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Abstract—Based on general Lp-mixed brightness integrals
of convex bodies and general Lp-intersection bodies of star
bodies, this paper is going to define the general Lp-dual mixed
brightness integrals. After studying their extremum values and
establishing Aleksandrov-Frenchel inequality, cyclic inequality
and the Brunn-Minkowski inequality for the general Lp-dual
mixed brightness integrals, we obtain a more general result
than the Brunn-Minkowski inequality for the general Lp-dual
mixed brightness integrals.

Index Terms—general Lp-mixed brightness integrals, general
Lp-intersection body, general Lp-dual mixed brightness inte-
grals.

I. INTRODUCTION

LET Kn denote the set of convex bodies (compact,
convex subsets with nonempty interiors) in Euclidean

space Rn. For the set of convex bodies containing the origin
in their interiors in Rn, we write Kn

o . Sn
o denotes the set of

star bodies (about the origin) in Rn. Let Sn−1 denote the
unite sphere in Rn, and let V (K) denote the n-dimensional
volume of body K. For the standard unit ball B in Rn, we
write ωn = V (B).

If K ∈ Kn, then its support function, hK = h(K, .) :
Rn → (−∞,∞), is defined by (see [2])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.
For a compact set K in Rn, which is star shaped with

respect to the origin, the radial function, ρK(u) = ρ(K,u),
of K is defined by (see [2])

ρK(u) = max{λ ≥ 0 : λu ∈ K}, u ∈ Sn−1. (1)

If ρK is positive and continuous, then K will be called
a star body (about the origin). Two star bodies K and L
are said to be dilates (of one another) if ρK(u)/ρL(u) is
independent of u ∈ Sn−1.

If c > 0 and K ∈ Sn
o , then ρ(cK, ·) = cρ(K, ·).

Let GL(n) denote the group of general (nonsingular)
linear transformations, if ϕ ∈ GL(n), from (1), we easily
have

ρ(ϕK, x) = ρ(K,ϕ−1x), x ∈ Rn \ {0}, (2)

where ϕ−1 denotes the reverse of transformation ϕ.
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The notion of mixed brightness-integrals of convex bodies
was defined by Li(see [8]). After that, Yan and Wang
extended mixed brightness-integrals to the general mixed
brightness-integrals of convex bodies: For K1, · · · ,Kn ∈
Kn

o , p ≥ 1 and τ ∈ [−1, 1], the general Lp-mixed brightness
integrals, D

(τ)
p (K1, · · · ,Kn), of K1, · · · ,Kn is defined by

(see [22])

D(τ)
p (K1, · · · ,Kn)

=
1

n

∫
Sn−1

δ(τ)p (K1, u) · · · δ(τ)p (Kn, u)dS(u),

where δ
(τ)
p (K,u) = 1

2h(Π
τ
pK,u) denotes the half general

Lp-brightness of K ∈ Kn
o and Πτ

pK denotes the general Lp-
projection body of K ∈ Kn

o . Further, they established some
inequalities for the general Lp-mixed brightness integrals(see
[22]).

Recently, Wang and Li used the function φτ : R →
[0,+∞) which is given by

φτ (t) = |t| − τt, τ ∈ [−1, 1] (3)

to define the general Lp-intersection body with parameter τ
as follows: For K ∈ Sn

o , 0 < p < 1, and τ ∈ [−1, 1], the
general Lp-intersection body, IτpK ∈ Sn

o , of K is defined by
(see [20])

ρ(IτpK,u)p = i(τ)

∫
K

φτ (u · x)−pdx, u ∈ Sn−1, (4)

where

i(τ) =
(1 + τ)p(1− τ)p

(1 + τ)p + (1− τ)p
.

In this paper, based on the general Lp-intersection bodies
and the general Lp-mixed brightness integrals, we are going
to define the general Lp-dual mixed brightness integrals of
star bodies as follows:

For K1, · · ·,Kn ∈ Sn
o , 0 < p < 1 and τ ∈ [−1, 1], the

general Lp-dual mixed brightness integrals, Dτ
p(K1, ···,Kn),

of K1, · · ·,Kn is defined by

Dτ
p(K1, · · ·,Kn)

=
1

n

∫
Sn−1

δτp (K1, u) · · · δτp (Kn, u)dS(u), (5)

where δτp (K,u) = 1
2ρ(I

τ
pK,u) denotes the half general Lp-

dual brightness of K ∈ Sn
o in direction u ∈ Sn−1.

If τ = 0, we write Dτ
p(K1, · · ·,Kn) = Dp(K1, · · ·,Kn)

and δp(K,u) = 1
2ρ(IpK,u), then

Dp(K1, · · ·,Kn) =
1

n

∫
Sn−1

δp(K1, u) · · · δp(Kn, u)dS(u),

we call Dp(K1, · · ·,Kn) the Lp-dual mixed brightness
integrals of K1, · · ·,Kn ∈ Sn

o .
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Let K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = L
(i = 0, 1, · · ·, n), we write

Dτ
p,i(K,L) = Dτ

p(K, · · ·K,L · ··, L).

If i is any real, K,L ∈ Sn
o , 0 < p < 1, τ ∈ [−1, 1], then

the general Lp-dual mixed brightness integrals, Dτ
p,i(K,L),

of K and L is defined by

Dτ
p,i(K,L) =

1

n

∫
Sn−1

δτp (K,u)n−iδτp (L, u)
idS(u). (6)

Let τ = 0 in (6), we write Dτ
p,i(K,L) = Dp,i(K,L).

Let i = 0 in (6), we write

Dτ
p,0(K,K) = Dτ

p(K) =
1

n

∫
Sn−1

δτp (K,u)ndS(u), (7)

which is called the general Lp-dual brightness integrals of
K.

Let τ = 0 in (7), we write Dτ
p(K) = Dp(K); for τ = ±1,

we write Dτ
p(K) = D±

p (K).
In this paper, we will establish the following inequalities

for the general Lp-dual mixed brightness integrals.
Initinally, we give the extremal values of the general Lp-

dual mixed brightness integrals.
Theorem 1.1. If K ∈ Sn

o , 0 < p < 1, τ ∈ [−1, 1], then

Dp(K) ≤ Dτ
p(K) ≤ D±

p (K), (8)

if K is not origin-symmetric, there is equality in the left
inequality if and only if τ = 0 and equality in the right
inequality if and only if τ = ±1.

Furthermore, we establish the following Fenchel-
Aleksandrov type inequality for the general Lp-dual mixed
brightness integrals.
Theorem 1.2. If K1, · · ·,Kn ∈ Sn

o , 0 < p < 1, τ ∈ [−1, 1]
and 1 < m ≤ n, then

Dτ
p(K1, · · ·,Kn)

m

≤
m∏
i=1

Dτ
p(K1, · · ·,Kn−m,Kn−i+1, · · ·,Kn−i+1) (9)

equality holds if and only if IτpKn−m+1, ···, IτpKn are dilates
of each other.

Let τ = 0 in Theorem 1.2, we obtain the following
inequality.
Corollary 1.1. If K1, · · ·,Kn ∈ Sn

o , 0 < p < 1 and 1 <
m ≤ n, then

Dp(K1, · · ·,Kn)
m

≤
m∏
i=1

Dp(K1, · · ·,Kn−m,Kn−i+1, · · ·,Kn−i+1),

equality holds if and only if IpKn−m+1, ···, IpKn are dilates
of each other.

Additionally, we establish the following cyclic inequality
for the general Lp-dual mixed brightness integrals.
Theorem 1.3. Iet K,L ∈ Sn

o , 0 < p < 1, τ ∈ [−1, 1], if
k−i
k−j > 1, then

Dτ
p,i(K,L)k−jDτ

p,k(K,L)j−i ≥ Dτ
p,j(K,L)k−i, (10)

equality holds if and only if IτpK and IτpL are dilates. If
0 < k−i

k−j < 1, the inequality (10) is reversed.

Let τ = 0 in Theorem 1.3, we obtain the following
inequality.
Corollary 1.2. Iet K,L ∈ Sn

o , 0 < p < 1, if k−i
k−j > 1, then

Dp,i(K,L)k−jDp,k(K,L)j−i ≥ Dp,j(K,L)k−i, (11)

equality holds if and only if IpK and IpL are dilates. If
0 < k−i

k−j < 1, the inequality (11) is reversed.
Finally, we obtain the Brunn-Minkowski type inequality

for the general Lp-dual mixed brightness integrals as follows:
Theorem 1.4. Iet K,K

′
, L ∈ Sn

o , 0 < p < 1, τ ∈ [−1, 1],
if i ≤ n− p, then

Dτ
p,i(K+̃n−pK

′
, L)

p
n−i

≤ Dτ
p,i(K,L)

p
n−i +Dτ

p,i(K
′
, L)

p
n−i , (12)

equality holds if and only if IτpK and IτpK
′

are dilates. If
i ≥ n− p, the inequality (12) is reversed.

Actually, we prove a more general result than Theorem
1.4 in Section III.

Our work belongs to a new and rapidly evolving asymmet-
ric Lp dual Brunn-Minkowski theory that has its own origin
in the work of Ludwig, Haberl and Schuster (see [3], [4],
[5], [6], [10], [11]). For the further researches of asymmetric
Lp Brunn-Minkowski theory, we can refer to papers [1], [7],
[14], [15], [16], [17], [18], [19], [20], [21].

II. PRELIMINARIES

A. Dual mixed volumes

In 1975, Lutwak (see [9]) gave the notion of dual mixed
volumes as follows: For K1,K2, · · · ,Kn ∈ Sn

o , the dual
mixed volume, Ṽ (K1,K2, · · · ,Kn), of K1,K2, · · · ,Kn is
defined by

Ṽ (K1, · · · ,Kn)

=
1

n

∫
Sn−1

ρ(K1, u) · · · ρ(Kn, u)dS(u). (13)

If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L
in (13), we write Ṽi(K,L) = Ṽ (K,n − i;L, i), where K
appears n− i times and L appears i times. Let i be any real,
we have

Ṽi(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−iρ(L, u)idS(u). (14)

Let i = 0 in (14), then

Ṽ0(K,L) = V (K) =
1

n

∫
Sn−1

ρ(K,u)ndS(u). (15)

B. Some Lp-combinations

For K,L ∈ Sn
o , p > 0 and λ, µ ≥ 0(not both zero), the

Lp-radial linear combination, λ◦K+̃pµ◦L ∈ Sn
o , of K and

L is defined by(see [12])

ρ(λ ◦K+̃pµ ◦ L, ·)p = λρ(K, ·)p + µρ(L, ·)p. (16)

For ϕ ∈ GL(n), K, L ∈ Sn
o , p > 0 and λ, µ ≥ 0 (not both

zero), from (2) and (16), we have

ϕ(λ ◦K+̃pµ ◦ L, ·) = λ ◦ ϕK+̃pµ ◦ ϕL. (17)

For K,L ∈ Sn
o , 0 < p < 1, τ ∈ [−1, 1], from (4),(16) and

a transformation to polar coordinate, we obtain

ρ(Iτp (K+̃n−pL), ·)p = ρ(IτpK, ·)p + ρ(IτpL, ·)p, (18)
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i.e.,
Iτp (K+̃n−pL) = IτpK+̃pI

τ
pL. (19)

From (17) and (19), we get

Iτp (ϕ(K+̃n−pL)) = IτpϕK+̃pI
τ
pϕL. (20)

III. PROOFS OF THEOREMS

In this section, firstly we shall prove Theorems 1.1-1.3 ,
then we prove a more general result than Theorem 1.4, i.e.,
a quotient form of the Brunn-Minkowski type inequality for
the general Lp-dual mixed brightness integrals.

In order to prove Theorem 1.1, we need the following
inequality (see [20]).
Lemma 3.1. If K ∈ Sn

o , 0 < p < 1, τ ∈ [−1, 1], then

V (IpK) ≤ V (IτpK) ≤ V (I±p K). (21)

If K is not origin-symmetric, there is equality in the left
inequality if and only if τ = 0 and equality in the right
inequality if and only if τ = ±1.

Proof of Theorem 1.1. If K,L ∈ Sn
o , from (6), then

Dτ
p,i(K,L) =

1

n

∫
Sn−1

δτp (K,u)n−iδτp (L, u)
idS(u)

=
1

2n
1

n

∫
Sn−1

ρ(IτpK,u)n−iρ(IτpL, u)
idS(u)

=
1

2n
Ṽi(I

τ
pK, IτpL). (22)

Let i = 0 in (22), and from (15), we have

Dτ
p,0(K,L) = Dτ

p(K) =
1

2n
V (IτpK).

According to (21), we get

1

2n
V (IpK) ≤ 1

2n
V (IτpK) ≤ 1

2n
V (I±p K).

i.e.,
Dp(K) ≤ Dτ

p(K) ≤ D±
p (K). (23)

According to (21), we know that if K is not origin-
symmetric, there is equality in the left inequality if and only
if τ = 0 and equality in the right inequality if and only if
τ = ±1 in (23). And (23) is just the inequality (8).

The proof of Theorem 1.2 requires the following extension
of the Hölder inequality (see [8] [13]).
Lemma 3.2. If f0, f1, · · ·, fm are (strictly) positive contin-
uous functions defined on Sn−1 and λ1, · · ·, λm are positive
constants the sum of whose reciprocals is unity, then∫

Sn−1

f0(u)f1(u) · · · fm(u)dS(u)

≤
m∏
i=1

(∫
Sn−1

f0(u)f
λi
i (u)dS(u)

) 1
λi

, (24)

with equality if and only if there exist positive constants α1, ··
·, αm such that α1f

λ1
1 (u) = · · · = αmfλm

m (u) for all u ∈
Sn−1.

Proof of Theorem 1.2. If K1, · · ·,Kn ∈ Sn
o , 0 < p < 1,

τ ∈ [−1, 1], 1 < m ≤ n, and let λi = m(1 ≤ i ≤ m), and

f0(u) = δτp (K1, u) · · · δτp (Kn−m, u), (f0 = 1 if m = n),

fi(u) = δτp (Kn−i+1, u), (1 ≤ i ≤ m).

According to (24), we have∫
Sn−1

δτp (K1, u) · · · δτp (Kn−m, u) · · · δτp (Kn, u)dS(u)

≤
m∏
i=1

(∫
Sn−1

δτp (K1, u)× · · ·

×δτp (Kn−m, u)δτp (Kn−i+1, u)
mdS(u)

) 1
m

.

So(∫
Sn−1

δτp (K1, u) · · · δτp (Kn−m, u) · · · δτp (Kn, u)dS(u)

)m

≤
m∏
i=1

∫
Sn−1

δτp (K1, u)···δτp (Kn−m, u)δτp (Kn−i+1, u)
mdS(u).

i.e.,

Dτ
p(K1, · · ·,Kn)

m

≤
m∏
i=1

Dτ
p(K1, · · ·,Kn−m,Kn−i+1, · · ·,Kn−i+1). (25)

The equality condition in (25) can be got from the equality
condition in inequality (24) if and only if there exist positive
constants α1, · · ·, αm such that

α1δ
τ
p (Kn−m+1, u)

m = α2δ
τ
p (Kn−m+2, u)

m

= · · · = αmδτp (Kn, u)
m

for all u ∈ Sn−1. So equality holds in (25) if and only if
IτpKn−m+1, · · ·, IτpKn are dilates of each other. And (25) is
just the inequality (9).

Proof of Theorem 1.3. Let K,L ∈ Sn
o , 0 < p < 1,

τ ∈ [−1, 1], if k−i
k−j > 1, according to (6), and the Hölder

inequality, we have

Dτ
p,i(K,L)

k−j
k−i Dτ

p,k(K,L)
j−i
k−i

=

(
1

n

∫
Sn−1

δτp (K,u)n−iδτp (L, u)
idS(u)

) k−j
k−i

×
(
1

n

∫
Sn−1

δτp (K,u)n−kδτp (L, u)
kdS(u)

) j−i
k−i

=

(
1

n

∫
Sn−1

[δτp (K,u)(n−i) k−j
k−i δτp (L, u)

i k−j
k−i ]

k−i
k−j dS(u)

) k−j
k−i

×
(
1

n

∫
Sn−1

[δτp (K,u)(n−k) j−i
k−i δτp (L, u)

k j−i
k−i ]

k−i
j−i dS(u)

) j−i
k−i

≥ 1

n

∫
Sn−1

δτp (K,u)(n−i) k−j
k−i δτp (K,u)(n−k) j−i

k−i

δτp (L, u)
k j−i

k−i δτp (L, u)
i k−j
k−i dS(u)

=
1

n

∫
Sn−1

δτp (K,u)n−jδτp (L, u)
jdS(u) = Dτ

p,j(K,L).

i.e.,

Dτ
p,i(K,L)

k−j
k−i Dτ

p,k(K,L)
j−i
k−i ≥ Dτ

p,j(K,L). (26)

The equality condition in (26) can be got from the equality
condition in the Hölder inequalitiy if and only if IτpK and
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IτpL are dilates. Similarly, if 0 < k−i
k−j < 1, we can obtain

the reverse form of (26). And (26) is just the inequality (10).
Now, we give a more general result than Theorem 1.4 as

follows:
Theorem 3.1. For K,L,K

′ ∈ Sn
o , ϕ ∈ GL(n), 0 < p < 1,

τ ∈ [−1, 1], if 0 ≤ n− j ≤ p ≤ n− i, then(
Dτ

p,i(ϕ(K+̃n−pK
′
), L)

Dτ
p,j(ϕ(K+̃n−pK

′), L)

) p
j−i

≤
(
Dτ

p,i(ϕK,L)

Dτ
p,j(ϕK,L)

) p
j−i

+

(
Dτ

p,i(ϕK
′
, L)

Dτ
p,j(ϕK

′ , L)

) p
j−i

, (27)

with equality holds in (27) if and only if IτpϕK and IτpϕK
′

are dilates. If n− j ≤ 0 < n− i ≤ p, the inequality (27) is
reversed.

The proof of Theorem 3.1 requires the following Dresher’s
inequality(see [23]).
Lemma 3.3. Let functions f1, f2, g1, g2 ≥ 0, E is a bounded
measurable subset in Rn. If p ≥ 1 ≥ r ≥ 0, then(∫

E
(f1 + f2)

pdx∫
E
(g1 + g2)rdx

) 1
p−r

≤
(∫

E
fp
1 dx∫

E
gr1dx

) 1
p−r

+

(∫
E
fp
2 dx∫

E
gr2dx

) 1
p−r

, (28)

equality holds if and only if f1
f2

= g1
g2

. If 1 ≥ p > 0 > r, the
inequality (28) is reversed.

Proof of Theorem 3.1. For K,K
′
, L ∈ Sn

o , ϕ ∈ GL(n),
0 < p < 1, τ ∈ [−1, 1], if 0 ≤ n− j ≤ p ≤ n− i, according
to (16),(20) and (28), we have(
Dτ

p,i(ϕ(K+̃n−pK
′
), L)

Dτ
p,j(ϕ(K+̃n−pK

′), L)

) p
j−i

=

( 1
n

∫
Sn−1 δ

τ
p (ϕ(K+̃n−pK

′
), u)n−iδτp (L, u)

idS(u)
1
n

∫
Sn−1 δτp (ϕ(K+̃n−pK

′), u)n−jδτp (L, u)
jdS(u)

) p
j−i

=

( 1
n

∫
Sn−1 ρ(I

τ
p (ϕ(K+̃n−pK

′
)), u)n−iρ(IτpL, u)

idS(u)
1
n

∫
Sn−1 ρ(Iτp (ϕ(K+̃n−pK

′)), u)n−jρ(IτpL, u)
jdS(u)

) p
j−i

≤
( 1

n

∫
Sn−1 ρ(I

τ
pϕK, u)n−iρ(IτpL, u)

idS(u)
1
n

∫
Sn−1 ρ(IτpϕK, u)n−jρ(IτpL, u)

jdS(u)

) p
j−i

+

( 1
n

∫
Sn−1 ρ(I

τ
pϕK

′
, u)n−iρ(IτpL, u)

idS(u)
1
n

∫
Sn−1 ρ(IτpϕK

′ , u)n−jρ(IτpL, u)
jdS(u)

) p
j−i

=

(
Dτ

p,i(ϕK,L)

Dτ
p,j(ϕK,L)

) p
j−i

+

(
Dτ

p,i(ϕK
′
, L)

Dτ
p,j(ϕK

′ , L)

) p
j−i

.

The equality condition in (27) can be got from the equality
condition in (28) if and only if IτpϕK and IτpϕK

′
are dilates.

If n− j ≤ 0 < n− i ≤ p, similarly, we can prove that the
reverse of the inequality (27) is true.

If ϕ is identic, then we get the following inequality.
Theorem 3.2. For K,L,K

′ ∈ Sn
o , 0 < p < 1, if 0 ≤

n− j ≤ p ≤ n− i, then(
Dτ

p,i(K+̃n−pK
′
, L)

Dτ
p,j(K+̃n−pK

′ , L)

) p
j−i

≤
(
Dτ

p,i(K,L)

Dτ
p,j(K,L)

) p
j−i

+

(
Dτ

p,i(K
′
, L)

Dτ
p,j(K

′ , L)

) p
j−i

, (29)

with equality holds in (29) if and only if IτpK and IτpK
′

are
dilates. If n − j ≤ 0 < n − i ≤ p, the inequality (29) is
reversed.

Proof of Theorem 1.4. Let j = n in the inequality (29)
and notice that Dτ

p,n(M,L) = Dτ
p(L) by (6), for i ≤ n− p

and any L ∈ Sn
o , we get

Dτ
p,i(K+̃n−pK

′
, L)

p
n−i

≤ Dτ
p,i(K,L)

p
n−i +Dτ

p,i(K
′
, L)

p
n−i , (30)

which is just the inequality (12). From the equality condition
of (29), we see that equality holds in (30) if and only if IτpK
and IτpK

′
are dilates.

Similarly, let j = n in the reverse of the inequality (29),
and for i ≥ n − p, we can obtain that the reverse of the
inequality (30) is true.
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