gut(n, k) = 9W (n, k);
(2) If n = 2k, then

9k3 + 5k2 4 28k — 16 for even k,

Proof. (1) If n # 2k, then deg(u)

Gut(n, k) = Z deg(u) deg(v)d(u,
w, eV (GP)

= deg(v) = 3. Thus

v) = 9W (n, k).

(2) If n = 2k, then for any u € V(GP), either deg(u) = 2
or deg(u) = 3.

1° If deg(u) = deg(v) = 3, then both u and v are on the
outer ring of GP(n, k). Thus

deg(u) deg(v)d(u,v) =93 d(u,v)
deg(u)=deg(v)=3
=9 x gn[1x2+2x2+---+(g—1) X242 x1]
— [l o4 ] = 23 — g3,
2° If deg(u) = 3 and deg(v) = 2, then w is on the outer
ring of GP(n, k), and v is on the inner ring of GP(n, k).

Thus
Z deg(u) deg(v)d(u, v —GZduv

deg(u)=3
deg(v)=2

(Advance online publication: 24 May 2017)
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Case 1. If 5 = k is even, then

Zd(u,v):l><1+%n><+i>)(t3l>)<4+---+(g+1)><4
=T7+4x A—71—

=S 1= L2k

Case 2. If 5 =k is odd, then

Yodu,v) =1x1+2x3+3x4+---
H(2E2) x 44 (22 +1) x 2

:7+4X( 42+3)2(#*2)+n7+2+2

_n? 3 1 _ 172 1

Therefore, we have

> deg(u) deg(v)d(u,v) =6 d(u,v)
deg(u)=3
deg(v)=2

[ 3k*+ 18k —6,if kis even,
T\ 3k%+ 18k —3,if kis odd.

3° If deg(u) = deg(v) = 2, then both u and v are on the
inner ring of GP(n, k). Thus

Z deg(u) deg(v)d(u,v) =4 Z d(u,v).

deg(u)=deg(v)=2

Case 1. If 5 = k is even, then

Dod(u,v) =1 x14+3x2+4x4+---+(F+2) x4
=T7T4+4x (%*6)2(%*1)
=in?+3n—5=1k?+5k—5.

Case 2. If § = k is odd, then

Sdu,v) =1x14+3x2+4x4+---
(22 1) x4+ (22 +2) x 2

=T7+4x (”12+5)(#*2)
:én2+gn—%:%k2+5k—%.

Therefore, we have

> deg(u) deg(v)d(u,v) =43 d(u,v)
deg(u)=deg(v)=2
[ 2k%*+ 10k —10,if kis even;
T 2k% 420k — 18,if kis odd.

In a word, we obtain that

Gut(2k, k)= >
uw,wEV(GP)

[ 9Kk3 +5k% + 28k — 16,if k is even,

T | 9k3 4 5k2 4 38k — 21,if kis odd

deg(u) deg(v)d(u,v)

forn=2tk. N

By the proof of Theorem 3.4, we arrive at the following
conclusions.

Corollary 3.5 If n # 2k, then TWa(n,k) = 0 and
TWs(n, k) = W(n, k). Moreover, we have

L2 45k —5,if kis even;
TW2(2k,k)—{ %k2+5/€—%»if k is odd,

2

and
TW3(2k, k) = k>,

The Szeged index Sz(G), edge-Szeged index Sz.(G), and
PI index PI(G) of G are important indexes in computer
science.

Theorem 3.6 For the Szeged index, we have

3nd —4n? 4 2n, if nis odd,
3n3, if n even,

Sz(n,1) = {

and

[ 3n3 —12n2 + 12n, if nis even,
Sz(n,2) = { 3n3 — 16n2 + 22n, if n is odd.

Proof. (1)The edges of GP(n,1) can be divided into
three types, that is, e; = w;u;+1,€e2 = v;v;41 Or eg =
u;v;. Then we have

n—1, if nis odd,
n, if nis even.

n—1, ifnis odd;
n, if nis even,

Ny, (€1) = N,y (€1) = {

Ny, (€2) = Ny, (€2) = {

and ny, (e3) = ny,(e3) = n.

According to the definition, we have

Sz(n,1) = >

e=uveE(GP)
=n- [nuz (61) LSRN (61)}
+n- [nvi(62) “ M (62)]
+n- [nul (63) Ty, (63)]
- { 3n3 —4n? +2n, if n is odd,

ny(e)ny(e)

33, ifn is even.

(2) If K = 2 and n > 9, then divide the edges of GP(n, 2)
into three parts as (1) similarly, i. e., 1 = uu;41, ea =
ViUir2, €3 = U;v;. It can be easily known that apart from
the vertices whose distance to w is equal to the distance
to v, the number of GP(n,2)’s vertices with a shorter
distance to v than to v is equal to the number of vertices
with a longer distance to u than to v. Firstly, the vertices
whose distance to u is equal to the distance to v should
be found.

Case 1. Assume that n is even.

For e; = w;u;41, the set of vertices whose distance to u;

is equal to the distance to w;q1 is {v;—1,v;_3, Vi+2, Vita},
_ _ 2n—4 __

then ny, (e1) = ny,,,(e1) = 5= =n — 2.

For e; = w;v;, the set of vertices whose distance to u;

is equal to the distance to v; is {w;y2, uit+3, u;—2,u;—3},
_ _ 2n—4 __

then n,, (e2) = ny,(e2) = 5= =n — 2.

If es = v;v;42, the set of vertices whose distance to v;

is equal to the distance to v;49 is {ui+1,vi+1,ui+1+g,

2n—4

Vit1+n }, then ny, (e3) = ny,,,(€3) = &5~ =n — 2.

Case 2. Assume that n is odd.
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For e; = w;u;y1, the set of vertices whose distance to
u; is equal to the distance to w;t1 is {v;—1,vi—3,Vito,

Vit Uiy (2], Vi) then ny(e1) = nyy, () =
2n—6 _ n—3
- .

For e; = w;v;, the set of vertices whose distance to u;
is equal to the distance to v;is {u;q2,uits, Ui—2,ui—3},
then ny, (e2) = ny, (e2) = 252 =n — 2.

If e3 = wvi42, the set of vertices whose dis-
tance to w; is equal to the distance to w;yo is
{ui+17 Vi+1, ’ILH_"%" ’ 'UH_|‘%‘| y Uiy 14 (%—‘ yVir14+ (%—‘ }7 then

2n—6

nvi (63) = n’l}i+2 (63) - 2 =n-— 3

According to the definition, we have

Sz(n,2) = >

e=uveE(GP)
— - [, (€1) sy (1)
+n - [n'Uz‘ (62) “ Mgy (62)]
+n - [nuz (63) * Ny, (63)}
3n? —12n%2 +12n, if n is even,
{ 3n3 — 1602 +22n,if nis odd. M

ny(e)ny(e)

Theorem 3.7 For edge-Szeged index and PI index, we
have

11,3 2,9, -
=n° —9n° + 3n, if nis odd,
Sze(n,1) = { A 2" 4f

Sn? —12n% + 8n, if n is even.

8n? —6n,if n is odd,
8n2 — 8n,if n is even,

PI(n,1) = {

2Tn3 — 36n2 4+ 50n, if even n = 4z,

Sze(n,2) = %n?’ —39n% +57n, if even n = 4x + 2,
%n?’ — 6—23712 + %571, if nis odd,
and

In? — 24n,if even n = 4z,
In? — 26m,if even n = 4z + 2,
In? — 21n,if n is odd.

PI(n,2) =

Proof. (1) The edge set of GP(n,1) can be divided into
three categories as in Theorem 3.6, then we may get the
following results.

Case 1. If n is odd, then

n—1 n—-1 n—-1 3n-3
m"i(el):mu1,+1(61): 2 + 9 + 5~ g

n71+n71+n7173n73
2 2 2 2 7

My, (62) = My, 1 (62) =

and
My, (e3) = my, (e3) = n.

Therefore, we have

Sze(n,1) = m., (e)m.,(e)

e=uwveE(GP)

=n- [mui(el) Ty (61)]
+n - [mvi (62) My (62)]
- (eg) - (e5)

= 7713 —9n? + %n,

and
PI(n,1) = %
e=uwv€eE(GP)
=n: [muz (61) + Moty (61)]
1 [my, (e2) + My, (e2)]
+n - [may, (e3) + Mo, (e3)]
= 8n? — 6n.

[mu(e) + my(e)]

Case 2. If n is even, then

n—2
2

n n—2 3n-—4
5 =

n—2 n
2

2 2
n—2 3n—4

2 2 7

mui(el) = My (61) =

My, (62) = Moy, (62) = T

and
My, (e3) = my, (e3) = n.

Therefore, we have

Sze(n,1) = >

e=uwveE(GP)

=n- [mui (61) Ty (61)}
+n - [my,(e2) - Mo, (e2)]
+n - [may, (e3) - Mo, (e3)]

= 1—21713 —12n2 + 8n,

my(e)my,(e)

and
PIn1)= Y
e=uveE(GP)
=n-: [mul (61) + My (61)]
+n- [mvi (62) + My, 4y (62)]
+n - [my, (e3) + mo, (e3)]
= 8n? — 8n.

[mu (e) + my (6)]

(2) It can be easily known that apart from the primitive
edge and the edges whose distance to u is equal to the
distance to v, the number of GP(n,2)’s edges of with a
shorter distance to v than to v is equal to the number
of edges with a longer distance to u than to v. First,
the edges whose distance to u is equal to the distance to
v should be found and they are related to the vertices
whose distance to u is equal to the distance to v.

Case 1. Assume that n is even.

If e; = w;u;41, then the set of edges whose distance to
u; is equal to the distance to u;1 is

{vi—1vi-3, Ui—3Vi—3, Vi—3Vi_5, Viy2Vita,
Ui+4Vi+4, Vi44Vit6, Uit 2 Ui414+2 }

S0 ey (i) = Me, (uig1) = 2755

If es = w;v;, then the set of edges whose distance to u;
is equal to the distance to v; is

{Ui+2ui+3; Ui 3Ui44, U543V 43, Uj—2Ui—3, U;—3U;—4,
Ui—3Vi—3, Wi—1+2Vi—2+4 2, Wit+14+2Vit142, Vi—14+2Vi414+2 }7

SO My (W) = Me, (V) = w

For e3 = v;v; 42, if 5 is even, then the set of edges whose
distance to v; is equal to the distance to v;49 is

{ui+1vi+1; Vi+1Vit3, Vi—1Vit1, Uit14+2Vit14+ 2, Ui+gvi+2+g} .

(Advance online publication: 24 May 2017)
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Thus me, (v;) = Me, (vi42) = 250, If 2 is odd, then the
set of edges whose distance to vl is equal to the distance
to Vi+2 is

{ui+1vi+17 Vi+10Vi+3, Vi—1Vi+1, Ui+1+4+ 2 Vi41+2,
Vim0 n, UipnlUig14n, Uit 42 Uigoyn |

= My (Vigo) = 55

Hence me,4 (v;)
Case 2. Assume that n is odd.

If e; = w;u;41, then the set of edges whose distance to
u; is equal to the distance to u;41 is

{%‘—1%‘—37 Ui—3Vj—3, Vi—3Vi—5, Vi+2Vjt+4, Ui+4Vi+4,
VAU Ui [ 3] Vi 3] Vim1e 3] Ve 3] D

3n9

thus me, (u;) = Mme, (uir1) = 5~

If e = w;v;, then the set of edges whose distance to u;
is equal to the distance to v; is

{ui+2ui+37 Ui4-3Vi43, Uj+3Ui4-4,
Ui —oU;—3, Wi—3Uj—4, Ui—3V;—3},

3n—7

SO Mg, (Us) = Me, (v;) = =05

If es = v;v;12, the set of edges whose distance to v; is
equal to the distance to v, is

{ui+lvi+17 Vim1Vit1, Vig1Vig 3, Uy y [0 Ui g 14 [ 2] } )

then me, (v;) = Me, (Vig2) = 2272,
Therefore, we have
Sze(n,2)= Y my(e)my(e)

e=uveE(GP)
- [myg(er) - mug, (e1)]
n-[m 1((62) Moy, (€2)]

n - [my, (e3) - my, (e3)]
2713 — 36n? +50n if even n =4z,

= 22 3 - 39n2 +5Tn, if even n =4z + 2,
23 — 63 2+1257ifnisodd.
and
PI(n,2) = > [mu(e) +my(e)]
e=uwveE(GP)

=n- [mul (61) + Mgy (61)]
+n - [quz (62) + Moy, 1o (62)}
+n - [may, (es) + mo, (e3)]
In? — 24n,if even n = 4z,
={ 9n? —26n,if even n =4z + 2,
In? — 21n,if n is odd.

Hence Theorem 3.7 is proved. |

Therefore we have drawn the conclusions below. For
k € [4], we have got the Wiener polarity index W (n, k)
and the Wiener index W, (n, k) of generalized Petersen
graph GP (n,k). For k € [2], we have obtained the
Szeged index Sz(n, k), the edge-Szeged index Sz.(n, k),
the Pl index PI(n,k), and generalized terminal Wiener
index TW,.(n, k). For k > 1, we have also gained the first
zagreb index M (n, k), the second zagreb index Ms(n, k),
the connectivity index x(n, k), and the Harmonic index
H(n, k), the Randié¢ index R(n, k), and the Gutman in-
dex Gut(n, k).
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