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Abstract—In this paper, we present a finite difference scheme
for a class of time fractional diffusion equation with variable
coefficient, where the fractional derivative is defined by the
Caputo derivative. The present algorithm is unconditionally
stable, and possess spatial sixth order and temporal 2 − α
order accuracy, which is an improvement of the spatial fourth
order accuracy in the existing results. Theoretical analysis
including local truncating error, unique solvability, stability and
convergence for this algorithm is fulfilled. Then based on this
finite difference scheme, we also investigate the construction of
unconditionally stable finite difference scheme for a class of time
fractional parabolic equation with spatial fourth derivative. In
order to testify the efficiency of the algorithms as well as the
convergence orders, some numerical examples are presented.

Index Terms—fractional sub-diffusion equation, difference
scheme, variable coefficient, spatial sixth order accuracy, un-
conditional stability.

I. INTRODUCTION

FRACTIONAL differential equations containing the frac-
tional derivative are widely used in various domains

including physics, biology, engineering, signal processing,
systems identification, control theory, finance, fractional dy-
namics and so on (see [1,2] for example). In particular,
the fractional derivative has proved to be very useful in
describing the memory and hereditary properties of materials
and processes. For the basic theory, readers can refer to
the works [3,4]. One of its most important applications is
to model the process of subdiffusion and superdiffusion of
particles in physics, where the fractional diffusion equation
is usually used for modeling this movement [5-7]. Recently,
various aspects for fractional diffusion equations have been
researched by many authors. In [8,9], the authors proposed
certain methods for finding analytical solutions of fractional
differential equations. In [10-12], qualitative and quantitative
properties of solutions of fractional differential equations are
investigated. In [13-15], the applications and physical mean-
ing of fractional diffusion equations have been discussed,
while numerical solutions for fractional diffusion equations
are obtained by use of various methods including the finite
element method [16,17], the meshless method [18,19], the
finite difference method [20-30], the Bernstein polynomials
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method and so on [31]. Among the works for solving frac-
tional diffusion equations, we notice that most of the current
research for fractional diffusion equations is in constant coef-
ficient case, and less attention has been paid to the research
for fractional diffusion equations with variable coefficient.
In [32], Chen et al. presented a fast semi-implicit difference
method with convergence order O(τ + h) for a nonlinear
two-sided space-fractional diffusion equation with variable
diffusivity coefficients, and also developed a fast accurate
iterative method by decomposing the dense coefficient matrix
into a combination of Toeplitz-like matrices. In [33,34], the
authors presented compact finite difference schemes with
convergence order O(τ2−α + h4) (here 0 < α < 1) for
fractional sub-diffusion equation with the spatially variable
coefficient subject to both Dirichlet boundary conditions
and Neumann boundary conditions, and proved the stability
and convergence order for the difference schemes. In [35],
Wang established a compact finite difference method with
convergence order O(τ3−α + τ2 + h4) (here 1 < α < 2)
for a class of time fractional convection-diffusion-wave e-
quations with variable coefficients, while in [36], Wang et
al. proposed a Petrov-Galerkin finite element method for
variable-coefficient fractional diffusion equations, and proved
the well-posedness and optimal-order convergence of this
method. In [37], Anatoly et al. researched numerical methods
for solving inverse problems for time fractional diffusion
equation with variable coefficient.

In this paper, we consider the following time fractional
sub-diffusion equation with variable coefficient and nonho-
mogeneous source term

C
0 D

α
t u(x, t) =

∂

∂x
(b(x)

∂u(x, t)

∂x
) + f(x, t), 0 < α < 1, (1)

which is subject to the following initial and periodic bound-
ary value conditions

{
u(x, 0) = φ(x), x ∈ R,
u(x, t) = u(x+ L, t), x ∈ R, t ∈ [0, T ],

(2)

where the fractional derivative C
0 D

α
t u(x, t) =

1
Γ(1− α)

∫ t

0

u′
t(x, s)

(t− s)α
ds is defined in the sense of Caputo

derivative, L is the period of u(x, t) with respect to the
variable x, and b(x) is assumed to be smooth enough
satisfying b(x) ≥ L0 > 0.

The current work is devoted to deriving a finite difference
scheme with spatial sixth order and temporal 2 − α order
accuracy for the above problems, and based on this finite
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difference scheme we will also investigate the construction
of unconditionally stable finite difference scheme for a class
of time fractional parabolic equation with spatial fourth
derivative as follows

C
0 D

α
t u(x, t) + uxxxx = f(x, t), 0 < α < 1, (3)

which is subject to the following initial and periodic bound-
ary value conditions (2).

We organize the rest of this paper as follows. In Section
2, we give the derivation of the finite difference scheme
for solving fractional sub-diffusion equation (1) under the
conditions (2). Then in Section 3, theoretical analysis of local
truncating error, unique solvability, stability and convergence
for the finite difference scheme are fulfilled. In Section 4, we
apply the method in Section 2 to construct unconditionally
stable finite difference scheme with spatial fourth order
accuracy for Eq. (3). In Section 5, we give some numerical
examples to verify the theoretically analytical results. In
Section 6, some concluding statements are presented.

II. ESTABLISHMENT OF THE HIGH ORDER FINITE
DIFFERENCE SCHEME FOR EQ. (1)

Since the periodic boundary value condition is considered
here, it is sufficient to assume x ∈ [0, L]. Let M, N be two
positive integers, and h = L

M , τ = T
N denote the spatial and

temporal step size respectively. Define xi = i ∗ h(0 ≤ i ≤
M), tn = nτ(0 ≤ n ≤ N), Ωh = {xi|0 ≤ i ≤ M}, Ωτ =
{tn|0 ≤ n ≤ N}, (i, n) = (xi, t

n), and then the domain
[0, L] × [0, T ] is covered by Ωh × Ωτ . Let Vh = {un

i |0 ≤
i ≤ M, 0 ≤ n ≤ N} be the grid function on the mesh
Ωh × Ωτ . Un

i = u(xi, t
n) and un

i denote the exact solution
and numerical solution at the point (i, n) respectively. Un =
(Un

1 , Un
2 , ..., Un

M )T , un = (un
1 , un

2 , ..., un
M )T .

In order to approximate the time derivative, the following
lemmas are listed for further use.

Lemma 1 [33, Lem. 2.1](The L1 formula). Suppose
0 < α < 1, and u(t) ∈ C2[0, tn]. Then it holds that

| 1

Γ(1− α)

∫ tn

0

u′(s)

(tn − s)α
ds− τ−α

Γ(2− α)

[a
(α)
0 u(tn)−

n−1∑
k=1

(a
(α)
n−k−1 − a

(α)
n−k)u(tk)− a

(α)
n−1u(t0)]| ≤

1

Γ(2− α)
[
1− α

12
+

22−α

2− α
−(1+2−α)] max

t0≤t≤tn
|u

′′
(t)|τ2−α,

(4)

where t0 = 0, a(α)k = (k + 1)1−α − k1−α, k ≥ 0.

Lemma 2. [38, Lem. 1.4.8] Suppose 0 < α < 1,
and a

(α)
k , k ≥ 0 are defined as in Lemma 2, then{
1 = a

(α)
0 > a

(α)
1 > a

(α)
2 > ... > a

(α)
k > ... > 0,

lim
k→∞

a
(α)
k = 0,

(5)

and

(1− α)k−α < a
(α)
k−1 < (1− α)(k − 1)−α. (6)

Lemma 3. Suppose u(x, t) ∈ C(8,3)([xi−3, xi+3]× [0, T ]),
and define two operators H1, H2 such that


H1U

n
i = 1

h
(− 1

60U
n
i−3 +

3
20U

n
i−2 − 3

4U
n
i−1

+3
4U

n
i+1 − 3

20U
n
i+2 +

1
60U

n
i+3),

H2U
n
i = 1

h2 (
1
90U

n
i−3 − 3

20U
n
i−2 +

3
2U

n
i−1 − 49

18U
n
i

+3
2U

n
i+1 − 3

20U
n
i+2 +

1
90U

n
i+3),

(7)

where Un
i = u(xi, t

n). Then ux and uxx can be approx-
imated by H1U

n
i and H2U

n
i respectively with sixth order

accuracy, that is, |ux(xi, t
n)−H1U

n
i | ≤ 84

5× 7!
max

xi−3≤x≤xi+3

|u(7)
x (x, t)|h6,

|uxx(xi, t
n)−H2U

n
i | ≤ 72

8!
max

xi−3≤x≤xi+3

|u(8)
x (x, t)|h6,

(8)

where C1, C2 are two constants.
The proof of Lemma 3 can be completed by the expansion

of the Taylor’s formula.
In order to establish the difference scheme, we rewrite Eq.

(1) as

C
0 D

α
t u(x, t) = b′(x)ux+b(x)uxx+f(x, t), 0 < α < 1, (9)

Denote ∆α
τU

n
i = τ−α

Γ(2− α)
[a

(α)
0 Un

i −
n−1∑
k=1

(a
(α)
n−k−1 −

a
(α)
n−k)U

k
i − a

(α)
n−1U

0
i ], where a

(α)
k , k = 0, 1, ..., n − 1 are

defined as in Lemma 1. Then it follows from Lemmas 1 and
3 that

∆α
τU

n
i = b′iH1U

n
i + biH2U

n
i + fn

i +Rn
i (τ, h), (10)

where b′i = b′(xi), bi = b(xi), fn
i = f(xi, t

n), and

|Rn
i (τ, h)| ≤ 1

Γ(2− α)
[1− α

12 + 22−α

2− α

−(1 + 2−α)] max
t0≤t≤tn

|u′′

t (x, t)|τ2−α

+ 84
5× 7!

max
0≤x≤L

|u(7)
x (x, t)|h6+ 72

8!
max

0≤x≤L
|u(8)

x (x, t)|h6.

Then the difference scheme approximating Eq. (1) at
the point (i, n) under the conditions (2) can be established
as follows ∆α

τ u
n
i = b′iH1u

n
i + biH2u

n
i + fn

i , 1 ≤ n ≤ N,
u0
i = φ(xi),

un
i = un

i±M , 1 ≤ i ≤ M, 1 ≤ n ≤ N.
(11)

III. THEORETICAL ANALYSIS OF THE DIFFERENCE
SCHEME

In this section, we fulfill analysis of local truncating error,
unique solvability, stability and convergence for the finite
difference scheme (11) by use of the Fourier analysis method.
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A. Local truncating error and unique solvability

First the local truncating error for the difference scheme
(11) can be directly obtained as O(τ2−α + h6).

In order to facilitate fulfilling the analysis, we rewrite the
first equation of the finite difference scheme (11) as the
following form

[µ−180h2(b′iH1+biH2)]u
n
i =

n−1∑
k=0

Bn
ku

k
i +180h2fn

i , 1 ≤ i ≤ M,

(12)

where µ = 180h2τ−α

Γ(2− α)
, Bn

0 = µa
(α)
n−1, Bn

k =

µ(a
(α)
n−k−1 − a

(α)
n−k), k = 1, 2, ..., n− 1, (b′iH1 + biH2)u

n
i =

− 1
180h2 [gi,i−3u

n
i−3 + gi,i−2u

n
i−2 + gi,i−1u

n
i−1 + gi,iu

n
i +

gi,i+1u
n
i+1 + gi,i+2u

n
i+2 + gi,i+3u

n
i+3], 1 ≤ i ≤ M , un

i =
un
i±M , and

gi,i = 490bi,
gi,i+1 = −135hb′i − 270bi,
gi,i+2 = 27hb′i + 27bi,
gi,i+3 = −3hb′i − 2bi,
gi,i−1 = 135hb′i − 270bi,
gi,i−2 = −27hb′i + 27bi,
gi,i−3 = 3hb′i − 2bi,

i = 1, 2, ...,M. (13)

For the sake of using the Fourier analysis method, define

vn(x) =

{
un
i , x ∈ [xi−1, xi+ 1

2
), i = 1, 2, ...,M − 1,

un
M , x ∈ [xM−1, xM ],

yn(x) =

{
fn
i , x ∈ [xi−1, xi), i = 1, 2, ...,M − 1,
fn
M , x ∈ [xM−1, xM ],

and a periodic extension is applied to vn(x), yn(x).
Then from Eq. (12) one can obtain that

[µ− 180h2(b′iH1 + biH2)]v
n(x) =

n−1∑
k=0

Bn
k v

k(x) + 180h2yn(x).

(14)

where

(b′iH1 + biH2)v
n(x) =

b′i
h
[− 1

60
vn(x− 3h)+

3

20
vn(x− 2h)

−3

4
vn(x−h)+

3

4
vn(x+h)− 3

20
vn(x+2h)+

1

60
vn(x+3h)]

+
bi

h2 [
1

90
vn(x− 3h)− 3

20
vn(x− 2h) +

3

2
vn(x− h)

−49

18
vn(x)+

3

2
vn(x+h)− 3

20
vn(x+2h)+

1

90
vn(x+3h)].

The functions vn(x) and yn(x) can be denoted by the Fourier
series forms as follows

vn(x) =

∞∑
l=−∞

ṽnl exp(
2πlxj

L
), yn(x) =

∞∑
l=−∞

ỹn
l exp(

2πlxj

L
),

(15)

where

ṽnl = 1
L

∫ L

0
vn(x) exp(−2πlxj

L )dx,

ỹnl = 1
L

∫ L

0
yn(x) exp(−2πlxj

L )dx,

and j denotes the imaginary unit.

Define the discrete L2 norm by ∥un∥2 = (
M∑
i=1

h|un
i |2)

1
2 .

Then by use of the Parseval’s equality one can obtain that

∥un∥2 = (
∫ L

0
|vn(x)|2dx) 1

2 = (
∞∑

l=−∞
|ṽnl |2)

1
2 ,

∥fn∥2 = (
∫ L

0
|yn(x)|2dx) 1

2 = (
∞∑

l=−∞
|ỹnl |2)

1
2 .

Substituting (15) into (14), and denoting p = 2πl
L , we

can get that

∞∑
l=−∞

{[µ− 180h2(b′iH1 + biH2)] exp(pxj)}ṽnl

=

∞∑
l=−∞

[

n−1∑
k=0

Bn
k ṽ

k
l exp(pxj) + 180h2ỹnl exp(pxj)]. (16)

Furthermore, after some basic computation, one can see that
the following relations hold

−180h2(b′iH1 + biH2) exp(pxj) =
exp(pxj)[gi,i−3 exp(−3phj) + gi,i−2 exp(−2phj)
+gi,i−1 exp(−phj) + gi,i + gi,i+1 exp(phj)
+gi,i+2 exp(2phj) + gi,i+3 exp(3phj)]

= exp(pxj)(q1 + h2q2j), (17)

where

q1 = −4[4 cos3(ph)−27 cos2(ph)+132 cos(ph)−109]bi,

q2 =
[−270 sin(ph) + 54 sin(2ph)− 6 sin(3ph)]b′i

h
.

By a close observation on q1, q2 one can deduce that q1 ≥ 0,
q2 is continuous without h = 0, and lim

h→0
q2 = −180pb′i.

So it follows from above that

∞∑
l=−∞

{[µ+ (q1 + h2q2j)]ṽ
n
l } exp(pxj)

=

∞∑
l=−∞

{
n−1∑
k=0

Bn
k ṽ

k
l +180h2ỹnl } exp(pxj). (18)

On the other hand, due to the orthogonality of
exp(

2πlxj
L ), l = 0,±1,±2, ...,±∞, multiplying

exp(−pxj) on both sides of (18), and integrating from 0 to
L we get that

[µ+ (q1 + h2q2j)]ṽ
n
l =

n−1∑
k=0

Bn
k ṽ

k
l + 180h2ỹnl ,

l = 0,±1,±2, ...,±∞. (19)

Theorem 1. The finite difference scheme denoted by (11)
is uniquely solvable.

Proof . In order to prove the unique solvability of
(11), it is sufficient to prove that there is only zero solution
for the corresponding homogeneous difference equation.
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From the process above one can see that after fulfilling
Fourier transformation, the following equation can be ob-
tained due to the homogeneous difference equation

[µ+(q1+h2q2j)]ṽ
n
l = 0, (20)

which implies ṽnl = 0 due to |µ+ (q1 + h2q2j)| > 0.
So by (15) one has vn(x) = 0, and then ∥un∥2 = 0, which

implies un
i = 0, i = 1, 2, ...,M . The proof is complete.

B. Stability

Theorem 2. For Eq. (19), it holds that

|ṽnl | ≤ |ṽ0l |+ (1 + τ)n max
1≤s≤n

|ỹs
l | ≤ |ṽ0l |+ eT max

1≤s≤n
|ỹs

l |. (21)

Furthermore, the finite difference scheme denoted by (11)
is unconditionally stable on the initial value and the right
source term f(x, t).

Proof . We will use the mathematical induction method to
prove (21).

When n = 1, from (19) it holds that

[µ+(q1+h2q2j)]ṽ
1
l = B1

0 ṽ
0
l +180h2ỹ1l = µṽ0l +180h2ỹ1l ,

which implies that

|ṽ1l | = | µṽ0l + 180h2ỹ1l
µ+ (q1 + h2q2j)

|

≤ µ√
(µ+ q1)2 + h4q22

|ṽ0l |+ 180h2√
(µ+ q1)2 + h4q22

|ỹ1l |

≤ |ṽ0l |+ Γ(2− α)τα|ỹ1l | ≤ |ṽ0l |+ τα|ỹ1l |.

In the case τ ≥ 1, one has τα ≤ τ ≤ 1 + τ , while in the
case 0 < τ < 1, one has τα ≤ 1 ≤ 1 + τ . So τα ≤ 1 + τ
holds for ∀τ > 0. Then

|ṽ1l | ≤ |ṽ0l |+ (1 + τ)|ỹ1l | ≤ |ṽ0l |+ eT |ỹ1l |.

So (21) holds for n = 1.
Suppose (21) holds for the time levels 1, 2, ..., n − 1.

Then for the time level n, from (19) one can deduce that

|ṽnl | = |

n−1∑
k=0

Bn
k ṽ

k
l + 180h2ỹnl

µ+ (q1 + h2q2j)
|

≤ 1
|µ+ (q1 + h2q2j)|

n−1∑
k=0

|Bn
k ||ṽkl |+ | 180h2ỹnl

µ+ (q1 + h2q2j)
|

≤ 1
|µ+ (q1 + h2q2j)|

n−1∑
k=0

|Bn
k ||ṽ0l |+ 1

|µ+ (q1 + h2q2j)|
n−1∑
k=0

[|Bn
k |(1 + τ)k max

1≤s≤k
|ỹsl |] + | 180h2ỹnl

µ+ (q1 + h2q2j)
|

=
1√

(µ+ q1)2 + h4q22

n−1∑
k=0

|Bn
k ||ṽ0l |+

1√
(µ+ q1)2 + h4q22

n−1∑
k=0

[|Bn
k |(1 + τ)k max

1≤s≤k
|ỹsl |] + | 180h2ỹnl√

(µ+ q1)2 + h4q22

|

≤ 1√
(µ+ q1)2 + h4q22

n−1∑
k=0

|Bn
k ||ṽ0l |

+

(1 + τ)n−1 max
1≤s≤n−1

|ỹsl |√
(µ+ q1)2 + h4q22

n−1∑
k=0

|Bn
k |+| 180h2ỹnl√

(µ+ q1)2 + h4q22

|.

From Lemma 2 one can obtain
n−1∑
k=0

|Bn
k | = µaα0 = µ. So

|ṽnl | ≤
µ√

(µ+ q1)2 + h4q22

|ṽ0l |+
µ√

(µ+ q1)2 + h4q22

(1 + τ)n−1 max
1≤s≤n−1

|ỹsl |+ | 180h2ỹnl√
(µ+ q1)2 + h4q22

|

≤ |ṽ0l |+ (1 + τ)n−1 max
1≤s≤n−1

|ỹsl |+ |180h
2ỹnl

µ |

= |ṽ0l |+ (1 + τ)n−1 max
1≤s≤n−1

|ỹsl |+ Γ(2− α)τα|ỹnl |

≤ |ṽ0l |+ (1 + τ)n−1 max
1≤s≤n−1

|ỹsl |+ (1 + τ)|ỹnl |

≤ |ṽ0l |+ (1 + τ)n max
1≤s≤n

|ỹsl |

≤ |ṽ0l |+ enτ max
1≤s≤n

|ỹsl |

≤ |ṽ0l |+ eT max
1≤s≤n

|ỹsl |

So (21) holds according to the mathematical induction
method.

By the Parseval’s equality, one can deduce that ∥un∥2 ≤
∥u0∥2 + eT max

1≤s≤n
∥fs∥2. So the finite difference scheme

denoted by (11) is unconditionally stable on the initial value
and the right source term f(x, t). The proof is complete.

C. Convergence

Theorem 3. The finite difference scheme denoted by (11)
is convergent.

Proof . Let ηni = Un
i − un

i , i = 1, 2, ...,M, n = 0, 1, ..., N
denote the absolute error between the exact solutions and
the numerical solutions, and ηn = (ηn1 , ηn2 , ..., ηnM )T . Then
η0i = 0, and from (10)-(12) one can deduce that

[µcn0−180h2(b′iH1+biH2)]η
n
i =

n−1∑
k=0

Bn
ku

k
i+180h2Rn

i (τ, h),

(22)

where |Rn
i (τ, h)| = O(τ2−α + h6).

Define
θn(x) =

{
ηni , x ∈ [xi−1, xi), i = 1, 2, ...,M − 1,
ηnM , x ∈ [xM−1, xM ],

rn(x) =

{
Rn

i (τ, h), x ∈ [xi−1, xi), i = 1, 2, ...,M − 1,
Rn

M (τ, h), x ∈ [xM−1, xM ],

and a periodic extension is applied to θn(x), rn(x).
The functions θn(x) and rn(x) can be denoted by the
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Fourier series form as follows

θn(x) =
∞∑

l=−∞
θ̃nl exp(

2πlxj
L ),

rn(x) =
∞∑

l=−∞
r̃nl exp(

2πlxj
L ),

where

θ̃nl = 1
L

∫ L

0
θn(x) exp(−2πlxj

L )dx,

r̃nl = 1
L

∫ L

0
rn(x) exp(−2πlxj

L )dx.

Following in a similar manner as the proof of Theorem 2
one can get that

|θ̃nl | ≤ |θ̃0l |+eT max
1≤s≤n

|r̃sl |.

By η0i = 0 we have θ̃0l = 0, and then

|θ̃nl | ≤ eT max
1≤s≤n

|r̃sl |.
Furthermore,

∥ηn∥2 ≤ eT max
1≤s≤n

∥Rs(τ, h)∥2 ≤ C(τ2−α + h6), (23)

where C is a positive constant.
The convergence of the finite difference scheme (11)

follows from (23), and the proof is complete.

IV. THE HIGH ORDER FINITE DIFFERENCE SCHEME FOR
EQ. (3)

In this section, we apply the concept of constructing high
order finite difference scheme in Section 2 to a class of time
fractional parabolic equation with spatial fourth derivative
denoted by Eq. (3), and try to construct unconditionally
stable finite difference scheme for it under the conditions
(2).

In order to approximate the spatial derivative, the
following lemma will be used.

Lemma 4. Suppose u(x, t) ∈ C(8,2)([xi−3, xi+3]× [0, T ]),
and define one operator ϕ such that

ϕUn
i =

1

h4 (−
1

6
Un
i−3 +2Un

i−2 −
13

2
Un
i−1 +

28

3
Un
i − 13

2
Un
i+1

+2Un
i+2 −

1

6
Un
i+3), (24)

where Un
i = u(xi, t

n). Then it holds that

|uxxxx(xi, t
n)− ϕUn

i | ≤
7

240
max

xi−3≤x≤xi+3

|u(8)
x (x, t)|h4.

(25)
The proof of Lemma 4 can be completed by applying the

expansion of the Taylor’s formula to the right term of Eq.
(24).

By use of Lemmas 1 and 4, one has the following
observation at the point (i, n)

τ−α

Γ(2− α)
[a

(α)
0 Un

i −
n−1∑
k=1

(a
(α)
n−k−1 − a

(α)
n−k)U

k
i − a

(α)
n−1U

0
i ]

+ϕUn
i = fn

i +Rn
i (τ, h), (26)

where ϕ is define as in Lemma 1, fn
i = f(xi, t

n), and

|Rn
i (τ, h)| ≤

1

Γ(2− α)
[
1− α

12
+

22−α

2− α
− (1 + 2−α)]

max
t0≤t≤tn

|u
′′

t (x, t)|τ2−α +
7

240
max

0≤x≤L
|u(8)

x (x, t)|h4.

So the finite difference scheme approximating Eq. (3) at
the point (i, n) under the conditions (2) can be established
as follows

τ−α

Γ(2− α)
[a

(α)
0 un

i −
n−1∑
k=1

(a
(α)
n−k−1 − a

(α)
n−k)u

k
i − a

(α)
n−1u

0
i ]

+ϕun
i = fn

i , 1 ≤ n ≤ N,
u0
i = φ(xi),

un
i = un

i±M , 1 ≤ i ≤ M, 1 ≤ n ≤ N.
(27)

By use of the Fourier analysis method, similar to the
process of Theorems 1-3, we have the following theorems.

Theorem 4. The finite difference scheme denoted
by (27) is uniquely solvable.

Theorem 5. For the difference scheme (27), it holds
that

∥un∥2 ≤ ∥u0∥2+eT max
1≤s≤n

∥fs∥2, n = 1, 2, ..., N,

(28)

that is, the finite difference scheme denoted by (27) is
unconditionally stable on the initial value and the right term
f(x, t).

Theorem 6. The finite difference scheme denoted
by (27) is convergent with spatial fourth order and temporal
2− α order accuracy.

V. NUMERICAL EXPERIMENTS

In this section, we present some numerical examples for
the present finite difference schemes. In the following, the
maximum error at all grid points is denoted by

e(τ, h) = max
1≤n≤N

|Un − un|,

and the convergence orders in temporal direction and
spatial direction are defined by

Rateτ =
ln(e(τ1, h)/e(τ2, h))

ln(τ1/τ2)
,

Rateh =
ln(e(τ, h1)/e(τ, h2))

ln(h1/h2)

respectively.

Example 1. Consider the problems (1)-(2) with an
exact analytical solution u(x, t) = (t3 + 1) sin(2πx), where
the period with respect to the variable x is L = 1, and
satisfies
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b(x) = x2 + 1,
u(x, 0) = φ(x) = sin(2πx),

f(x, t) = [
Γ(4)

Γ(4− α)
t3−α + 4π2(t3 + 1)(x2 + 1)]

sin(2πx)− 4πx(t3 + 1) cos(2πx).
In Fig. 1, the errors between the exact solutions and the nu-

merical solutions under certain conditions are demonstrated,
from which one can see that the errors between the numerical
solutions and the exact solutions can be restricted to a low
level. Even with the increasing of the time steps, the errors
can also be maintained to an accepted level, which coincides
with the stability analysis in Section 3.

The maximum errors and convergence orders in spatial
direction after five time steps are listed in Tables 1-2.

Table 1: The maximum errors and convergence
orders in spatial direction at τ = 0.01

α = 0.3 α = 0.5
h e(τ, h) Rateh e(τ, h) Rateh
1
10 1.245 ×10−4 - 1.109 ×10−4 -
1
12 4.040 ×10−5 6.173 3.693 ×10−5 6.031
1
14 1.578 ×10−5 6.097 1.460 ×10−5 6.018
1
16 7.022 ×10−6 6.066 6.620 ×10−6 5.924
1
18 3.372 ×10−6 6.227 3.229 ×10−6 6.095
1
20 1.786 ×10−6 6.033 1.754 ×10−6 5.795

Table 2: The maximum errors and convergence
orders in spatial direction at τ = 0.001

α = 0.3 α = 0.5
h e(τ, h) Rateh e(τ, h) Rateh
1
10 1.153 ×10−4 - 8.137 ×10−5 -
1
12 3.820 ×10−5 6.062 2.764 ×10−5 5.922
1
14 1.506 ×10−5 6.036 1.082 ×10−5 6.084
1
16 6.798 ×10−6 5.958 4.964 ×10−6 5.836
1
18 3.289 ×10−6 6.164 2.442 ×10−6 6.022
1
20 1.760 ×10−6 5.935 1.296 ×10−6 6.011

The results in Tables 1-2 show that the convergence
orders in spatial direction are about sixth order, which
coincide with the theoretical analysis in Section 3.

Example 2. Consider the problems (2)-(3) with an
exact analytical solution u(x, t) = t1.7 cos(2πx), where the
period L = 1 with respect to the variable x, and satisfies{

u(x, 0) = 0,

f(x, t) = [
1.7Γ(1.7)
Γ(2.7− α)

tβ−α − 16t1.7π4] cos(2πx).

The accuracy of the finite difference scheme is checked by
comparing the exact solutions and the numerical solutions,
which can be seen from the maximum error. Also the
convergence orders in both spatial direction and temporal
direction are obtained.

In Fig. 2, comparison between the exact solutions and the
numerical solutions with different conditions is made, which
shows that the numerical solutions can approximate the exact
solutions satisfactorily.

The maximum errors and convergence orders in spatial
and temporal directions are listed in the following tables
respectively, where t ∈ [0, 1] in Table 3, while t ∈ [0, 3]
in Table 4.

Table 3: The maximum errors and convergence
orders in spatial direction at α = 0.3, τ = 0.1

h e(τ, h) Rateh
1
8 3.152 ×10−3 -
1
10 1.325 ×10−3 3.88523
1
15 2.673 ×10−4 3.94707
1
20 8.385 ×10−5 4.03054
1
25 3.308 ×10−5 4.16818

IAENG International Journal of Applied Mathematics, 47:2, IJAM_47_2_08

(Advance online publication: 24 May 2017)

 
______________________________________________________________________________________ 



Table 4: The maximum errors and convergence
orders in temporal direction at α = 0.3, h = 0.1

τ e(τ, h) Rateτ
0.01 2.641 ×10−5 -
0.1 1.325 ×10−3 1.70039
0.5 2.044 ×10−2 1.70021
0.6 2.787 ×10−2 1.70016
1 6.642 ×10−2 1.70014

From the results in Tables 3-4 one can see that the
convergence orders are fourth order and 2−α order roughly
in spatial direction and temporal direction respectively, which
coincide with the theoretical analysis in Section 4.

VI. CONCLUSIONS

In this paper, a new high order finite difference algorithm
for solving a class of time fractional sub-diffusion equation
with variable coefficient was developed. The present algorith-
m is of spatial sixth order and temporal 2−α order accuracy.
The unconditional stability and convergence for this algo-
rithm were proved by use of the Fourier analysis method.
This concept of constructing high order finite difference
scheme was applied to a class of time fractional parabolic
equation with spatial fourth derivative, and a high order
unconditionally stable finite difference scheme for it was
also proposed. In order to verify the validity of the present
algorithms, numerical experiments were carried out, and the
numerical results show their coincidence with the theoretical
analysis. Finally, we note that this handling process can be
applied to other fractional differential equations to develop
corresponding finite difference algorithms with high order.
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