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The New Estimations of Diagonally Dominant
Degree and Eigenvalues Distributions for the
Schur Complements of Block Diagonally
Dominant Matrices and Determinantal Bounds

Zhengge Huang, Ligong Wang*, Zhong Xu, Jingjing Cui

Abstract—In this paper, some new estimations of diagonally
dominant degree on the Schur complement of I(II)-block diago-
nally dominant matrices are obtained by applying the properties
of Schur complement and some inequality techniques, which
improve some existing ones. Further, as an application, we
present some new distribution theorems for eigenvalues of the
Schur complement and some new upper and lower bounds for
the determinant of I(II)-block diagonally dominant matrices.
These results are proved to be sharper than some known ones.
Finally, numerical examples are also presented to confirm the
theoretical results studied in this paper.

Index Terms—block matrix, Schur complement, diagonally
dominant degree, eigenvalue distribution, determinant.

I. INTRODUCTION

HE Schur complement has been proved to be a useful

tool in many fields such as control theory, statistics
and computational mathematics, and many works have been
done on it (see [1], [2], [3], [4], [5], [6]). Applying the
Schur-based iteration method mentioned in [7], [8], we can
solve large scale linear systems though reducing the order
by the Schur complement. That is, for a non-homogeneous
system of linear equation Mz = b with a nonsingular leading
principal submatrix. Partition M as

A B
w=(e5)
where A is supposed to be nonsingular. Partition x =
(2T, 21T and b = (bT,b1)T conformably with M. This
linear equation can be formally regard as a special case of

the saddle point problems [9] The linear system Mz = b is
equivalent to the pair of linear systems

Axi + Bxo = by,
CCEl + DLL‘Q = bQ.

If we multiply the first equation by —C' A~! and add it to
the second equation, the vector variable z; is eliminated and
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we obtain a linear system of smaller size
(D - CA_lB)J}l =by — CA_lbl.

If the coefficient matrix D — CA~'B is a block diagonally
dominant matrix or a block H-matrix, we can use some block
or preconditioned iterative methods [10], [11] to continue
resolving the linear system equation (1). In the meanwhile,
when we solve linear equation system, the convergence rate
of many iterate algorithms are closely related with spectral
radius of coefficient matrix. Hu [12] obtained the following
result which can be used to estimate the convergence rate:

Let M = (M;;)mxm be a block strictly diagonally dom-
inant matrix and N = (N;;)mxm partitioned conformably
with M. Then

5 %1
p(M~'N) < max ——— .
oMt - ;HMMH
VE]

Therefore, we know the estimate of block matrix’s spec-
tral is closely related with the block diagonally dominant
degree ||M;'||* — 3 |[My;|| of each row when M is

Z

a block strictly diagZ)nally dominant matrix. Thus, after
being reduced order, it is significant to study the block
diagonally dominant degree of the coefficient matrix of the
linear equation system (1). Additionally, as mentioned in
[13], we see that the eigenvalues of Schur complement
of diagonally dominant matrix are more concentrated than
those of original matrix, and we predict that the Schur-
based conjugate gradient method will compute faster than
the ordinary conjugate gradient method. Hence, it is very
important to estimate the eigenvalue distributions of (block)
diagonally dominant matrix. Over the years, there has been a
surge of interest in studying the locations of eigenvalues of
the Schur complement of matrices in much literature, see
(61, [71, [8], [13], [14], [15], [16], [17], [18], [19], [20],
[21]. Moreover, the determinant of matrices has hitherto
great influence on every branch of mathematics [22], [23],
[24], [25], [26]. Zhang and Liu [17] proposed some upper
and lower bounds for determinants of diagonally dominant
matrices by making use of the results of the estimates of
diagonally dominant degree for the Schur complement of
the diagonally dominant matrices. On the other hand, the
authors in [27], [28], [29], [30] extended the concept of
diagonally dominant matrix and developed two kinds of
block diagonally dominant matrices, which are referred to
as the I-block [27] and II-block [31] diagonally dominant
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matrices, respectively. Later, two kinds of generalized block
strictly diagonally dominant matrices (I-block [32](II-block
[31]) H-matrices) are established in [31], [32], [33]. In the
sequel, Liu et al. [13] derived some estimations of diagonally
dominant degree and eigenvalue inclusion sets for the Schur
complement of I(II)-block diagonally dominant matrices,
and Wang [20], [21] put forward the new estimations of
diagonally dominant degree and eigenvalue inclusion sets
which are proved to be tighter than those of [13]. Zhu [34]
obtained some upper and lower bounds for determinants
of I(Il)-block diagonally dominant matrices, and Xu [35]
arrived at some determinants bounds are sharper than the
ones obtained by Zhu. In the current work, we first focus on
investigating the following three aspects:
o Study the new estimates of I(I)-block diagonally dom-
inant degree for Schur complement of matrices.
o Derive the new distributions for the eigenvalues of the
Schur complement of matrices.
« Develop the new upper and lower bounds for determi-
nants of the I(Il)-block diagonally dominant matrices.
Afterward, we prove that the proposed results are superior
to some known ones in theory. The numerical results are im-
plemented to verify the theoretical results. Before presenting
the our main results of this paper, we give some definitions
which are used throughout this paper as follows.
Let C"*™ denote the set of all n x n complex matrices,
N=1{1,2,--- ,n} and A = (a;;) € C"*"(n > 2). Denote

Ti(4) = Z |aij|, i€ N.
J#
A = (a;5) € C™*™ is a strictly diagonally dominant matrix
(abbreviated to SD,,) if |a;;| > 7;(A), for i € N.
The comparison matrix of A, denoted by u(A) =
(tij)nxn. is defined to be
if i = j,

tij =
’ { if i # j.

A matrix A is called an M -matrix if there exist a nonnegative
matrix B and a real number s > p(B) such that A = s] — B,
where p(B) is the spectral radius of B. It is well known
that A is an H-matrix if and only if p(A) is an M-matrix,
then the Schur complement of A is also an M-matrix and
det A > 0 (see [14]).

For o« C N, denote by |a] the cardinality of o and o =
N —a. If a,8 C N, then A(c, ) is the submatrix of A
lying in the rows indicated by « and the columns indicated
by . In particular, A(«, o) is abbreviated to A(«). Assume
that A(«) is nonsingular. Then

AJa = AJA(a) = A(d)) — A/, @)[A(a)] T A, &),

is called the Schur complement of A respect to A(a).
Let A € C™*™ be partitioned as the following form:

|aijl,

—laijl,

A(al,oa) A(ath) A(Oél,Oés)
A(ag,al) A(Oé27042) A(OZQaOés)

A - : : .. : ) (1)
A(a;,aﬁ A(Oés:,OQ) A(O‘a:vas)

where 1 < s<n, ag =0,

i—1 i i
aiz{zatH‘L”' 7Z|o¢t|}(1§i§s)7 Z|at\=n

t=0 t=0 t=0

and A(oy, o) is a |ag| X || nonsingular principal submatrix
of A, t=1,2,---,s.

Without loss of generality, we assume that C'*"™ denote
the set of all s x s block matrices in C"*™ partitioned
as (1), A = (Alag, )" € CP*™ and N(A) =
(|A(ev, am)|) s denote the norm matrix of block matrix A.

In this paper, the matrix norm ||.|| of A € C™*™ is defined

as

Al
el

1Al =

sup
zeCm,z#0

Thus if A € C™*" is nonsingular, then it holds that
[|[Az|]

—1
AT = { sup } = in .
A=l e ceCriro ||

Definition 1.1 A is called an I-block strictly diagonally
dominant matrix (I — BSD,) [27] if for all 1 <[ < s,

|A™ =
[l

A a)] M7 > D0 A, ).
m=1,m%l
2
m=1,m%#
block diagonally dominant degree for 1 <[ < s of A.

Definition 1.2 A is called an II-block strictly diagonally
dominant matrix (/1 — BSD,) [28] if for all 1 <[ < s,

3)

Denote by ||[A(az, )] 71|~ — | A(aq, o) || the T-
!

S

3 A ar)] " Alar, )| < 1. @)
m=1,m%#l
1 - XS: I[A(ar, )] Ay, )| represents the 1I-
m=1,m#

!
block diagonally dominant degree for 1 < [ < s of A. It
is noteworthy that if A € I — BSD,, then it follows from
(3), (4) and the inequality

[A(eu; ca) Alau, am) || < [[A(eu; ca) [[[| A, am) |

that A € Il — BSD;,.

Definition 1.3 A is called an I-block H-matrix and I1-
block H-matrix, respectively, if the comparison matrices of
block matrix A which are defined by pur(A4) = (wim) €
R**% and pyr(A) = (0m) € R**® are M-matrix, where

o { A a2 7Y i L= m,
m — A, )|, if 1 # m,
R { 1, if [ =m,
b —[ITA(u, )]~ Ao, o) |,

The remainder of this paper is organized as follows. In
Section II, we recollect some useful lemmas which are uti-
lized in the next sections. Several new estimates for the I(II)-
block diagonally dominant degree of the Schur complement
of matrices are established in Section III. As applications,
some new distribution theorems for eigenvalues of the Schur
complement and the new bounds for the determinant of
I(II)-block diagonally dominant matrices are obtained in
Section IV and Section V, respectively. Section VI is devoted
to performing some numerical experiments to confirm the

advantages and the validity of the established results. Finally,
the paper is ended with some conclusions in Section VII.

if I #m.
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II. PRELIMINARIES

In this section, we start with some lemmas. They will be
useful in the following proofs.

Lemma 2.1 [13] If A € SD,, then u(A) is M-matrix,
ie., A is H-matrix.

Lemma 2.2 [2] If A is a H-matrix, then [u(A)]~! >

A7

Lemma 2.3 [30] If A € I — BSD,, then [u(A)]~! >
N(A™Y).

Lemma 24 [30] If A € II — BSDq,
then [urr(A))™' > N(A7'D), where D =
diag(A(ay, 1), Alas, ), -+, A(as, oz]j)).

Lemma 25 Let A € C!*", aa = |J oy, C N, & =

u=1

l
N—-a= |Ja;, CN,and k+1 = s. For any o, C o/,
v=1
we denote:

o X —Gt
Bi = ( ~HT ji[A(0) ) |
If AeI— BSD,, we take i[A(a)] = pur[A(a)],

IIA(%, ai )1},

Z 1A, a, ||}

Gy = {IIA(Oéj”ail)ll,-~

{ Z [ Aeviy, o), )|

If
> S (g oo )L )
xr = (07 ,Oé‘v — —
v=1 T [A i, e, T
where
l
> A, a5,
r = max v=1 ,
1<w<k &
I[A iy, ai )T = 20 A, i)l
t=1,t#w
k l
P, (A) =71 Y (A, ci)| + D Il Al 05,)]l,
t=1,t#w v=1
!
> 1A, a5l
h: max U:l—
1<w<k H; ’
k
P, (A)
H; =P, (A) - | A, , i) - ,
W= 2 e el T

then det B;, > 0. If A € IT — BSD,, we take i[A()] =
prrlA(e)],

Gy = {lI[A(g,, a5)] " Aley,, i),
A 05,01 Al ) )
Ho- {ZIJIHA(%,%)]1A<ai1,aju>,
~ ,il||[A<aik,aik>r1A<aik,aju>||}.
If -
x>f2|| (@05 Az, 1B (), (6

where
Z ITA (e, oy, )] Aoy, s 4l

v=1

k
1= 3 Ay, @i,)] T A, aq,)]]

t=1,t#w
k
>y
=1,t

= max
m= 1<w<k

)

”[A Ay y Mgy )} 1A(aiw ’ ait)H

l
> A, @i ) ™ A, a5,)

v=1
l
> MA@y, @i, ) Alai, a5, l
f= max v=1 ,
1<w<k Gi
~ k ~
Gi =P, (A) - Z Il [A(aiw » Qi ) _1A(aiw ) My ) HPH (A),
t=1,t#w

then det B;, > 0.
Proof. If strict inequality in (5) holds, we take ¢ > 0,
sufficiently small such that

)

k
e > > |lA(ay,, ) (hI[A( P, (A)

ai1;aaiv)]
We construct a positive diagonal matrix D =
diag(dy,da, -+ ,dg11), where
{ 1, v=1,
d, = P, (A)
hH[A(aiv_l7a'i1,_1)}‘1|\‘1 +e 2<v<k+1
Denote C; = Bjj, D = (Csv) (k1) x(k+1)- If 8 =1, then
k+1 k+1
lessl = D ew] = lenn| - Z 1o
v=1,v#s =
P, (A)
— o= Y el (1 e >0
Z ’ 1A (azv,azy)] =t
If s=2,3,---,k+1, then it has
k+1
‘Css| - Z ‘CSU‘
v=1,v#s
Pis—1(A)

A, s aiy )] HIH (R +e)

(IEICTAPPETNNDY) i

l
= > A,y a5,)ll
u=1

>

w=1,w#s—1

P, (4)
Alai,_y,a5,)|(h - -
A, N e c T

+¢)

Pi,_y (A) +elllAe, sy aq, 17T ZHA @ig 1 a5,

P, (A)
I[A(exs, , 0, )]~ HIT

P>

w=1,w#s—1

[Alai, @i, )l (R

+e).(7)

Since A € I — BSD,, it holds that 0 < r < 1. Moreover,
for 1 <u < k, we have

l
> N[, 05,
v=1

r>

b

ITA(ei,, @i )] = A, i)l
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ie., proof, we have B. € SDj 1 and hence det B;, > 0. Let
. e — 0T, we get det B;, > 0 immediately.
Al , o —1j-1 5 Aoy, a; For the case of A € I1 — BSDyg, the proof is similar. W
A, )l 2 Zl I Aes,, e, ) Lemma 2.6 [30] Let A € [— (I[-)BSD,, a =
v= k l
k Ua, CN, o/ =N-a= Jaj,adk+1 = s
13 A, )l = Py, (A). wr t =
K orany t =1,2,--- 1,
t=1,t#u
. . << . -
From the above inequality, for 1 < u < k, we obtain U, = 1— ||[A(ay,, a5,)] 1[14(%_“ @),
P, (A)

0< S <r<l. Aoy, o)

1A, o, )] 71 .
. ) A(O‘jtvaik )][A(a)] : >0
By the definition of P; (A), for 1 < w < k, we have
v A(aik ) i)
l
> A, q5,)l Lemma 2.7 [2] Let A € C**™ If ||A| < 1, then I,, — A
- v=l is nonsingular and
P (4) = Y A, o) amsSer B 1
t=1,t#w e ||(I'n - A) H < — -
k L= A
P, (A) - THZ# [A(e,,, a, )| where I, is an identity matrix.
= k ?
P, (A) - > Ao, a,)l m III. THE DIAGONALLY DOMINANT DEGREE FOR SCHUR
. t=Lt#w o COMPLEMENT
<
- In this section, we present several new estimates on the
which leads to 0 < A < 1. Furthermore, for 1 < u <k, block diagonally dominant degree of the Schur complement
. of I — (II-)BSD;, which improve the corresponding ones
| Aaiy, a5,)]] in [13], [20], [21], [35]. )
v=1
h > % o) ] Theorem 3.1 Let A € I — BSD;, « = |J o, C N,
P, (A) = > A, ai)lljmae e = ! u=t
=1t o =N-a= {Ja,, and k+1 = s. Denote A/a =
which can be rewritten as v=1

A(oy, a,)). Then

[A(ar, )] 71 7F = Ri(A/a)

l
hPi, (A) = [ A, ;)] I[A
v=l > ||[A(ijt,0[jt)]71 Hil - Rjt (A) + Wy,
> [I[A

k

P, (A) o N=1-1 _ p
+h > (A, 0,)| e a T [Aa,, 05)] 717" = R, (A) > 0 (8)
t=1,t#u By T and
Thus, it follows from Equality (7) that for s = 2,3, --- | k41, ||[/1(a N )]71”71 + Ry(A/a)
ty X t
k+1 — —
less| — Z [eswl S ”[A(ajr?ajt)] 1” ! + RJr (A) - wjt
o L < IfACey,, a)]7HITH + Ry, (A), ©)
= hPi (A +elllAlei,_q,ai, DI 17 - 2::1 lACees, s )l where
. Pi, (A) 5
— Ao, aig)l(h w 5 _
B I ETRT T Rio= > Ao,
i k m=1,m#j
> Z HA(ais_pO‘ju)H +h Z HA(Oéis_l,@iw)H i ||[A(O[ . )]71H71 . hP (A)
u=1 w=1,w#s—1 iy i %
W = ||A(O[ a; )| v v v
Pi,w(A) 11 Jt Jt v A i, 1 =1 )
S ZICT e R v=t A, I
L and h and P; (A) (v=1,2,--- k) are defined as in Lemma
= > 1A g a5l 2.5.
L ) Proof. Let
_ w:L%;Sil lA(ai,_y,ai,)ll(R At a1 +e) Aoy, )
k \Ijtr' - (A(ajt y Qg )7 e 7A(ajt7 chk))[A(a)]_l .
= e(\l[A(ais_pais_1>1 I 1—wzl’Zw;H\IA(aiS_Mw)\l) >0, Ay, @j,)
. . = A j i [ A ity Qi T,
which means that C; is a SDj1. By Lemma 2.1, p(Bj,) Ge=l l(a]“a'l)” I (a]‘l i) .
is a M-matrix. Note that ;(Bj,) = Bj,, then det Bj, > 0. H = (Z Ay, ), 72 ‘|A(aik’ajr)‘|) ’
When the equality holds in (5), for any € > 0, denote — —1

B. = B + diag(g,0,---,0). In a similar way to the above tr=1,2--- 1.
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By the definition of Schur complement, denote by J; = |ay;, |
and I,, the identity matrlx According to Lemma 2.5, we
obtain ||[ (aj,,0,)] 7 W] < 1. It follows that

l

S At an)]

r=1,r#t

ITA (e, o)) HI 7T —

l

Z lACe > aj,.)

r=1,r#t
> ([, @i )] L, — [Alag,, a)] e}~
l
- Y Ay -
r=1,r#t
> [l ACag, )] I 1= Ay, a,)] W]
l l

- Z ”A(ajt,’ajr)H_ Z IRZ

r=1,r#t r=1,r#t

= A, a5 )1 = Ay, a1 Ay, )]
l l

= D0 Ay )= Do 1

= ”{A(ajt’ajt)fq/tt}il“il - 7\I/trH

Uil

"Wl

r=1,r#t r=1,r#t
> [, )] 7T = 112wl
l l <
= > A a )l = Y0 1 B
r=1,r#t r=1,r#t
l l
= A, a1 HIT = D0 1Ay, 5,0l = D Wl
r=1,r#t r=1
z <
> [[[Aaj,a5)] T = D0 Ay, a5,)] = GTN[(A() ' H'
r=1,r#t
l
> [[[Aag,a)] T = D0 Ay, a,)l
r=1,r#t

—GTur(A)(a)] " H' (by Lemma 2.2)
k
= Ry (A) +wj, + Y | Alay,, a4,

r=1

= lllA(eg,, a1 771

= G{ [nr(A) ()] H'
= A, 5] I = Ry (A) +wy, —¢

Wy

Let ¢ — 0, thus we easily get

I[A(ee, )] 717" = Re(A/ )
> |[[A(e,, aj )17 HITH = Ry, (A) + wy,
> |[[A(e,, a5)] 7! = R, (A) > 0,

which implies Inequality (8).
By making use of (2) and applying the same manner in
the above proof, it has

ITA(cw, )]

by Z ||A g, o)

r=1,r#t

l
A, 05) = T} 74+ > Ay, ) — o

r=1,r#t

o HA( a6,) = Yada]|
xeC™ x#0 H.TH
+ D A ;) = el (by (4))
r=1,r#t

o 1Ay )] 4| Vaal
zeC™ x#0 H[EH

l l
+ > A, a )+ Y (Wl
r=1,r#t r=1,r#t

R T P R L2
xzeC™ x#0 ||$||

l l
+ > Al + >0 1%l
r=1,r#t r=1,r#t

Ay, o)
ed]

+ Z [A(e., aj, ||+Z||\1’tr\|

r=1,r#t

ITACa; a50)) 7 +

in
zeCm, 1750

l

Y Ay, @)

r=1,r#t
+Z||‘I’tr|\ (by (4))
1A (O‘Jtvajt)]7 H7 + R, (A) —wj, +¢
1

~detlu (A @] det By (by (10))

H[A(O‘jt’ajt)]iluil + Rjt (A) —wj, +¢€
H[A(ajtvajt)]_lu_l + Rjt (A) +e.

Let ¢ — 0, thus we can get

k
L > (e, @i )l —wj, +e —GT
+ det — Jt r Jt t
det[MI(A)(O‘)} ¢ (Tl _H' NI(A)(O‘)
det B
= A eq)l ™! = R (A) g, e+ o S (10) o
Inasmuch as A € I — BSD,, we have
<
k <
Z [ Ay, s, )| — wj, + ¢
b, (A)
- hz”A oo e a7+
P, (A)
> hZ”A a]f7alr)|| ||[ (az e )]_1H_1'

It follows that det By > 0 by virtue of Lemma 2.5.
By Lemma 2.1, we infer that pj(A)(«) is M-matrix, and
therefore det[pr(A)(c)] > 0, which implies that

[A(ee, )] 7HI™H = Re(A/a)
> [|[A(ey,, 05)] 7M™ = Ry, (A) + wj, —e
> [|[Alag,, az ) 7M™ = Rj (A) — e

[Aoe, a0)] T+ Re(Af )
[A(ajt ) O‘jt)]il Hil + Rjt (A)
[, a)] M + Ry, (A).

— Wy,

Therefore, we obtain Inequality (9). This proof is completed.

Remark 3.1 Note that

Py (A) P, (A)
MAon ) I = T, )T
R;, (A)
< < Y 1< < k.
S S A, n ) PSS E
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This means that

k —1y—1
_ A, 0 )] = RP (A)
Wiy = ZHA(ahaazu)H ||[A(O¢z , )] 1” 1
=1 v v
k —1y—1
[[A(evi,, i )] |7 = Pi, (A)
> Al L, v v v
2 2 It o) I,
k
> (1=r) ) Ay, sl
v=1
o A en)] T Ry (4)
1<u<k

k
I[A(ai,, i )I7HI7H = >0 Ay, oq )|

t=1,t#u
k
x Z ||A(ajt Qi ) H
v=1

[[A (i, i )]0 — R, (
I1A(v,, i, )] 1H !

\Y

k
Z HA gy s alv

an

min
1<u<k

From Inequality (11), it’s obvious that Theorem 1 improves
the results of Theorem 3.1 in [13], Theorem 2.10 in [21] and
Theorem 2.1.1 in [35].

Based on Theorem 3.1, the following corollary can be
obtained immediately.

1Cor()llary 31 Let A € I—BSD,, and take aa =

O o, C N. Then
u=1

I(A/0) ™1 2 [AGas, 0]~
PRSI Py(4)

b2 e el ST
I4/al < | Ao, )]

s—1

—|—hz A, )|

v=1

Py(A)

ITA (e, a)]=HI=H

Proof. Notice that o/ = a,. Thus, A/a = (A(a, o)), and
R,(A/a) =0, so by the definition of w,,, we have

Wiy, = Ws

I TP 7S et 7 )
_;HA( 50 0| A0y, a1

71H71

Py (A)

= ; [A(exs, o)l = h; [A(exs; )| AT

Substituting Equation (12) into Inequality (8) and in a
manner similar to that done for Theorem 3.1, the results are
derived. |

Theorem 3.2 Let A € I] — BSD,, a = U o, CN,

o =N—-—«a= Ua],ankorl = s. Denote A/a =
(Ao, ay)). Then

1—Ry(A/a) > 1= Rj,(A)+ b, >1— R;,(A) > 0(13)
and

1+ Ri(A/a) <1+ Rj,(A) —wj, <1+ R;,(4), (14)

avaav”_ln_l.

12)

where
Ri(A) =Y Ay, ;)] " Aey,, am)ll,
m=1,m#j:
k ~
wj, = Y [A(ay,, a;,)] " Ay, i, II(1 = £Pi, (A)),
v=1

and f and I:’,L‘M(A) (v=1,2,---
2.4.
Proof. For t,r =1,2,---

, k) are defined as in Lemma

,1, denote J; =

D = diag(A(ozi1 R 041-1), ce ,A(oz,;,c , aik)),

Aleiy , 0y.)
Uy = (A(ajtvail):"' aA(ajp’aik))[A(a)]_l s

Alaiy, s ag,.)

T = {[A(D‘Jt ’ O‘jﬁ)]ilA(a_jt , ail)v T

T, = {[A(eiy, @iy)] " Ay, j,.), -

L, = {”[A(o‘]‘t704_7})]71"4(0‘]170‘751)”7

) H[A(o‘jtvO‘jt)]ilA(O‘jwo‘ik)H}Tﬁ
L

— (XM ) Al a5l

r=1

’ [A(O‘J't s Oy )]71A(o‘jt ) O‘ik)}v
) [A(aik ) aik)]_lA(aik ) O‘jr)}T’

1 T
-,ZH[A(aik,azk>r1A<aik7a_7~r>u) .

It follows from the definition of ¥, in Lemma 2.6 that

Wy =1~ [[[A(eg,, 5)] " Wall = 1= [[Te[A(a)] 7 DL,
which is equivalent to
1 -1
7. [ = ITe[Ae)] " DI[l] = (15)
t
According to lemma 2.7, we obtain
- —1
{2, — [Alay,, a5)] " Wu )|
1
1= [[[Aaj,, )] "Wyl Wy

By making use of the definition of the Schur complement,
we deduce that

!
1-Ri(Afa)=1— > [[A(at, ar)] " Alar, ar)|

r=1,r#t
l
=1- > A, a5) = W] Ay, 05,) — |
r=1,r#t
l
=1- Z H{I]t - [A(ajtﬂajf,)}_l\lltt}_l
r=1,r#t
iy a)] ! o PN
X{[A(ay“ah)] Ay s a,) — [Alag,, aj,)] \Ijtr}H

l

1= E: H{Qt

r=1,r#t
||{[A(O‘jf, » Qg )]_1A(O‘jt ’ C“jr)
l

Z {H [A(ajt ) ajt)]_lA(ajt ’ aj'r)”

r=1,r#t
HITell[A]I DT} (by (16))

v

[A(eyy s 0,)] 1‘1]”}71 H
— Y[A(e)] " DI }|

1
1-— —
Wy

i\

- ;{1 — e[ A(@) DTy
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l

- Z ”[A(ajt > Qg )]_IA(O‘]'t ) ajr)H
r=1,r#t
l

r=1,r#t
1 l
\I/t{l = > Ay, @) Ay, 0,

r=1,r#t
D)|ITe| }

[A(ajt » Qg )

IITtII[A(a)]lDIIFtll} (by (15))

v

l

=D TN [(A() ™
r=1
l

1-— Z |

r=1,r#t
—LT{purr[A(@)]} " H' (by Lemma 2.4)

k
= 1- Ry (A) + @y, + ) [A(eg,, a5,)] Alay,, @i,
r=1

—j, — L{{prr[A(a)]} 1 H'

\%

T A(ay,, a5l

1
det(pr1(A)(a)]

k
- ( > [AGas 5]~ Al )

= I_Rjt(A)+7~z’jt_5+
—wj, +e
_H/

A . det By
= 1= By () g — e+ O T

,Lz" )
prr[A(a)]

a7

Since A € II — BSD,, it holds that

k
> Ay, )] Alay,. aq, )| =y, +e

r=1

= fz H anﬂajr A(ajtﬂair)”pir(A) +e

>fZ||

Ay, 04,) 1P, (A).

aJt7a]t

By Lemma 2.3, it is easy to see that det By > 0. By Lemma
2.1, we deduce that pr7(A)(«) is nonsingular M-matrix, thus
det[urr(A)(a)] > 0, which yields that

1— Ri(AJa) >1— Rj,(A) +1j, —e >1— Rj,(A) —e.
Let £ — 0, thus we can get
1— Ri(A/a) >1— R, (A) +1;, >1— R;,(A) >0,

which proves the desired Inequality (13). We can prove
Inequality (14) with a quite similar strategy utilized in this
theorem. u

Remark 3.2 Note that

which leads to
k ~
Wy, = > |I[Alay,, 0,)] " Alay,, i, )[[(1 = fPi, (A))
v=1

> D lllA(ag, 0] 7 Alag,, i) [(1 = Py (A))

. 1—Ri,(A4)

= min

1<u<k k |

1= > Ay, i, )] P Ay, aiy) |
t=1,t#u
X Z H O‘Jtaajt A(O‘jtaaiv)”
k

> 12}3216(1 - R, (A)) Zl 1[A (e, ajt)]_lA(ajt s, )|

(18)

Evidently, from Inequality (18) we see that Theorem 2
improves the results of Theorem 3.2 in [13], Theorem 2.1.2
in [35] and Theorem 2.13 in [21].

IV. DISTRIBUTION FOR EIGENVALUES OF THE SCHUR
COMPLEMENT OF I-(II-)BSD,

In this section, as an application of our results in Section
II and Section III, we establish some new locations for the
eigenvalues of the Schur complements of I — (I1—)BSD,
by the elements of the original matrix. Without loss of

k
generality, we assume thata = |J a;, C N, o/ = N—a =

u=1
1 -
U a,, C s. Let AJa = (A(ap, ap)),
v=1
|a| = t and I; be the identity matrix. Denote by A(A/«)
and A(A) the set of eigenvalues of A/« and A, respectively.

Lemma 4.1 [13] Let A € I — BSD; and A(A) denote
the set of eigenvalues of A. Then

N, and k£ +1 =

MA) € G = [JIGi uMA(ai, 00))],

i=1

where
G; = {/\ ¢ A Z AA(as, i) and

I[A(ci, i) — M ()]

<Y G anl

ki

Theorem 4.1 Let A € I — BSD, and w;, be defined as
in Theorem 3.1. Then
A(4) € G = G U M(Alay, )],
t=1
where
G; = {)\ i AZ MA(wy,,aj,)) and
AL~ A1 < Ry (4) —

Proof. Let W be such as in Theorem 3.1. If A ¢
MA(ar, o)) and X € A[A(wy,, a,)], then combining In-

(Advance online publication: 24 May 2017)
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equality (4) with Lemma 4.1 results in

A = Ao, )] I

_{ wp|WAAMﬂm1w}*
zEC™ 240
[My — Ao, )]z

= by (4
2eCm 2£0 El (by (4))
_ inf H{AIJt B [A(ajtvajt) B \I/tt]}x”
2EC™ 250 |||
o I = Ay )l | ¥l
2€C™ 20 2|l veCmozo |||
= I, = [Aley,, a5 )] HITH = ([ Wl
Moreover,
||[)‘Ijt - [A(O‘jwajt)]_ln_l
< AL — [Alag, o)) M7+ ([ W]
< Ry(Afa) + [[ Wy
l
= Z [ A, ) = Wl + || Pt
r=1,r#t
l 1
< Y A0 ) 4D 1P|
r=1,r#t r=1
k
< Rj,(A) —wj, — Y [[A(ey,, i)l
r=1
+wj, + G [pr(A) ()] H’
1
=R, (A)—wj, +6 — ————
! ! det[pr(A4)(a)]
k
% det 21 ||A(ajt’air)|| — Wy, +e _GtT
—H' pr(A)(a)
det Bl

= R;,(A) —w; -
7 et (A) )

where H', By and p;(A)(«) are defined as in the proof of

Theorem 3.1. Thus det B; > 0 and det[u;(A)(a)] > 0. So

1AL, = [A(eg, )] M7 < Ry (A) —wj, +e,
Letting € — 0 yields
1A, = [Alay,, a5)) 77 < Ry (A) — wy,.

If A C A[A(a, ar)] and A € A[A(ej,, @), )], we assume that
T # 0 is the eigenvector of A corresponding to A. Then

M = Alas, o]

.
. |AL — Aoy, ar))e]
= sechazo B
i AL = Ay ag,) + P
zeCm x#0 ||$H
s I = Ay, )1l - [l
= eedto Jel
oo JID = Ay ag)lel Wl
= aetraro el &l
M, — Ay, a;
— lrrnlf ||[ Jt (ajwajt)]x” _ ||\Iltt$||
zeC™, x#0 ||£L’||

1A, — Ao, )] 770 = 14| (by (4)).

Therefore,
H [/\Ijt, - [A(O‘jt?o‘jt,)]ilnil
< Wyl < Re(A)a) + [Vl < Ry, (A) — wy,,

which proves this theorem. |

Remark 4.1 By Remark 3.1, it is obvious that Theorem
4.1 improves the results of Theorem 4.1 in [13], Theorem
3.1.1 in [35] and Theorem 3.5 in [21].

By Theorem 3.2, similar to the proof of Theorem 4.1, the
following theorem can be derived.

Theorem 4.2 Let A € II — BSD, and w;, be defined as
in Theorem 3.2. Then

A(A4) € G = | (G UA(A(ay,, a5,)],
t=1
where

Gi= {/\ © A Z MA(ay,, 05,)) and
m%—AmM%mlnl<n}

and Ty = [|A(oy,, a;,)[|[R), (A) — wj,].

Remark 4.2 Similar to the discussions in Remark 3.2, it
can be seen that the results of Theorem 4.2 improve those
in Theorem 4.2 of [13], Theorem 3.12 of [35] and Theorem
3.6 of [21].

V. SOME NEW BOUNDS FOR DETERMINANTS OF
I-(II-)BSD,

In this section, we make use of the results in Sections
II-IV to exhibit some new upper and lower bounds for the
determinants of I — (I1—)BSDx.

Lemma 5.1 [36] Let A = (a;j)nxn, 0 # @ C N, assume
that A(«) is nonsingular. Then

det A = det A(a) det A/av.

Lemma 5.2 [29] Let A € I] — BSD,, then D~ 'A €
I — BSD,, where D is defined as in Lemma 2.4.

Let {j1,72, - ,Js} be a rearrangement of the elements
in {1,2,---,s}. Denote 51 = aj,, B2 = oj, Uy, _,, -,
o = o Uoyj, ,U---Uay, = N.Then Bg_t41—Fs—t = aj,,
t=1,2,---,s, fy =0, and

Ri[A(Bsir)l = D [lAlay,, ),
ay CPs—t
Ri[ABo—er)] = D Al a5)) 7  Alay,, @)
ay CPRs—t
Let ¢ represent any rearrangement {ji,jo, - ,js} of
the elements in {1,2,--- , s} with By, B2, -, Bs defined as
above. Next, we establish some bounds for determinants of
I-(II-)BSDy; in the following theorems.
Theorem 5.1 Let A € I — BSD, and be partitioned as
in (1). Then

[det A] 2 max [T { Ay 0507 |7 = €, 19)
t=1

and

det A| < mi Ao, 05| + 05,10
| de I_m;nH{H (., a5,)ll +©;,} (20)

t=1

(Advance online publication: 24 May 2017)



TAENG International Journal of Applied Mathematics, 47:2, [JAM 47 2 07

where
P,[A(Bs—
ejt = h[A(BS—t‘Fl)] Z ||A(Oé]'“0¢1,)|| H[A(L (fc )]ttil)‘],17
ay€EPs—t v
_ A, i)l
r[A(Bs—t4+1)] = tﬁﬂgfgs K
Ki = |[[A(ej, 0] 17 = >0 A, a5)lls
v=t+1,v#u
P [ABs—ip)] = 1[ABo—er1)] D> Ay, 05,)
u=t+1,u#v
+ A, aj)ll,  ow € Bs—t,
_ Al o)
h[A(,BS,Hl)} = t+1}1§af§8 T’

L; = Pju [A(ﬁsftﬂ)]
- > Ay, el

v=k+1,v#u

Pj, [A(Bs—t+1)]
I[A(ey, , 0z,)] 74~

Proof. Inasmuch as [, is contained in [S;_¢+1 and

Bs—t+1 — Bs—t = ay,, by Corollary 3.1, we have
IABs—t+1)/Bo—e) 17" = I[A(asy, )] ™ = ©5, >0,
lA(Bs—t+1)/Bs—t|l < | Aleyse, )l + O, -

By Lemma 5.1, it follows that

| det A|
det A det[A(Bs—1)]| | det[A(B2)]
|| Ay | |G| A
= |det(A/Bu—1)] |det[A(Bs—1)/ Bosl]
<+ |det[A(B2)/B1]] |det[A(B1)]|
lojy | [ovjg |
\HA (A/Bs1) HA (Bs=1)/Bs—2)
|O‘J< 1l loggl
H Ai(A(B2)/B1) 1‘[ Ai(
_ Ia“\ leggl
HH A(Bs—t+1)/Bs—t) H/\ NI

ﬁ{'” (Bo—t)/ Boe] 17 1 IAGB) 1Yo,

I \/

maxH{H

which proves the desired bound (19). The bound (20) can
be similarly proven. |

Remark 5.1 Similar to the discussions in Remark 3.1, for
.y € Bs_t, We have

Y

-1 [y |
H _Ojt} 7t )

(@, Oéh

Py[A(Bs—t41)]

|HA(O‘va0‘v)]71”71

e BlABi0)]
< r[A(Bs—t41)] £ arel®, [I[A(cy, a)] 7L 7Y

h[A(Bs—t+1)]

which results in

= C1y— lej, |
max [T {lI[4(ay, a;)] I -0, } 7"
t=1

[\

. —1—1
max [ {IAcas, 05,017

Ry[A(Bs—t+1)]

v

max H {H ICTRYI) i

— r[A(Bs—t+1)] Ry, [A(ﬁs—t+1)]}lajt |

leg |
max —_—
ayEfg_t H[A(avvav)]_lH_l }

and

S
min [T {14, a5,)| + €531
t=1

IN

min [ 1ACex,, g0l + A1)} [ABa )]} 25
t=1

Ry[A(Bs—t41)] !t
v ||[A(av,av)1—1n—l} :

IN

win [ | {\\A(aﬁ,amn +
i t=1

The above discussions verify that Theorem 5.1 improves

Theorem 3.2.3 in [35] and Theorem 3.6.1 in [34].
Theorem 5.2 Let A € I] — BSD, and be partitioned as
in (1). Then

|detA\ > maxH {H 1 _Ajt)}lo‘jt‘ (21)

ajwajt)]_ln_l(

t=1
and
|detA|<mmH{HA aze o) (L4 A% @2)
t=1
where

D = diag(A(oa, 1), , Alas, as)),
Aj, = h[(D7 A)(Bs-t41)]
Y Ay, 0,)]  Aay,, 0| P[(D

oy EPBs—t

YA)(Bs—t41)]-

Proof. Combining Lemma 5.2 and Theorem 5.1 yields that
D 'AeI—-BSD, and

det(D~'A)| < mi 14 A, o
| det( )I_m;nH{ it

t=1

ie.,

|det A| < \detD|m1nH{1+A }\aul

t=1

< rn(pinH HA(ozj“ajt)”\anl {1+ Ajt}lajt\ '
t=1

So Inequality (22) is obtained, similarly, we can prove the
Inequality (21). ]

VI. NUMERICAL EXAMPLES

In this section, we present some numerical examples
to illustrate the theory results in this paper and show the
advantages of our derived results.

Example 6.1 Let

A1y Az A1z Aig Ass
A1 Ao Az Azg Ass
Asz1 Az2 Asz Aszq Ass |,
Ag1 Ao Agz Agq Ags
As1 As2 As3 Asa Ass

Aq1 = diag(16, -+ ,16)20x20, A22 = diag(15,---,15)20x20,
A3z = diag(18,--- ,18)30x30, A44a = diag(8,---,8)15x15,
Ass = diag(9,- - ,9)15x15, A12 = diag(—1,---,—1)20x%20,

0 0 -0
Ay=Ais=| - . )
“2-2- =2/ 5015

(Advance online publication: 24 May 2017)
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-2 -1
0 --- 0 .
—1 -2 .

Ays = , Asa = ,

—2 ... -2 —1
15x15
-1-2 15%15

0--- =5 -1/3 ... =1/3

As1= | : , A4z = )
0- 0 /15400 —1/3-- =1/3 15% 30
0... —2 ~3.- -3

Asz = | : , A = ;
00/ 1530 0 -+ 0/ 5420
-1/3 .-+ =1/3 0 -~ 0

Ag = , As2 = ,
—1/3-- =1/3 15%20 =2 =2/ 5015
0 ---0 —0.1--- —=0.1

Azq = , A2z = )
—1 0/ 50415 =01 =0.1/ 55,30
—02--- —0.2 -3... -3

Aoy = , Ao = ,
=02 =02/ 55,15 0 - 0 /55420

A3 =2.5A23, Azs =0.75A24, Azs = 4A34.

In the following, we choose o = {1,3} in the Schur
complement A/q. Wlthout loss of generahty, we assume
[l = l-lloes @ = Ulaw a’ = tUl%, iv = liip =3,

j1 = 2,j2 = 4,j3 = 5 and A/Oé = (A(Oét,()(t)). By
computation, A € I — BSD,. According to Theorem 4.1,
any eigenvalues A of A/« satisfies

Ae{N: |A—15/ < 7.9186} U{\: |\ — 8| < 6.8310}

U{A:|A—9] <6.2910} =T;.

By Theorem 3.13 in [20] and Theorem 3.5 in [21], any
eigenvalues A of A/« satisfies

Ae{A: |A—15]<9.2727F U{A: | — 8| < 9.5455}

U{A:|A—9] <8.1818} =Ts.
By Theorem 3.1.1 in [35], any eigenvalues A of A/« satisfies

e {h: A— 15 <9.2424) U [ : |\ — 8] < 9.4607)

U{A: [A—9] <8.1515} = I's.
By Theorem 4.1 in [13], any eigenvalues A of A/« satisfies

Ae{A: |A—15/<10.1250} U {\: |A — 8| < 11.2500}

U{A: [A—9] <9.3750} =Ty

To further confirm the facts in the above results, Figures 1-3
depict the eigenvalue distributions of the Schur complement.

From these numerical results and figures, we have the
following observations:

o As observed in the comparison results, the Theorem
3.13 in [20], Theorem 3.5 in [21], Theorem 3.1.1 in
[35], Theorem 4.1 in [13] and Theorem 4.1 can suc-
ceed in computing and determining the the eigenvalue
distributions of the Schur complement by using the
elements of the original matrix, whereas the eigenvalue
distributions derived by Theorem 4.1 are sharper than

10F

Fig. 1. The blue solid line and the green dashed line denote the
corresponding discs I'y and I'a, respectively

Fig. 2. The blue solid line and the green dashed line denote the
corresponding discs I'1 and I's, respectively

the ones computed by Theorem 3.13 in [20], Theorem
3.5 in [21], Theorem 3.1.1 in [35] and Theorem 4.1 in
[13], thatis, I'y C I'5, I'y C I's and I'y C T'4.

o From Figures 1-3, we clearly find that I'; is the tightest
among all eigenvalue distributions, which demonstrates
the validity of the conclusion given in Remark 4.1.

Example 6.2 Let

A Arp Ags
Aoy Aoy Adz |,
Asy A3y Ass

80 0 00
A11:(08>7 A12:<1>7 A13:(10)7

A1 =(02), A =10, A3 =(30),

03 1 90
A31=(00>7 Aso (0>7 A33=(09>~

It is easy to see that A € I — BSD3. We compare the
bounds in Theorem 5.1 with those in Theorem 3.61 of [34]

A:

(Advance online publication: 24 May 2017)
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g — 4

Fig. 3. The blue solid line and the green dashed line denote the
corresponding discs I'1 and I'4, respectively

and Theorem 3.2.3 of [35]. By utilizing Theorem 3.61 in
[34], we have

35403 < |det A| < 70596.

By making use of Theorem 3.2.3 in [35], we have
43643 < |det A| < 60938.

Now, by applying Theorem 5.1, we derive
43841 < | det A| < 60703,

which is an improvement on the bounds in Theorem 3.61 of
[34] and Theorem 3.2.3 of [35]. This example shows that the
upper and lower bounds in Theorem 5 are better than those
in Theorem 3.61 of [34] and Theorem 3.2.3 of [35]. In fact,
det A = 47448.

VII. CONCLUSIONS

To estimates diagonally dominant degree on the Schur
complement of matrices, we first exhibit some new esti-
mations of diagonally dominant degree on the Schur com-
plement of I(II)-block diagonally dominant matrices in this
paper, which are proved to be sharper than the ones in [13],
[35], [21]. As applications, some new distributions for the
eigenvalues of the Schur complement of matrices as well
as the new upper and lower bounds for determinants of the
I(IT)-block diagonally dominant matrices are derived, these
results are better compared with those of [13], [35], [21],
[34]. Numerical examples are also given to illustrate these
facts.

It would be nice if we can find more precise estimates
of I(II)-block diagonally dominant degree for Schur com-
plement of matrices, distributions for the eigenvalues of the
Schur complement of matrices and upper and lower bound-
s for determinants of the I(I)-block diagonally dominant
matrices compared those proposed in this paper. We will
continue to research this topic in our further work.
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