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Abstract—By using some analytical techniques, modified
inequalities and Mawhin’s continuous theorem of coincidence
degree theory, some sufficient conditions for the existence of
positive almost periodic solutions to a class of Gilpin-Ayala
competition model of phytoplankton allelopathy are established.
Further, by constructing a suitable Lyapunov functional, the
global asymptotical stability of almost periodic solution for the
model is also studied. The work of this paper extends and
improves some results in recent years. Finally, some examples
and simulations are given to illustrate the main results in this
paper.

Index Terms—Almost periodic oscillation; Coincidence de-
gree; Gilpin-Ayala; Phytoplankton allelopathy.

I. INTRODUCTION

ONe of the most interesting questions considering eco-
logical populations is how species which grow in the

same environment influence each other since they usually
compete for food, territory and other requirements. A specific
type of ecological interaction corresponding to this issue is
called facultative mutualism and it means that each species
enhances the average growth rate of the other although each
one of them can survive in the absence of other species.

The first model that regards ecological population systems
was suggested independently by Lotka [1] and Volterra [2]
in the 1920s and was described by the following differential
equation

ẋi = rixi

[
1− xi

Ki
− aij

xj
Kj

]
, i, j = 1, 2, i ̸= j,

where xi and ri are the population size and exponential
rate of the growth of the ith species, respectively, Ki is
the carrying capacity of the ith species in the absence of
its competitor-the jth species, and aij is the linear reduction
(in terms of Ki) of the ith species’ rate of growth by its
competitor-the jth species, i, j = 1, 2, i ̸= j.

During the last decades, ecological population systems
have been intensively studied and there exist a lot of excellent
papers in this field. Most of them are mainly grounded on
the classical Lotka-Volterra competition system but they have
many different forms (see, for example, [3,4]). However,
regardless of this fact, the Lotka-Volterra competition models
have often been severely criticized. One of the remarks
refers to the fact that this model is linear, i.e. the rate
of change in the size of each species is a linear function
of sizes of the interacting species. Particularly, in 1973,
Gilpin and Ayala [5] pointed out that the Lotka-Volterra
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systems are the linearization of the per capita growth rates
ẋi/xi about the point of equilibrium. They claimed that a
little more complicated model was needed in order to yield
more realistic solutions. Hence, they proposed the following
competition model: ẋ1 = r1x1

[
1−

(
x1

K1

)θ1 − a12
x2

K2

]
,

ẋ2 = r2x2

[
1−

(
x2

K2

)θ2 − a21
x1

K1

]
,

(1.1)

where xi is the population density of the ith species, ri is
the intrinsic exponential growth rate of the ith species, Ki

is the environmental carrying capacity of species i in the
absence of competition, θi provides a nonlinear measure of
interspecific interference, i = 1, 2, a12 and a21 provides a
measure of interspecific interference. In recent years, many
generalizations and modifications of system (1.1) have been
proposed and studied (see [6-11] for more detail).

The aim of this paper is to consider the following almost
periodic Gilpin-Ayala competition model of phytoplankton
allelopathy with time-varying delays:

ẋ(t) = x(t)

[
r1(t)− a1(t)x

α1(t)− b1(t)y
β1(µ1(t))

−c1(t)xγ1(ν1(t))y
δ1(σ1(t))

]
,

ẏ(t) = y(t)

[
r2(t)− a2(t)y

α2(t)− b2(t)x
β2(µ2(t))

−c2(t)xγ2(ν2(t))y
δ2(σ2(t))

]
,

(1.2)

where αi, βi, γi, δi are nonnegative constants, ri, ai, bi, ci, t−
µi(t), t−νi(t) and t−σi(t) are nonnegative almost periodic
functions, i = 1, 2. Let R, Z and N+ denote the sets of real
numbers, integers and positive integers, respectively.

In real world phenomenon, the environment varies due to
the factors such as seasonal effects of weather, food supplies,
mating habits, harvesting. So it is usual to assume the peri-
odicity of parameters in the systems. However, if the various
constituent components of the temporally nonuniform en-
vironment is with incommensurable (nonintegral multiples)
periods, then one has to consider the environment to be
almost periodic since there is no a priori reason to expect
the existence of periodic solutions. Hence, if we consider
the effects of the environmental factors, almost periodicity is
sometimes more realistic and more general than periodicity.

It is well known that Mawhin’s continuation theorem
of coincidence degree theory is an important method to
investigate the existence of positive periodic solutions of
some kinds of non-linear ecosystems (see [12-22]). However,
it is difficult to be used to investigate the existence of
positive almost periodic solutions of non-linear ecosystems.
Therefore, to the best of the author’s knowledge, so far, there
are scarcely any papers concerning with the existence of
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positive almost periodic solutions of system (1.2) by using
Mawhin’s continuation theorem [23-24]. Motivated by the
above reason, the main purpose of this paper is to establish
some new sufficient conditions on the existence of positive
almost periodic solutions of system (1.2) by using Mawhin’s
continuous theorem of coincidence degree theory.

Related to a continuous function f , we use the following
notations:

f l = inf
s∈R

f(s), fM = sup
s∈R

f(s),

|f |∞ = sup
s∈R

|f(s)|, f̄ = lim
T→∞

1

T

∫ T

0

f(s) ds.

Throughout this paper, we always make the following
assumption for system (1.2):

(H1) r̄i > 0 and āi > 0, i = 1, 2.

The paper is organized as follows. In Section 2, some basic
definitions and necessary lemmas are given. In Section 3, by
using Mawhin’s continuous theorem of coincidence degree
theory, some new sufficient conditions for the existence of at
least one positive almost periodic solution of system (1.2) are
established. In Section 4, some simple applications are stated.
Finally, some illustrative examples are given in Section 5.

II. PRELIMINARIES

Definition 1. ([25, 26]) x ∈ C(R,Rn) is called almost
periodic, if for any ϵ > 0, it is possible to find a real
number l = l(ϵ) > 0, for any interval with length l(ϵ),
there exists a number τ = τ(ϵ) in this interval such that
∥x(t + τ) − x(t)∥ < ϵ, ∀t ∈ R, where ∥ · ∥ is arbitrary
norm of Rn. τ is called to the ϵ-almost period of x, T (x, ϵ)
denotes the set of ϵ-almost periods for x and l(ϵ) is called
to the length of the inclusion interval for T (x, ϵ). The
collection of those functions is denoted by AP (R,Rn). Let
AP (R) := AP (R,R).

Next, we present and prove several useful lemmas which
will be used in later section.

Lemma 1. ([24]) Assume that x ∈ AP (R) ∩ C1(R) with
ẋ ∈ C(R). For arbitrary interval [a, b] with b− a = ω > 0,
let ξ ∈ [a, b] and

I =
{
s ∈ [ξ, b] : ẋ(s) ≥ 0

}
,

then ones have

x(t) ≤ x(ξ) +

∫
I

ẋ(s) ds, ∀t ∈ [ξ, b].

Lemma 2. ([24]) If x ∈ AP (R), then for arbitrary interval
[a, b] with I = b − a = ω > 0, there exist η ∈ [a, b], η ∈
(−∞, a] and η̄ ∈ [b,+∞) such that

x(η) = x(η̄) and x(η) ≥ x(s), ∀s ∈ [η, η̄].

Lemma 3. ([24]) If x ∈ AP (R), then for ∀n ∈ N+, there
exists αn ∈ R such that x(αn) ∈ [x∗ − 1

n , x
∗], where x∗ =

sups∈R x(s).

For x ∈ AP (R), we denote by

x̄ = m(x) = lim
T→∞

1

T

∫ T

0

x(s) ds,

a(x,ϖ) = lim
T→∞

1

T

∫ T

0

x(s)e−iϖs ds,

Λ(x) =

{
ϖ ∈ R : lim

T→∞

1

T

∫ T

0

x(s)e−iϖsds ̸= 0

}
the mean value and the set of Fourier exponents of x,
respectively.

Lemma 4. ([25]) Assume that x ∈ AP (R) and x̄ > 0, then
for ∀t0 ∈ R, there exists a positive constant T0 independent
of t0 such that

1

T

∫ t0+T

t0

x(s) ds ∈
[
x̄

2
,
3x̄

2

]
, ∀T ≥ T0.

III. MAIN RESULTS

The method to be used in this paper involves the appli-
cations of the continuation theorem of coincidence degree.
This requires us to introduce a few concepts and results from
Gaines and Mawhin [27].

Let X and Y be real Banach spaces, L : DomL ⊆ X → Y
be a linear mapping and N : X → Y be a continuous map-
ping. The mapping L is called a Fredholm mapping of index
zero if ImL is closed in Y and dimKerL = codimImL <
+∞. If L is a Fredholm mapping of index zero and there
exist continuous projectors P : X → X and Q : Y → Y such
that ImP = KerL, KerQ = ImL = Im(I − Q). It follows
that L|DomL∩KerP : (I − P )X → ImL is invertible and its
inverse is denoted by KP . If Ω is an open bounded subset of
X, the mapping N will be called L-compact on Ω̄ if QN(Ω̄)
is bounded and KP (I − Q)N : Ω̄ → X is compact. Since
ImQ is isomorphic to KerL, there exists an isomorphism
J : ImQ→ KerL.

Lemma 5. ([27]) Let Ω ⊆ X be an open bounded set, L be
a Fredholm mapping of index zero and N be L-compact on
Ω̄. If all the following conditions hold:

(a) Lx ̸= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);
(b) QNx ̸= 0, ∀x ∈ ∂Ω ∩KerL;
(c) deg{JQN,Ω∩KerL, 0} ̸= 0, where J : ImQ→ KerL

is an isomorphism.

Then Lx = Nx has a solution on Ω̄ ∩DomL.

Now we are in the position to present and prove our result
on the existence of at least one positive almost periodic
solution for system (1.2).

From (H1), for ∀a ∈ R, there exists a constant ω ∈
(0,+∞) independent of a such that

1

T

∫ a+T

a

ri(s) ds ∈
[
r̄i
2
,
3r̄i
2

]
,

1

T

∫ a+T

a

ai(s) ds ∈
[
āi
2
,
3āi
2

]
, ∀T ≥ ω, i = 1, 2. (�)

In addition, we introduce two numbers, two functions and a
assumption as follows:

ki :=
1

αi
ln

3r̄i
āi

+
3r̄iω

2
, i = 1, 2,

∆1(s) = r1(s)− eβ1k2b1(s),

∆2(s) = r2(s)− eβ2k1b2(s), ∀s ∈ R,
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where ω is defined as that in (�).
(H2) ∆̄i > 0, i = 1, 2.

Theorem 1. Assume that (H1)-(H2) hold, then system (1.2)
admits at least one positive almost periodic solution.

Proof: Under the invariant transformation (x, y)T =
(eu, ev)T , system (1.2) reduces to

u̇(t) = a1(t)− b1(t)e
α1u(t) − c1(t)e

β1v(µ1(t))

−d1(t)eγ1u(ν1(t))eδ1v(σ1(t)) := F1(t),
v̇(t) = a2(t)− b2(t)e

α2v(t) − c2(t)e
β2u(µ2(t))

−d2(t)eγ2u(ν2(t))eδ2v(σ2(t)) := F2(t).

(3.0)

It is easy to see that if system (3.0) has one almost periodic
solution (u, v)T , then (x, y)T = (eu, ev)T is a positive
almost periodic solution of system (1.2). Therefore, to com-
plete the proof it suffices to show that system (3.0) has one
almost periodic solution.

Set X = Y = V1

⊕
V2, where

V1 =

{
(u, v)T ∈ AP (R) : ∀ϖ ∈ Λ(u) ∪ Λ(v), |ϖ| ≥ γ0

}
,

V2 =
{
z = (u, v)T ≡ (k1, k2)

T , k1, k2 ∈ R
}
,

where γ0 is a given positive constant. Define the norm

∥z∥X = max

{
sup
s∈R

|u(s)|, sup
s∈R

|v(s)|
}
, ∀z ∈ X = Y,

then X and Y are Banach spaces with the norm ∥ · ∥X. Set

L : DomL ⊆ X → Y, Lz = L(u, v)T = (u̇, v̇)T ,

where DomL = {z = (u, v)T ∈ X : u, v ∈ C1(R), u̇, v̇ ∈
C(R)} and

N : X → Y, Nz = N

[
u(t)
v(t)

]
=

[
F1(t)
F2(t)

]
.

With these notations system (3.0) can be written in the form

Lz = Nz, ∀z ∈ X.

It is not difficult to verify that KerL = V2, ImL = V1 is
closed in Y and dimKerL = 2 = codim ImL. Therefore,
L is a Fredholm mapping of index zero (see Lemma 2.12 in
[24]). Now define two projectors P : X → X and Q : Y → Y
as

Pz = P

[
u
v

]
=

[
m(u)
m(v)

]
= Qz, ∀z =

[
u
v

]
∈ X = Y.

Then P and Q are continuous projectors such that ImP =
KerL and ImL = KerQ = Im(I−Q). Furthermore, through
an easy computation we find that the inverse KP : ImL →
KerP ∩DomL of LP has the form

KP z = KP

[
u
v

]
=

 ∫ t

0
u(s) ds−m

[∫ t

0
u(s) ds

]
∫ t

0
v(s) ds−m

[∫ t

0
v(s) ds

]  .
Then QN : X → Y and KP (I −Q)N : X → X read

QNz = QN

[
u
v

]
=

[
m(F1)
m(F2)

]
,

KP (I −Q)Nz =

[
f [u(t)]−Qf [u(t)]
f [v(t)]−Qf [v(t)]

]
, ∀z ∈ ImL,

where f(x) is defined by f [x(t)] =
∫ t

0

[
Nx(s) −

QNx(s)
]
ds. Then N is L-compact on Ω̄ (see Lemma 2.13

in [24]).
In order to apply Lemma 5, we need to search for an

appropriate open-bounded subset Ω.
Corresponding to the operator equation Lz = λz, λ ∈

(0, 1), we have

u′(t) = λ

[
r1(t)− a1(t)e

α1u(t) − b1(t)e
β1v(µ1(t))

−c1(t)eγ1u(ν1(t))eδ1v(σ1(t))

]
,

v′(t) = λ

[
r2(t)− a2(t)e

α2v(t) − b2(t)e
β2u(µ2(t))

−c2(t)eγ2u(ν2(t))eδ2v(σ2(t))

]
.

(3.1)

Suppose that (u, v)T ∈ DomL ⊆ X is a solution of system
(3.1) for some λ ∈ (0, 1). By Lemma 3, there exist two
sequences {Tn : n ∈ N+} and {Pn : n ∈ N+} such that

u(Tn) ∈
[
x∗ − 1

n
, u∗

]
, u∗ = sup

s∈R
u(s), n ∈ N+,(3.2)

v(Pn) ∈
[
v∗ − 1

n
, v∗

]
, v∗ = sup

s∈R
v(s), n ∈ N+.(3.3)

For ∀n0 ∈ N+, we consider [Tn0 − ω, Tn0 ] and [Pn0 −
ω, Pn0 ], where ω is defined as that in (�). By Lemma 1,
there exist ξ ∈ [Tn0 − ω, Tn0 ], ξ ∈ (−∞, Tn0 − ω] and
ξ̄ ∈ [Tn0

,+∞) such that

u(ξ) = u(ξ̄) and u(ξ) ≤ u(s), ∀s ∈ [ξ̄, ξ]. (3.4)

Integrating the first equation of system (3.1) from ξ to ξ̄ leads
to ∫ ξ̄

ξ

[
r1(s)− a1(s)e

α1u(s) − b1(s)e
β1v(µ1(s))

−c1(s)eγ1u(ν1(s))eδ1v(σ1(s))

]
ds = 0, (3.5)

which yields from (3.4) that∫ ξ̄

ξ

a1(s)e
α1u(ξ

n0
u ) ds ≤

∫ ξ̄

ξ

a1(s)e
α1u(s) ds ≤

∫ ξ̄

ξ

r1(s) ds,

which yields from (�) that

u(ξ) ≤ 1

α1
ln


∫ ξ̄

ξ

r1(s) ds∫ ξ̄

ξ

a1(s) ds

 ≤ 1

α1
ln

3r̄1
ā1

. (3.6)

Similar to the argument as that in (3.6), there exists ζ ∈
[Pn0

− ω, Pn0
] so that

v(ζ) ≤ 1

α2
ln

3r̄2
ā2

. (3.7)

Let I1 = {s ∈ [ξ, Tn0 ] : u̇(s) ≥ 0}. It follows from system
(3.1) that∫
I1

u̇(s) ds =

∫
I1

λ

[
r1(s)− a1(s)e

α1u(s) − b1(s)e
β1v(µ1(s))

−c1(s)eγ1u(ν1(s))eδ1v(σ1(s))

]
ds
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≤
∫
I1

λr1(s) ds ≤
∫ Tn0

Tn0−ω0

r1(s) ds

≤ 3r̄1ω0

2
. (3.8)

Let I2 = {s ∈ [ζ, Pn0 ] : v̇(s) ≥ 0}. Similar to the argument
as that in (3.8), we can easily obtain that∫

I2

v̇(s) ds ≤
∫ Pn0

Pn0−ω

r2(s) ds ≤
3r̄2ω

2
. (3.9)

By Lemma 1, it follows from (3.6)-(3.9) that

u(t) ≤ u(ξ) +

∫
I1

u̇(s) ds ≤ 1

α1
ln

3r̄1
ā1

+
3r̄1ω

2

:= k1, ∀t ∈ [ξ, Tn0 ],

v(t) ≤ v(ζ) +

∫
I2

v̇(s) ds ≤ 1

α2
ln

3r̄2
ā2

+
3r̄2ω

2

:= k2, ∀t ∈ [ζ, Pn0 ],

which imply that

u(Tn0) ≤ k1 and v(Pn0) ≤ k2.

In view of (3.2)-(3.3), letting n0 → +∞ in the above
inequalities leads to

u∗ = lim
n0→+∞

u(Tn0) ≤ k1, (3.10)

v∗ = lim
n0→+∞

v(Pn0) ≤ k2. (3.11)

In view of (3.5), by the integral mean value theorem, there
exists s0 ∈ [ξ, ξ̄] such that

r1(s0)− a1(s0)e
α1u(s0) − b1(s0)e

β1v(µ1(s0))

−c1(s0)eγ1u(ν1(s0))eδ1v(σ1(s0)) = 0,

which implies that

p0 := inf
s∈R

{
r1(s)− a1(s)e

α1k1 − b1(s)e
β1k2

−c1(s)eγ1k1eδ1k2

}
≤ inf

s∈R

{
r1(s)− a1(s)e

α1u(s) − b1(s)e
β1v(µ1(s))

−c1(s)eγ1u(ν1(s))eδ1v(σ1(s))

}
≤ r1(s0)− a1(s0)e

α1u(s0) − b1(s0)e
β1v(µ1(s0))

−c1(s0)eγ1u(ν1(s0))eδ1v(σ1(s0))

= 0.

Similarly, we can easily obtain that

q0 := inf
s∈R

{
r2(s)− a2(s)e

α2k2

−b2(s)eβ2k1 − c2(s)e
γ2k1eδ2k2

}
≤ 0.

Substituting (3.10)-(3.11) into system (3.1), we obtain

u̇(t) ≥ λ

[
r1(t)− a1(t)e

α1k1 − b1(t)e
β1k2

−c1(t)eγ1k1eδ1k2

]
≥ λp0 ≥ p0,

v̇(t) ≥ λ

[
r2(t)− a2(t)e

α2k2 − b2(t)e
β2k1

−c2(t)eγ2k1eδ2k2

]
≥ λq0 ≥ q0.

Under the invariant transformation (u, v)T = (lnx, ln y)T

for x > 0 and y > 0, the above system changes to{
ẋ(t) ≥ p0x(t),
ẏ(t) ≥ q0y(t),

⇐⇒

{ [
e−p0tx(t)

]′ ≥ 0,[
e−q0ty(t)

]′ ≥ 0.
(3.12)

For any s ≤ t, integrating (3.12) from s to t leads to{
eu(s) ≤ e−p0(t−s)eu(t),
ev(s) ≤ e−q0(t−s)ev(t).

(3.13)

Substituting (3.13) into system (3.1) leads to

u̇(t) ≥ λ

[
r1(t)− a1(t)e

α1u(t) − b1(t)e
β1v(µ1(t))

−c1(t)e−p0(t−ν1(t))γ1eδ1v(σ1(t))eγ1u(t)

]
,

v̇(t) ≥ λ

[
r2(t)− a2(t)e

α2v(t) − b2(t)e
β2u(µ2(t))

−c2(t)eγ2u(ν2(t))e−q0(t−σ2(t))δ2eδ2v(t)
]
.

From (H2) and Lemma 4, for ∀a ∈ R, there exists a
constant ω̂ ∈ [ω,+∞) independent of a such that

1

T

∫ a+T

a

∆i(s) ds ∈
[
∆̄i

2
,
3∆̄i

2

]
, (3.14)

where T ≥ ω̂, i = 1, 2. For ∀n0 ∈ Z, by Lemma 2, we can
conclude that there exist η ∈ [n0ω̂, n0ω̂+ω̂], η ∈ (−∞, n0ω̂]
and η̄ ∈ [n0ω̂ + ω̂,+∞) such that

u(η) = u(η̄) and u(η) ≥ u(s), ∀s ∈ [η, η̄]. (3.15)

Integrating the first inequality of system (3.14) from η to η̄
leads to∫ η̄

η

[
r1(s)− b1(s)e

β1v(µ1(s))

]
ds ≤

∫ η̄

η

[
a1(s)e

α1u(s)

+c1(s)e
−p0(s−ν1(s))γ1eδ1v(σ1(s))eγ1u(s)

]
ds, (3.16)

which implies from (3.16) that∫ η̄

η

∆1(s) ds

=

∫ η̄

η

(
r1(s)− b1(s)e

β1k2

)
ds

≤
∫ η̄

η

(
r1(s)− b1(s)e

β1v(µ1(s))

)
ds

≤
∫ η̄

η

(
a1(s)e

α1u(s)

+c1(s)e
−γ1p0(s−ν1(s))eδ1v(σ1(s))eγ1u(s)

)
ds

IAENG International Journal of Applied Mathematics, 47:2, IJAM_47_2_09

(Advance online publication: 24 May 2017)

 
______________________________________________________________________________________ 



≤
∫ η̄

η

(
a1(s)e

α1u(η)

+c1(s)e
−γ1p0(s−ν1(s))eδ1v(σ1(s))eγ1u(η)

)
ds. (3.17)

If eu(η) < 1, then max{eα1u(η), eγ1u(η)} ≤ eκ
lu(η), where

κl = min{α1, γ1}. By (3.17), we obtain from (�) and (3.15)
that

u(η)

≥ 1

κl
ln

∫ η̄

η

∆1(s) ds∫ η̄

η

[
a1(s) + c1(s)e

−γ1p0(s−ν1(s))eδ1v(σ1(s))
]
ds

≥ 1

κl
ln

∆̄1

2aM1 + 2cM1 [e−p0(s−ν1(s))M + 1]γ1 [ek2 + 1]δ1

=
1

κl
Γ1, (3.18)

where

Γ1 = ln

{
∆̄1

2aM1 + 2cM1 [e−p0(s−ν1(s))M + 1]γ1 [ek2 + 1]δ1

}
.

If eu(η) ≥ 1, then max{eα1u(η), eγ1u(η)} ≤ eκ
Mu(η), where

κM = max{α1, γ1}. Similar to (3.18), we obtain from (�)
and (3.15) that

u(η) ≥ 1

κM
Γ1. (3.19)

From (3.18)-(3.19), we obtain

u(η) ≥ min

{
1

κl
Γ1,

1

κM
Γ1

}
:= Π1. (3.20)

Similar to the argument as that in (3.20), it is not difficult to
obtain that there exists ς ∈ [n0ω̂, n0ω̂ + ω̂] so that

v(ς) ≥ min

{
1

υl
Γ2,

1

υM
Γ2

}
:= Π2, (3.21)

where υl = min{α2, γ2}, υM = max{α2, γ2} and

Γ2 = ln

{
∆̄2

2aM2 + 2cM2 [e−q0(s−σ2(s))M + 1]δ2 [ek1 + 1]γ2

}
.

Further, it follows from system (3.1) that∫ n0ω̂+ω̂

n0ω̂

|u̇(s)| ds

=

∫ n0ω̂+ω̂

n0ω̂

λ

∣∣∣∣r1(s)− a1(s)e
α1u(s)

−b1(s)eβ1v(µ1(s)) − c1(s)e
γ1u(ν1(s))eδ1v(σ1(s))

∣∣∣∣ds
≤

{
rM1 + aM1 [ek1 + 1]α1 + bM1 [ek2 + 1]β1

+cM1 [ek1 + 1]γ1 [ek2 + 1]δ1
}
ω̂ := Θ1, (3.22)

∫ n0ω̂+ω̂

n0ω̂

|v̇(s)| ds

≤
{
rM2 + aM2 [ek2 + 1]α2 + bM2 [ek1 + 1]β2

+cM2 [ek1 + 1]γ2 [ek2 + 1]δ2
}
ω̂ := Θ2. (3.23)

In view of (3.20)-(3.23), it follows that

u(t) ≥ u(η)−
∫ n0ω̂+ω̂

n0ω̂

|u̇(s)| ds

≥ Π1 −Θ1 := k3, ∀t ∈ [n0ω̂, n0ω̂ + ω̂], (3.24)

v(t) ≥ v(ς)−
∫ n0ω̂+ω̂

n0ω̂

|v̇(s)|ds

≥ Π2 −Θ2 := k4, ∀t ∈ [n0ω̂, n0ω̂ + ω̂]. (3.25)

Obviously, k3 and k4 are constants independent of n0. So it
follows from (3.24)-(3.25) that

u∗ = inf
s∈R

u(s) = inf
n0∈Z

{
min

s∈[n0ω̂,n0ω̂+ω̂]
u(s)

}
≥ k3,(3.26)

v∗ = inf
s∈R

v(s) = inf
n0∈Z

{
min

s∈[n0ω̂,n0ω̂+ω̂]
v(s)

}
≥ k4.(3.27)

Set K = |k1| + |k2| + |k3| + |k4| + 1, then ∥w∥ =
∥(u, v)T ∥ < K. Clearly, K is independent of λ ∈ (0, 1).
Consider the algebraic equations QNz0 = 0 for z0 =
(u0, v0)

T ∈ R2 as follows:
m(r1)−m(a1)e

α1u0 −m(b1)e
β1v0

−m(c1)e
γ1u0eδ1v0 = 0,

m(r2)−m(a2)e
α2v0 −m(b2)e

β2u0

−m(c2)e
γ2u0eδ2v0 = 0.

(3.28)

From the first equation of system (3.28), we have

m(r1) ≥ m(a1)e
α1u0 ,

which implies that

u0 ≤ 1

α1
ln
r̄1
ā1

< k1. (3.29)

Similarly, we also obtain

v0 ≤ 1

α2
ln
r̄2
ā2

< k2. (3.30)

Furthermore, by the first equation of system (3.28) and
(3.30), we have

m(∆1) = m(r1)− eβ1k2m(b1)

≤ m(r1)−m(b1)e
β1v0

= m(a1)e
α1u0 +m(c1)e

γ1u0eδ1v0

≤
(
aM1 + cM1 [ek2 + 1]δ1

)
max{eκ

lu0 , eκ
Mu0},

where κl = min{α1, γ1} and κM = max{α1, γ1}. There-
fore, we obtain

u0 ≥ k3. (3.31)

Similarly, we have

v0 ≥ k4, (3.32)

where υl = min{α2, γ2}, υM = max{α2, γ2}. In view of
(3.29)-(3.32), we can easily obtain ∥z0∥X = |u0|+ |v0| < K.
Let Ω = {z ∈ X : ∥z∥X < K}, then Ω satisfies conditions
(a) and (b) of Lemma 5.

Finally, we will show that condition (c) of Lemma 5 is
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satisfied. Let us consider the homotopy

H(ι, z) = ιQNz + (1− ι)Fz, (ι, z) ∈ [0, 1]× R2,

where

Fz = F

(
u
v

)
=

(
m(r1)−m

(
a1)e

α1u

m(r2)−m(a2)e
α2v

)
.

From the above discussion it is easy to verify that H(ι, z) ̸=
0 on ∂Ω ∩ KerL, ∀ι ∈ [0, 1]. By the invariance property of
homotopy, direct calculation produces

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
F,Ω ∩KerL, 0

)
̸= 0,

where deg(·, ·, ·) is the Brouwer degree and J is the identity
mapping since ImQ = KerL. Obviously, all the conditions
of Lemma 5 are satisfied. Therefore, system (3.0) has one
almost periodic solution, that is, system (1.2) has at least one
positive almost periodic solution. This completes the proof.

IV. GLOBAL ASYMPTOTICAL STABILITY

Lemma 6. ([33]) Assume that a > 0, b > 0 and ẋ ≤ x(b−
axα), where α is positive constant, then

lim
t→+∞

supx(t) ≤
[
b

a

] 1
α

.

Lemma 7. Assume that (H1) holds, then any positive
solution (x, y)T of system (1.2) satisfies

lim sup
t→∞

x(t) ≤M, lim sup
t→∞

y(t) ≤ N,

where

M =

[
r+1
a−1

] 1
α1

, N =

[
r+2
a−2

] 1
α2

.

Proof: In view of the first equation of system (1.2), we
have

ẋ(t) ≤ x(t)
[
r+1 − a−1 x

α1(t)
]
,

which implies from Lemma 6 that

lim sup
t→∞

x(t) ≤
[
r+1
a−1

] 1
α1

:=M.

Further, from the second equation of system (1.2), it follows
that

ẏ(t) ≤ y(t)
[
r+2 − a−2 y

α2(t)
]
,

which implies from Lemma 6 that

lim sup
t→∞

y(t) ≤
[
r+2
a−2

] 1
α2

:= N.

This completes the proof.

Theorem 2. Assume that (H1)-(H2) hold. Suppose further
that

a−1 − c+1 γ1K
δ1+γ1−α1

α1ν̇
−
1

− c+2 γ2K
δ2+γ2−α1

α1ν̇
−
2

−b
+
2 β2K

β2−α1

α1µ̇
−
2

> 0,

a−2 − c+1 γ1K
δ1+γ1−α2

α2σ̇
−
1

− c+2 γ2K
δ2+γ2−α2

α2σ̇
−
2

−b
+
1 β1K

β1−α2

α2
> 0,

where K = min{M,N}. Then system (1.2) has a unique
positive almost periodic solution, which is globally asymp-
totically stable.

Proof: By Theorem 1, we know that system (1.2) has
at least one positive almost periodic solution (x∗, y∗)T .
Suppose that (x, y)T is another positive solution of system
(1.2).

From (H3), there must exist ϵ > 0 and θ > 0 such that

a−1 − c+1 γ1(K + ϵ)δ1+γ1−α1

α1ν̇
−
1

−c
+
2 γ2(K + ϵ)δ2+γ2−α1

α1ν̇
−
2

−b
+
2 β2(K + ϵ)β2−α1

α1µ̇
−
2

> θ,

a−2 − c+1 γ1(K + ϵ)δ1+γ1−α2

α2σ̇
−
1

−c
+
2 γ2(K + ϵ)δ2+γ2−α2

α2σ̇
−
2

−b
+
1 β1(K + ϵ)β1−α2

α2
> θ.

From Lemma 7, there must exist T0 > 0 such that

x(t) < K + ϵ, y(t) < K + ϵ, ∀t ≥ T0.

Define

V (t) =

3∑
i=1

Vi(t),

where

V1(t) = | lnx(t)− lnx∗(t)|+ | ln y(t)− ln y∗(t)|,

V2(t)

=

∫ t

ν1(t)

c+1 γ1(K + ϵ)δ1+γ1−α1

α1ν̇
−
1

|xα1(s)− x∗α1(s)| ds

+

∫ t

ν2(t)

c+2 γ2(K + ϵ)δ2+γ2−α1

α1ν̇
−
2

|xα1(s)− x∗α1(s)| ds

+

∫ t

µ2(t)

b+2 β2(K + ϵ)β2−α1

α1µ̇
−
2

|xα1(s)− x∗α1(s)| ds,

V3(t)

=

∫ t

σ1(t)

c+1 γ1(K + ϵ)δ1+γ1−α2

α2σ̇
−
1

|yα2(s)− y∗α2(s)| ds

+

∫ t

σ2(t)

c+2 γ2(K + ϵ)δ2+γ2−α2

α2σ̇
−
2

|yα2(s)− y∗α2(s)| ds

+

∫ t

µ1(t)

b+1 β1(K + ϵ)β1−α2

α2µ̇
−
1

|yα2(s)− y∗α2(s)|ds.

For t ≥ T0, calculating the upper right derivative of Vi(i =
1, 2, 3) along the solution of system (1.2), it follows that

D+V1(t)
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≤ −a−1 |xα1(t)− x∗α1(t)|
+b+1 |yβ1(µ1(t))− y∗β1(µ1(t))|
+c+1 y

δ1(σ1(t))|xγ1(ν1(t))− x∗γ1(ν1(t))|
+c+1 x

∗γ1(ν1(t))|yδ1(σ1(t))− y∗δ1(σ1(t))|
−a−2 |yα2(t)− y∗α2(t)|
+b+2 |xβ2(µ2(t))− x∗β2(µ2(t))|
+c+2 y

δ2(σ2(t))|xγ2(ν2(t))− x∗γ2(ν2(t))|
+c+2 x

∗γ2(ν2(t))|yδ2(σ2(t))− y∗δ2(σ2(t))|
≤ −a−1 |xα1(t)− x∗α1(t)|

+
b+1 β1(K + ϵ)β1−α2

α2
|yα2(µ1(t))− y∗α2(µ1(t))|

+
c+1 γ1(K + ϵ)δ1+γ1−α1

α1
|xα1(ν1(t))− x∗α1(ν1(t))|

+
c+1 γ1(K + ϵ)δ1+γ1−α2

α2
|yα2(σ1(t))− y∗α2(σ1(t))|

−a−2 |yα2(t)− y∗α2(t)|

+
b+2 β2(K + ϵ)β2−α1

α1
|xα1(µ2(t))− x∗α1(µ2(t))|

+
c+2 γ2(K + ϵ)δ2+γ2−α1

α1
|xα1(ν2(t))− x∗α1(ν2(t))|

+
c+2 γ2(K + ϵ)δ2+γ2−α2

α2
|yα2(σ2(t))− y∗α2(σ2(t))|,

D+V2(t)

≤ c+1 γ1(K + ϵ)δ1+γ1−α1

α1ν̇
−
1

|xα1(t)− x∗α1(t)|

−c
+
1 γ1(K + ϵ)δ1+γ1−α1

α1
|xα1(ν1(t))− x∗α1(ν1(t))|

+
c+2 γ2(K + ϵ)δ2+γ2−α1

α1ν̇
−
2

|xα1(t)− x∗α1(t)|

−c
+
2 γ2(K + ϵ)δ2+γ2−α1

α1
|xα1(ν2(t))− x∗α1(ν2(t))|

+
b+2 β2(K + ϵ)β2−α1

α1µ̇
−
2

|xα1(t)− x∗α1(t)|

−b
+
2 β2(K + ϵ)β2−α1

α1
|xα1(µ2(t))− x∗α1(µ2(t))|,

D+V3(t)

≤ c+1 γ1(K + ϵ)δ1+γ1−α2

α2σ̇
−
1

|yα2(t)− y∗α2(t)|

−c
+
1 γ1(K + ϵ)δ1+γ1−α2

α2
|yα2(σ1(t))− y∗α2(σ1(t))|

+
c+2 γ2(K + ϵ)δ2+γ2−α2

α2σ̇
−
2

|yα2(t)− y∗α2(t)|

−c
+
2 γ2(K + ϵ)δ2+γ2−α2

α2
|yα2(σ2(t))− y∗α2(σ2(t))|

+
b+1 β1(K + ϵ)β1−α2

α2
|yα2(t)− y∗α2(t)|

−b
+
1 β1(K + ϵ)β1−α2

α2µ̇
−
1

|yα2(µ1(t))− y∗α2(µ1(t))|.

Together with the above inequalities, it follows that

D+V (t)

≤ −
{
a−1 − c+1 γ1(K + ϵ)δ1+γ1−α1

α1ν̇
−
1

−c
+
2 γ2(K + ϵ)δ2+γ2−α1

α1ν̇
−
2

−b
+
2 β2(K + ϵ)β2−α1

α1µ̇
−
2

}
|xα1(t)− x∗α1(t)|

−
{
a−2 − c+1 γ1(K + ϵ)δ1+γ1−α2

α2σ̇
−
1

−c
+
2 γ2(K + ϵ)δ2+γ2−α2

α2σ̇
−
2

−b
+
1 β1(K + ϵ)β1−α2

α2

}
|yα2(t)− y∗α2(t)|

≤ −θ[|xα1(t)− x∗α1(t)|+ |yα2(t)− y∗α2(t)|].

Therefore, V is non-increasing. Integrating the last in-
equality from T0 to t leads to

V (t) + θ

∫ t

T0

[|xα1(s)− x∗α1(s)|

+|yα2(s)− y∗α2(s)|] ds
≤ V (T0) < +∞, ∀t ≥ T0,

that is,∫ +∞

T0

[|xα1(s)− x∗α1(s)|+ |yα2(s)− y∗α2(s)|] ds < +∞,

which implies that

lim
s→+∞

[|xα1(s)− x∗α1(s)|+ |yα2(s)− y∗α2(s)|] = 0.

Thus, the almost periodic solution of system (1.2) is asymp-
totical stability. The global asymptotical stability implies that
the almost periodic solution is unique. This completes the
proof.

V. SOME APPLICATIONS

Application V.1. Consider the following logistic equation

Ṅ(t) = N(t)

[
r(t)− a(t)N(t)− b(t)N(t− µ)

]
, (5.1)

where µ ≥ 0 is a constant, r, a and b are nonnegative almost
periodic functions with m(r) > 0 and m(a+ b) > 0.

In [28], Xie and Li obtained that

Corollary 1. Eq. (5.1) admits at least one positive almost
periodic solution.

Corollary 2. Assume that all the coefficients in Eq. (5.1)
are 2π-periodic, then Eq. (5.1) admits at least one positive
2π-periodic solution.

As regards the existence of a periodic solution in Eq. (5.1),
Freedman and Wu [29] proved an existence result for E-
q. (5.1) by introducing a different assumption:

Theorem 3. Assume that r(t) > 0, a(t) > 0, b(t) ≥ 0 for all
t ∈ [0, 2π] and suppose that the delayed functional equation

r(t)− a(t)ψ(t)− b(t)ψ(t− µ) = 0
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has a positive and continuously differentiable 2π-periodic
solution, then Eq. (5.1) has a positive 2π-periodic solution.

Further, Lisena [30] obtained that

Theorem 4. Assume that m(r) > 0, a(t) > 0, b(t) ≥ 0 for
all t ∈ [0, 2π] and suppose that there exists a positive and
continuously differentiable 2π-periodic function ϕ such that

a(t)ϕ(t) + b(t)ϕ(t− µ) = 0, ∀t ∈ [0, 2π].

Then Eq. (4.1) has a positive 2π-periodic solution.

Remark 1. Obviously, Corollary 2 improves some condi-
tions in Theorems 3-4.

Application V.2. Consider non-autonomous model of phy-
toplankton allelopathy as follows:

ẋ(t) = x(t)

[
r1(t)− a1(t)x(t)

−b1(t)y(t)− c1(t)x(t)y(t)

]
,

ẏ(t) = y(t)

[
r2(t)− a2(t)y(t)

−b2(t)x(t)− c2(t)x(t− µ)y(t)

]
,

(5.2)

where all the coefficients of (5.2) are nonnegative almost
periodic functions.

Let
k0i := ln

3r̄i
āi

+
3r̄iω

2
, i = 1, 2,

∆0
1(s) = r1(s)− ek

0
2b1(s),

∆0
2(s) = r2(s)− ek

0
1b2(s), ∀s ∈ R,

where ω is defined as that in (�).
Similar to the proof of Theorem 1, we can easily show

that

Corollary 3. Assume that m(∆0
i ) > 0 (i = 1, 2), then system

(5.2) admits at least one almost periodic solution.

Remark 2. In [31], the authors obtained a existence result
for the almost periodic solutions of system (5.2) on condition
that r1, r2, a1 and a2 are strictly positive. However, Corollary
3 broaden such condition. Therefore, Corollary 3 improves
the work in [31].

Application V.3. Consider the following a delayed Logistic
equation

Ṅ(t) = N(t)

[
r(t)− a(t)Np(t)− b(t)Nq(t− µ(t))

]
,(5.3)

where p, q are positive constants, µ, r, a, b are nonnegative
2π-periodic functions, m(r) > 0 and m(a+ b) > 0.

Similar to the proof of Theorem 1, we can easily obtain
that

Corollary 4. Eq. (5.3) admits at least one positive 2π-
periodic solution.

In [32], Chen obtained that

Theorem 5. Assume that p ≤ q, then Eq. (5.3) admits at
least one positive 2π-periodic solution.

Remark 3. It is clear that Corollary 4 removes the condition

p ≤ q in Theorem 5. Therefore, our result improves the work
in [32].

VI. EXAMPLES AND SIMULATIONS

Example 1. Consider the following Gilpin-Ayala competi-
tion model of phytoplankton allelopathy with time-varying
delays with different periods:

ẋ(t) = x(t)

[
1− | sin

√
3t|x(t)

− sin2(
√
2t)

e2 y
1
20 (µ(t))− x

1
2 (µ(t))y

1
3 (µ(t))

]
,

ẏ(t) = y(t)

[
3− cos2(

√
2t)y(t)

− | cos
√
3t|

e2 x
1
7 (ν(t))− 10x4(ν(t))y3(ν(t))

]
,

(6.1)

where µ(t) = t−0.1 sin2 t and ν(t) = t−0.2| sin t|, ∀t ∈ R.

Corresponding to system (1.2), we have r̄1 = 1, r̄2 = 3,
ā1 = 2

π , bM1 = bM2 = 1
e2 , ā2 = 1

2 , α1 = 1, α2 = 1, β1 = 1
20 ,

β2 = 1
7 . Further, for ∀a ∈ R, we can choose ω = 2

√
3π
3 so

that (�) holds, that is,

1

T

∫ a+T

a

a1(s) ds ∈
[
1

π
,
3

π

]
,

1

T

∫ a+T

a

a2(s) ds ∈
[
1

4
,
3

4

]
, ∀T ≥ ω =

2
√
3π

3
.

By a easy calculation, we obtain that

k1 := ln
3π

2
+
√
3π ≈ 6.99159,

k2 := ln
9π

2
+ 3

√
3π ≈ 18.97300.

Hence

∆̄1 ≥ 1− 1

e
> 0, ∆̄2 ≥ 3− 1

e
> 0.

Therefore, all the conditions of Theorem 1 are satisfied. By
Theorem 1, system (6.1) admits at least one positive almost
periodic solution (see Figures 1-2).
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Fig. 1 State variable x of system (5.1)
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Fig. 2 State variable y of system (5.1)

Remark 4. In system (6.1), | sin
√
3t| is

√
3π
3 -periodic

function and cos2(
√
2t) is

√
2π
2 -periodic function. So sys-

tem (6.1) is with incommensurable periods. Through all
the coefficients of system (6.1) are periodic functions, the
positive periodic solutions of system (6.1) could not possibly
exist. However, by Theorem 1, the positive almost periodic
solutions of system (6.1) exactly exist.

VII. CONCLUSION

In this paper, some sufficient conditions are established for
the existence, uniqueness and global asymptotical stability
of almost periodic solution for a Gilpin-Ayala competition
model of phytoplankton allelopathy. The main result obtained
in this paper are completely new. Besides, the method used
in this paper may be used to study the almost periodic
dynamics of many other biological models such as predator-
prey models, facultative mutualism models, and so on.
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