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Abstract—In this paper, we reformulate the stochastic gener-
alized second-order cone complementarity problems as box-
constrained optimization problems. If satisfy the condition
that the reformulation’s objective value is zero, the solutions
of box-constrained optimization problems are also solutions
of stochastic generalized second-order cone complementarity
problems. Since the box-constrained minimization problems
contain an expectation function, we then employ sample average
approximation method to give approximation problems of the
box-constrained minimization reformulation. Meanwhile the
convergence results of global solutions and stationary points
for the corresponding approximation problems are considered.

Index Terms—box-constrained minimization problems, sam-
ple average approximation, convergence.

I. INTRODUCTION

GENERALIZED second-order cone complementarity
problems, denoted by GSOCCP(F ,G,K) are to find

a vector x ∈ Rn satisfying

F (x) ∈ K∗, G(x) ∈ K, F (x)TG(x) = 0,

where F (x), G(x) : Rn → Rn are continuously differen-
tiable respect to x ∈ Rn. K is the convex cone

K = {x ∈ Rn|x21 ≥
n∑

j=2

a2jx
2
j , x1 ≥ 0}

and its polar cone K∗ denoted by

K∗ = {x ∈ Rn|∀ y ∈ K, ⟨x, y⟩ ≥ 0}.

Here, aj , j = 2, . . . , n is the given parameter. The general-
ized second-order cone complementarity problems play a ba-
sic role and occupy an important position in the minimization
theory, which have vital applications in many fields. In [2]
the authors analyze the case where K is a polyhedral cone.
In [3], [4], based on the well know Fischer-Burmeister NCP-
function, smooth merit function is presented for the second-
order cone product of Lorentz cones. In [9], the authors study
the special case of GSOCCP(F ,G,K), where G(x) = x
and K is Cartesian product of Lorentz cones. Moreover,
in [1] R. Andreani etc. consider a special cone, which is
denoted as K = {x ∈ Rn|x21 ≥ ∥(x2, . . . , xp)T ∥2}. Since
the origin is not a regular point, the authors make up for
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this lack by combining two functions which are mentioned
in [2]. Then the authors construct two reformulations of
GSOCCP(F ,G,K) which are nonlinear minimization prob-
lems with box constraints. More basic theories, effective
algorithms and important applications of GSOCCP(F ,G,K)
can be found in [7], [13].

However, in practice, stochastic elements are usually in-
volved in several problems. Paying no attention to these
stochastic elements will make mistake decision. Therefore,
it is meaningful and interesting to study the stochastic
generalized second-order cone complementarity problems.

Stochastic generalized second-order cone complementarity
problems, denoted by SGSOCCP(F ,G,K) are to find a vector
x ∈ Rn such that

E[F (x, ω)] ∈ K∗,E[G(x, ω)] ∈ K,

E[F (x, ω)]TE[G(x, ω)] = 0,

where E denotes mathematical expectation, ω ∈ Ω ⊆ Rm

denotes stochastic variable, F (x, ω), G(x, ω) : Rn×Ω → Rn

are continuously differentiable respect to x ∈ Rn, the convex
cones K and K∗ are defined as above.

Without loss of generality, set A = diag(1,−a22,−a23, . . . ,
−a2p, 0, . . . , 0), where ai ̸= 0, for 2 ≤ i ≤ p,
A = diag(1, −1

a2
2
, . . . , −1

a2
p
, 0, . . . , 0) and M =

diag(m1, m2, . . . ,mn), where mi = 0, for 1 ≤ i ≤ p,
and mi = 1 for i > p, then the convex cone K can be
expressed by matrix form, that is

K = {x ∈ Rn|1
2
xTAx ≥ 0, x1 ≥ 0}

and its corresponding polar cone K∗ is

K∗ = {x ∈ Rn|1
2
xTAx ≥ 0, x1 ≥ 0,Mx = 0}.

In this paper, we suppose ai = 1, for i = 2, . . . , p. Then,
we can rewrite SGSOCCP(F ,G,K) as follows: Find x ∈ Rn

such that

E[F (x, ω)]∈K∗,E[G(x, ω)]∈K,
E[F (x, ω)]TE[G(x, ω)]=0, (1)

where

K = {x ∈ Rn|x21 ≥ ∥(x2, . . . , xp)T ∥2, x1 ≥ 0}

and its polar cone

K∗ = {x ∈ Rn|x21 ≥ ∥(x2, . . . , xp)T ∥2, x1 ≥ 0,Mx = 0}.

Since p may be strictly less than n, the cone considered in
this paper is more general. This implies, in particular, that
K∗ may be different from K.
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In fact, problem (1) is also a stochastic complementarity
problem. About the classical stochastic complementarity
problems(denoted by SCP), there are many good results have
been published. For example, the expected value (EV) model
suggested by Gürkan et al. [8]. The Expected residual min-
imization (ERM) model presented by Chen and Fukushima
[5]. The Condition value-at-risk (CVaR) model presented
by Chen and Lin [6]. The CVaR-constrained stochastic
programming model presented by Xu and Yu [18]. More
recently research of SCP can be seen in [11], [10], [19].

Based on [1], in this paper, we investigate
SGSOCCP(F ,G,K), where a special cone denoted as
K = {x ∈ Rn|x21 ≥ ∥(x2, . . . , xp)T ∥2} is considered.
The main difference between two papers is that
SGSOCCP(F ,G,K) contain expectation which is usually
difficult to evaluate. Therefore, we employ sample average
approximation (SAA) method to solve the corresponding
box-constrained minimization reformulation. However,
whether the solutions of SAA approximation problems
are regarded as the solutions of SGSOCCP(F ,G,K) is
reasonable? To answer this question, we consider the
convergence results of global solutions and stationary points
for the corresponding approximation problems in theory.

The remainder of the paper is organized as follows: In Sec-
tion 2, we introduce the box-constrained reformulation and
the corresponding approximation problems of SGSOCCP(F ,
G, K). In Section 3, the convergence results of global solu-
tions and stationary points for the approximation problems
are considered. In Section 4, we give the conclusions.

II. BOX-CONSTRAINED REFORMULATION OF
SGSOCCP(F ,G,K)

In this section, we will study the equivalence problems
of SGSOCCP(F ,G,K) and the approximation problems of
box-constrained minimization problems.

Inspired by [1], in order to reformulate
SGSOCCP(F ,G,K) via nonlinear programming, we
employ the KKT conditions of minimization problems
which are related to SGSOCCP(F ,G,K) to construct two
merit functions denoted by

f(x, t) = ∥E[F (x, ω)]− t1AE[G(x, ω)]− t2e1∥2

+(
1

2
E[G(x, ω)]TAE[G(x, ω)]− t3)

2

+(E[G1(x, ω)]− t4)
2 + (t1t3)

2 + (t2t4)
2,

g(x, s, ζ) = ∥E[G(x, ω)]−s1AE[F (x, ω)]−s2e1−Mζ∥2

+(
1

2
E[F (x, ω)]TAE[F (x, ω)]−s3)2+(s1s3)

2

+(E[F1(x, ω)]−s4)2+∥ME[F (x, ω)]∥2+(s2s4)
2,

where x, ζ ∈ Rn, setting t = (t1, t2, t3, t4)
T ∈ R4, s =

(s1, s2, s3, s4)
T ∈ R4, and e1 = (1, 0, . . . , 0)T ∈ Rn.

Then, SGSOCCP(F ,G,K) is equivalent to the following
box-constrained minimization problem:

min(x,t,s,ζ,r)θ(x, t, s, ζ, r)=rf(x, t)+(1−r)g(x, s, ζ)
s.t. 0 ≤ r ≤ 1,

t ≥ 0,

s ≥ 0. (2)

If (x, t, s, ζ, r) is a solution of (2) with objective value zero,
then x is a solution to (1). The detail proof see [1]. Noting

that, (2) is a box-constrained minimization problem which is
easily to solve and to deal.

Since the objective function of problem (2) contains an
expectation which is generally difficult to evaluate, we use
the sample average approximation (SAA) method to solve
(2). The detail can be seen in [15]. We suppose that ψ :
Ω → R is integrable and Ωk := {ω1, · · · , ωNk} represents
sample space of random ω, we then use 1

Nk

∑
ωj∈Ωk

ψ(ωj)
to approximate E[ψ(ω)]. If {Nk} is not a decreasing function
respect to k, the strong law of large numbers guarantees that
the following result holds with probability one (abbreviated
by w.p.1). That is

lim
k→∞

1

Nk

∑
ωj∈Ωk

ψ(ωj) = E[ψ(ω)].

For simplicity, we assume

l1(x, t1, t2)=E[F (x, ω)]− t1AE[G(x, ω)]− t2e1,

l2(x, t3)=
1

2
E[G(x, ω)]TAE[G(x, ω)]− t3,

l3(x, t4)=E[G1(x, ω)]− t4,

l4(x, s1, s2, ζ)=E[G(x, ω)]−s1AE[F (x, ω)]−s2e1−Mζ,

l5(x, s3)=
1

2
E[F (x, ω)]TAE[F (x, ω)]− s3,

l6(x, s4)=E[F1(x, ω)]− s4,

l7(x)=ME[F (x, ω)].

Corresponding, we let

lk1(x, t1, t2) =
1

Nk

∑
ωj∈Ωk

F (x, ωj)−t1A
( 1

Nk

∑
ωj∈Ωk

G(x, ωj)
)
−t2e1,

lk2(x, t3) =
( 1

2Nk

∑
ωj∈Ωk

G(x, ωj)
)T
A
( 1

Nk

∑
ωj∈Ωk

G(x, ωj)
)
−t3,

lk3(x, t4) =
( 1

Nk

∑
ωj∈Ωk

G1(x, ω
j)
)
− t4,

lk4(x, s1, s2, ζ) =
( 1

Nk

∑
ωj∈Ωk

G(x, ωj)
)
−s1A

( 1

Nk

∑
ωj∈Ωk

F (x, ωj)
)

−s2e1 −Mζ,

lk5(x, s3) =
( 1

2Nk

∑
ωj∈Ωk

F (x, ωj)
)T
A
( 1

Nk

∑
ωj∈Ωk

F (x, ωj)
)
−s3,

lk6(x, s4) =
( 1

Nk

∑
ωj∈Ωk

F1(x, ω
j)
)
− s4,

lk7(x) =M
( 1

Nk

∑
ωj∈Ωk

F (x, ωj)
)
.

Thus, we have

fk(x, t) = ∥lk1(x, t1, t2)∥2+(lk2(x, t3))
2+(lk3(x, t4))

2

+(t1t3)
2+(t2t4)

2,

gk(x, s, ζ) = ∥lk4(x, s1, s2, ζ)∥2+(lk5(x, s3))
2+(lk6(x

,s4))
2

+∥lk7(x)∥2+(s1s3)
2+(s2s4)

2.

Then, by SAA method one may construct, for each k, an
approximation of problem (2) can be constructed as follows:

min(x,t,s,ζ,r)θ
k(x, t, s, ζ, r)=rfk(x, t)+(1− r)gk(x, s, ζ)

s.t. 0 ≤ r ≤ 1,

t ≥ 0,

s ≥ 0. (3)
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In this paper, we assume that, for each x ∈ Rn, F (x, ω)
and G(x, ω) are integrable over ω ∈ Ω, and for any ω ∈ Ω,
F (x, ω) and G(x, ω) are continuously differentiable respect
to x. Furthermore, we suppose that Ω is a nonempty set and
for all x ∈ Rn

max{∥∇xF (x, ω)∥2, ∥∇xG(x, ω)∥2,
∥F (x, ω)∥2, ∥G(x, ω)∥2} ≤ σ(ω), (4)

and

E[σ(ω)] < +∞, (5)

from (4),(5) and Cauchy-Schwarz inequality, for x ∈ Rn, we
have

max{∥∇xF ( x, ω)∥, ∥∇xG(x, ω)∥,
∥F (x, ω)∥, ∥G(x, ω)∥} ≤

√
σ(ω), (6)

and

E[
√
σ(ω)] < +∞. (7)

In addition, for an n × n matrix A, ∥A∥ denotes spectrum
norm and ∥A∥F denotes Frobenius norm, that is

∥A∥F := (
n∑

i=1

n∑
j=1

|aij |2)
1
2 ,

where aij be the factor of matrix A. By the definition, we
have ∥A∥ ≤ ∥A∥F . For a function η(x): Rn → R, ∇xη(x)
denotes gradient of η(x) respect to x.

III. CONVERGENCE ANALYSIS

Before considering the convergence results of (3), we give
the following Definitions and Lemmas, which have been
given in [12] firstly.
Definition 1: Let h(x) : Rn → Rn, for each N , hN (x) :
Rn → Rn is a mapping. If for any ϵ > 0, there exists N(ϵ),
when N > N(ϵ), we have

∥hN (x)− h(x)∥ < ϵ, ∀x ∈ Rn.

Then we call {hN (x)} is uniformly convergent to h(x) on
Rn.
Definition 2: Let h(x) : Rn → Rn, for each N , hN (x) :
Rn → Rn is a mapping. If for any sequence {xN} → x,
when N → ∞, we have

lim
N→∞

hN (xN ) = h(x), ∀x ∈ Rn.

Then we call {hN (xN )} is continuously convergent to h(x)
on Rn.
Lemma 1: Let h : Rn → Rn, for each N , hN : Rn → Rn

be a mapping, then hN is continuously convergent to h on
compact set D if and only if hN is uniformly convergent to
h on compact set D.
Theorem 1: Suppose that for each k, {(xk, tk, sk, ζk, rk)}
is a global optimal solution of problem (3) and
(x∗, t∗, s∗, ζ∗, r∗) is an accumulation point of
{(xk, tk, sk, ζk, rk)}. Then, we have (x∗, t∗, s∗, ζ∗, r∗)
is a global optimal solution of problem (2).

Proof: Without loss of generality, we may as-
sume limk→∞(xk, tk, sk, ζk, rk) = (x∗, t∗, s∗, ζ∗, r∗). Let

B ⊂ S be a compact convex set containing the se-
quence {(xk, tk, sk, ζk, rk)}, where S := {(x, t, s, ζ, r)|x ∈
Rn, t ≥ 0, s ≥ 0, ζ ∈ Rn, 0 ≤ r ≤ 1} denotes the feasible
region of (2). Let

ϕ(x) = E[F (x, ω)], ϕk(x) =
1

N k

∑
ωj∈Ωk

F (x, ωj),

φ(x) = E[G(x, ω)], φk(x) =
1

N k

∑
ωj∈Ωk

G(x, ωj).

From (6), (7) and Propositon 7 in Chapter 6 of [16],
ϕ(x), φ(x) are continuous respect to x and ϕk(x), φk(x)
are uniformly convergent to ϕ(x), φ(x) on B, respectively.
Moreover, from Lemma 1, we have ϕk(xk), φk(xk) are
continuously convergent to ϕ(x∗), φ(x∗) on B, respec-
tively. Taking a limit for lk1(x

k, tk1 , t
k
2), . . ., l

k
7(x

k), we
obtain lk1(x

k, tk1 , t
k
2), . . ., l

k
7(x

k) are continuously conver-
gent to l1(x

∗, t∗1, t
∗
2), . . ., l7(x

∗) on B, respectively. From
the definitions of θ(x, t, s, ζ, r) and θk(x, t, s, ζ, r), we
have that θk(xk, tk, sk, ζk, rk) is continuously convergent
to θ(x∗, t∗, s∗, ζ∗, r∗) on B. On the other hand, for each
k, since (xk, tk, sk, ζk, rk) is a global solution of (3), for
∀(x, t, s, ζ, r) ∈ S there holds

θk(xk, tk, sk, ζk, rk) ≤ θk(x, t, s, ζ, r). (8)

Letting k → ∞ in (8) and by the fact that
θk(xk, tk, sk, ζk, rk) is continuously convergent to
θ(x∗, t∗, s∗, ζ∗, r∗) on B, we have that

θ(x∗, t∗, s∗, ζ∗, r∗) ≤ θ(x, t, s, ζ, r), ∀(x, t, s, ζ, r) ∈ S,

which indicates (x∗, t∗, s∗, ζ∗, r∗) is a global optimal solu-
tion of (2).

For simplicity, we set θω(x, t, s, ζ, r) = rfω(x, t) + (1 −
r)gω(x, s, ζ), where

fω(x, t) = ∥F (x, ω)− t1AG(x, ω)− t2e1∥2

+(
1

2
G(x, ω)TAG(x, ω)− t3)

2

+(G1(x, ω)− t4)
2 + (t1t3)

2 + (t2t4)
2,

gω(x, s, ζ) = ∥G(x, ω)−s1AF (x, ω)−s2e1−Mζ∥2

+(
1

2
F (x, ω)TAF (x, ω)−s3)2+(s1s3)

2

+F1(x, ω−s4)2+∥MF (x, ω)∥2+(s2s4)
2.

We then show that with the increase of sample size, the
optimal solutions of the approximation problem (3) converge
exponentially to a solution of problem (2) with probability
approaching one.
Theorem 2: Suppose that for each k, {(xk, tk, sk, ζk, rk)}
is a global optimal solution of problem (3) and
{(xk, tk, sk, ζk, rk)} itself converges to (x∗, t∗, s∗, ζ∗, r∗).
Let B be a compact set that contains the whole sequence
{(xk, tk, sk, ζk, rk)}. Then, for any ε > 0 there exist positive
constants C(ε) and β(ε), independent of Nk, such that

Prob
{
sup(x,t,s,ζ,r)∈B |θk(x, t, s, ζ, r)

−θ(x, t, s, ζ, r)| ≥ ε
}
≤ C(ε)e−Nkβ(ε).

Proof: For all ω ∈ Ω and all (x, t, s, ζ, r) ∈ B,
noting that θω and θ are all continuously differentiable with
respect to (x, t, s, ζ, r), by the norm inequality or the absolute
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value inequality, following from (4)(5)(6)(7), after a simple
calculation, we have that there exist κ1(ω), κ2(ω) satisfying

|θω(x, t, s, ζ, r)− θ(x, t, s, ζ, r)| ≤ κ1(ω),

|θω(x
′
, t

′
, s

′
, ζ

′
, r

′
)− θω(x, t, s, ζ, r)|

≤κ2(ω)
(
∥x

′
− x∥+∥t

′
− t∥+∥s

′
− s∥+∥ζ

′
− ζ∥+|r

′
− r|

)
and E[κ1(ω)] < +∞, E[κ2(ω)] < +∞. From above results,
it is easy to obtain that the conditions of Theorem 5.1 in
reference [17] are all hold, and hence completes the proof.

However, in general, approximation problems are non-
convex programming. Then we probably get the stationary
points rather than the global optimal solutions. Therefore,
considering the stationary points are necessary. We next give
some definitions associated with stationary points.
Definition 3: If there exist Lagrange multipliers βk = (βk

1 ,
βk
2 , β

k
3 , β

k
4 )

T ∈ R4, πk = (πk
1 , π

k
2 , π

k
3 , π

k
4 )

T ∈ R4, γk1 ∈ R,
γk2 ∈ R satisfying

∇xθ
k(xk, tk, sk, ζk, rk) = 0, (9)

∇tθ
k(xk, tk, sk, ζk, rk)−

4∑
i=1

βk
i ei = 0, (10)

tki ≥ 0, βk
i ≥ 0, tki β

k
i = 0, (11)

∇sθ
k(xk, tk, sk, ζk, rk)−

4∑
j=1

πk
j ej = 0, (12)

skj ≥ 0, πk
j ≥ 0, skjπ

k
j = 0, (13)

∇ζθ
k(xk, tk, sk, ζk, rk) = 0, (14)

∇rθ
k(xk, tk, sk, ζk, rk)− γk1 + γk2 = 0, (15)

γk1 ≥0, γk2 ≥0, rkγk1 =0, (1−rk)γk2 =0, 0≤rk≤1, (16)

where ei denotes a unit vector with the ith component is 1,
then we call (xk, tk, sk, ζk, rk) is a stationary point of (3).
Definition 4: If there exist lagrange multipliers β∗ = (β∗

1 ,
β∗
2 , β

∗
3 , β

∗
4)

T ∈ R4, π∗ = (π∗
1 , π

∗
2 , π

∗
3 , π

∗
4)

T ∈ R4, γ∗1 ∈ R,
γ∗2 ∈ R satisfying

∇xθ(x
∗, t∗, s∗, ζ∗, r∗) = 0, (17)

∇tθ(x
∗, t∗, s∗, ζ∗, r∗)−

4∑
i=1

β∗
i ei = 0, (18)

t∗ ≥ 0, β∗
i ≥ 0, t∗i β

∗
i = 0, (19)

∇sθ(x
∗, t∗, s∗, ζ∗, r∗)−

4∑
j=1

π∗
j ej = 0, (20)

s∗j ≥ 0, π∗
j ≥ 0, s∗jπ

∗ = 0, (21)
∇ζθ(x

∗, t∗, s∗, ζ∗, r∗) = 0, (22)
∇rθ(x

∗, t∗, s∗, ζ∗, r∗)− γ∗1 + γ∗2 = 0, (23)
γ∗1 ≥0, γ∗2 ≥0, r∗γ∗1 =0, (1−r∗)γ∗2 =0, 0≤r∗≤1, (24)

then we call (x∗, t∗, s∗, ζ∗, r∗) is a stationary point of (2).
We now turn our attentions to Slater constraint quali-

fication, which can ensure the boundedness of Lagrange
multipliers in Definition 3.
Definition 5: If there exists a vector y ∈ R4, for each
i ∈ I(t∗) := { i | t∗i = 0, 1 ≤ i ≤ 4} such that yi > 0.
Then we call Slater constraint qualification holds.

Note that by the condtion (6) and Theory 16.8 of [14], we
obtain that f(x, t) is continuously differentiable with respect

to x and

∇xf(x, t)

= 2l1(x, t1, t2)
TE[∇xF (x, ω)−t1A∇xG(x, ω)]

+2l2(x, t3)E[∇xG(x, ω)]
TAE[G(x, ω)]

+2l3(x, t4)E[∇xG1(x, ω)].

Similarly, g(x, s, ζ) is continuously differentiable over x and

∇xg(x, s, ζ)

= 2l4(x, s1, s2)
TE[∇xG(x, ω)−s1A∇xF (x, ω)]

+2l5(x, s3)E[∇xF (x, ω)]
TAE[F (x, ω)]

+2l6(x, s4)E[∇xF1(x, ω)] + 2lT7 (x)ME[∇xF (x, ω)].

Therefore, by the definition of θ(x, t, s, ζ, r), it is easy
to obtain that θ(x, t, s, ζ, r) is continuously differentiable
with respect to t, s, ζ, r, respectively. What means that
θ(x, t, s, ζ, r) is continuously differentiable on S.
Lemma 2: ∇θk(xk, tk, sk, ζk, rk) is continuously conver-
gent to ∇θ(x∗, t∗, s∗, ζ∗, r∗) on N (x∗, t∗, s∗, ζ∗, r∗).

Proof: We assume limk→∞(xk, tk, sk, ζk, rk) =
(x∗, t∗, s∗, ζ∗, r∗), and N (x∗, t∗, s∗, ζ∗, r∗) ∈ S is a neigh-
borhood of (x∗, t∗, s∗, ζ∗, r∗) contains {(xk, tk, sk, ζk, rk)}.
For each ω ∈ Ω, combining (6), (7) and Proposition 7
in Chapter 6 of [16], we have ∇θk(x∗, t∗, s∗, ζ∗, r∗) is
uniformly convergent to ∇θ(x∗, t∗, s∗, ζ∗, r∗). Combining
with Lemma 1, we obtain the conclusion immediately.
Theorem 3: Suppose that for each k, (xk, tk, sk, ζk, rk) is a
stationary point of (3), (x∗, t∗, s∗, ζ∗, r∗) is an accumulation
point of {(xk, tk, sk, ζk, rk)}. Then (x∗, t∗, s∗, ζ∗, r∗) is a
stationary point of (2).

Proof: For simplicity, we assume limk→∞(xk, tk, sk,
ζk, rk) = (x∗, t∗, s∗, ζ∗, r∗). Let βk, πk, γk1 , γk2 are the
Lagrange multipliers of (9)−(16).

(i) We first show that the sequence of {βk} is bounded
for all k. To this end, we set

τk :=
4∑

i=1

βk
i . (25)

Suppose by contradiction that {βk} is not bounded,
which means that there exists a sequence {τk} such that
limk→∞ τk = +∞. We may further assume that the limit

βi := lim
k→∞

βk
i

τk
, (i = 1, . . . , 4)

exists. By (11), we have for each i /∈ I(t∗) = { i | t∗i =
0, 1 ≤ i ≤ 4}, βi = 0. Then following from (25), we obtain∑

i∈I(t∗)

βi =
4∑

i=1

βi = 1. (26)

For (10), dividing by τk and taking a limit, following from
Lemma 2 and formulation (26), we have∑

i∈I(t∗)

βiei =
4∑

i=1

βiei = 0. (27)

Since Slater constraint qualification holds, then there exists
a vector y ∈ R4, for all i ∈ I(t∗) satisfying yi > 0 and there
holds:

(y − t∗)T ei = yi − t∗i = yi > 0, ∀ i ∈ I(t∗). (28)
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Let (27) multiplying (y − t∗)T , by the fact that βi ≥ 0
and (28) holds, we have βi = 0 for each i ∈ I(t∗), which
contradicts (26). Therefore {βk} is bounded. Similarly, we
can obtain the boundedness of Lagrange multipliers {πk},
{γk1}, {γk2}.

(ii) Since {βk}, {πk}, {γk1}, {γk2} are bounded, we may
assume that β∗ = limk→∞ βk, π∗ = limk→∞ πk, γ∗1 =
limk→∞ γk1 , γ∗2 = limk→∞ γk2 exist, which together with
Lemma 2 and Definition 2, taking a limit in (9)−(16), we
get (17)−(24), which mean (x∗, t∗, s∗, ζ∗, r∗) is a stationary
point of problem (2).

IV. CONCLUSION

In this paper, we present an equivalent problem of
SGSOCCP(F , G, K), which is constructed by the convex
combination of two given merit functions. Since the box-
constrained minimization problems contain an expectation
function, we then use SAA method to give approximation
problems. Furthermore the convergence results of global
solutions and stationary points for the corresponding ap-
proximation problems are considered, the conclusions ensure
that it is feasible to regard the solutions of approximation
problems as the solutions of SGSOCCP(F , G, K) in theory.
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