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Abstract—In this paper, an iteration method using elliptical
arc artificial boundary is designed to solve exterior Poisson
problem with a concave angle. It is shown that the iteration
method is equivalent to a Schwarz alternating method. The
convergence of this method is given. The convergence rate is
analyzed in details for a typical domain. Finally, some numerical
examples are given, which show the effectiveness of the iteration
method.

Index Terms—Schwarz alternating method, elliptical arc
artificial boundary, exterior problem.

I. INTRODUCTION

THE problems in unbounded media are encountered in
a variety of applications. To solve such problems in

infinite region numerically, there is a variety of numerical
methods. One commonly method is the method of artificial
boundary conditions [1]-[7]. The method may be summa-
rized as follows: (i) Introduce an artificial boundary Γµ,
which divides the original unbounded domain into two non-
overlapping subdomains: a bounded computational domain
Ωi and infinite residual domain Ωe. (ii) By analyzing the
problem in Ωe, obtain a relation on Γµ (exact or approximate)
involving the unknown function u and its derivatives. (iii)
Using the relation as a boundary condition on Γµ, to obtain
a well-posed problem in Ωi. (iv) Solve the problem in Ωi be
the standard finite element methods or some other numerical
methods. The relation obtained in Step (ii) and used as
a boundary condition in Step (iii) is called an artificial
boundary condition.

In the past three decades, artificial boundaries of various
shapes have been derived for problems in unbounded do-
mains [8]-[18]. Recently, the authors used a new elliptical arc
artificial boundary to solve Poisson problems and anisotropic
problems in concave angle domains [19]-[20]. In this paper,
we design an iteration method to solve exterior Poisson
problem with a concave angle. Using the results of [19]-[20]
with an artificial boundary we change the original problem
to an equivalent problem in a bounded domain. Then an
iteration method is designed to solve the new problem. The
convergence of the iteration is obtained by showing that
the iteration is actually equivalent to the standard Schwarz
alternating method.

Let Ω be an exterior concave angle domain with angle α,
and 0 < α ≤ 2π. The boundary of domain Ω is decomposed
into three disjoint parts: Γ,Γ0 and Γα(see Fig. 1), i.e. ∂Ω =
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Fig. 1. The Illustration of Domain Ω

Γ ∪ Γ0 ∪ Γα, Γ0 ∩ Γα = Ø, Γ ∩ Γ0 = Ø, Γ ∩ Γα = Ø. The
boundary Γ is a simple smooth curve part, Γ0 and Γα are
two half lines.

We consider the Poisson problem in two cases:

−∆u = f, in Ω,

u = 0, on Γ0 ∪ Γα,

∂u

∂n
= g, on Γ,

u is vanish at infinity,

(1)

and 

−∆u = f, in Ω,

∂u

∂n
= 0, on Γ0 ∪ Γα,

u = h, on Γ,

u is bounded at infinity,

(2)

where u is the unknown function, f ∈ L2(Ω) and g, h ∈
L2(Γ) are given functions, supp(f ) is compact.

The rest of the paper is organized as follows. In Section
2, we introduce two elliptical arc artificial boundaries which
divide the original domain Ω into two subdomains, then
we construct an iteration method which is equivalent to
a Schwarz alternating method. In Section 3, we give the
convergence of the method . In Section 4, we analyze the
convergence rate for a typical domain. In Section 5, we give
the discretization of the method. Finally, in Section 6 we
present some numerical results, check its accuracy and the
effectiveness of this method.

II. ITERATION BASED ON THE ELLIPTICAL ARC
ARTIFICIAL BOUNDARY CONDITION

We introduce two elliptical arc artificial boundaries Γ1 and
Γ2 with the same foci, Γi = {(µ, φ)|µ = µi, 0 < φ <
α}, i = 1, 2, which enclose Γ such that dist(Γ,Γ2) > 0 and
µ1 > µ2 > 0. Here (µ, φ) denotes the elliptic coordinates,
x = f0 coshµ cosφ, y = f0 sinhµ sinφ. Then Ω is divided
into two overlapping subdomains Ω1 and Ω2(see Fig. 2). Let
Ω1 be the bounded domain among Γ, Γ0, Γα and Γ1, and Ω2

be the unbounded domain outside Γ2, Γ0 and Γα. Then the
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Fig. 2. The Illustration of Domain Ω1 and Ω2

original problem (1) is decomposed into two subproblems in
domains Ω1 and Ω2 with Ω1 ∩ Ω2 ̸= Ø, ∂Ω1 = Γ ∪ Γ1 ∪
Γ01 ∪ Γα1, ∂Ω2 = Γ2 ∪ Γ02 ∪ Γα2. where Γ0i = Ωi ∩ Γ0,
Γαi = Ωi ∩ Γα, i = 1, 2. Assume that f = 0 in the domain
Ω2.

In the first case, we consider the following problem:
−∆u = 0, in Ω2,

u = 0, on Γ02 ∪ Γα2,

u = uµ2
, on Γ2,

u is vanish at infinity.

(3)

It is well-known that the solution of this problem has the
form

u(µ, φ) =
+∞∑
n=1

bne
(µ2−µ)nπ

α sin
nπφ

α
. (4)

From (4) we obtain the coefficients bn, n = 1, 2, . . .

bn =
2

α

∫ α

0

uµ2(µ2, ϕ) sin
nπϕ

α
dϕ.

Thus (4) can be written as

u(µ, φ)

=
2

α

+∞∑
n=1

e(µ2−µ)nπ
α sin

nπφ

α

∫ α

0

uµ2(µ2, ϕ) sin
nπϕ

α
dϕ

≡ H(uµ2 , µ, φ).
(5)

Using expression (5) we can construct an iteration method
for problems (1). From (5) the solution u of (1) restricted on
Γ1 can be expressed as

u(µ1, φ) = H(uµ2 , µ1, φ).

Then in the domain Ω1 problems (1) is equivalent to the
following problem:

−∆u = f, in Ω1,

u = 0, on Γ01 ∪ Γα1,

∂u

∂n
= g, on Γ,

u = H(uµ2 , µ1, φ).

Since uµ2 is unknown, we construct the following iteration

method to solve this problem:

−∆u
(2k+1)
1 = f, in Ω1,

u
(2k+1)
1 = 0, on Γ01 ∪ Γα1,

∂u1

∂n

(2k+1)

= g, on Γ,

u
(2k+1)
1 = H(u(2k)

µ2
, µ1, φ), on Γ1,

(6)

where u
(2k)
µ2 = u(2k)(µ2, φ).

It is not difficult to see that the above iteration method
is actually equivalent to the following Schwarz alternating
method:

−∆u
(2k+1)
1 = f, in Ω1,

u
(2k+1)
1 = 0, on Γ01 ∪ Γα1,

∂u1

∂n

(2k+1)

= g, on Γ,

u
(2k+1)
1 = u

(2k)
2 , on Γ1, k = 0, 1, . . .

(7)

and 
−∆u

(2k+2)
2 = f, in Ω2,

u
(2k+2)
2 = 0, on Γ02 ∪ Γα2,

u
(2k+2)
2 = u

(2k+1)
1 , on Γ2,

u
(2k+2)
2 is vanish at infinity, k = 0, 1, . . .

(8)

For the second case, we can also construct the following
Schwarz alternating method:

−∆u
(2k+1)
1 = f, in Ω1,

∂u1

∂n

(2k+1)

= 0, on Γ01 ∪ Γα1,

u
(2k+1)
1 = h, on Γ,

u
(2k+1)
1 = u

(2k)
2 , on Γ1, k = 0, 1, . . .

(9)

and

−∆u
(2k+2)
2 = f, in Ω2,

∂u2

∂n

(2k+2)

= 0, on Γ02 ∪ Γα2,

u
(2k+2)
2 = u

(2k+1)
1 , on Γ2,

u
(2k+2)
2 is bounded at infinity, k = 0, 1, . . .

(10)

Taking some initial value of function u0 on boundary
Γ1, e.g. u|Γ1 = 0. Combining it with the given boundary
condition on Γ01∪Γα1∪Γ, we can solve the interior boundary
value problem in domain Ω1, get the value of solution u1|Γ2

on Γ2, and then solve the exterior boundary value problem
in domain Ω2, get the value of solution u2|Γ1 on Γ1, and
then solve the problem in Ω1 again, ..., and so on.

In the following sections, we just consider the convergence
and convergence rate of problem (1), we can obtain corre-
sponding result of problem (2) in the same way.

III. CONVERGENCE OF THE METHOD

The solution of problems (1) is in space

V = {v ∈ W 1
0 (Ω)|v = 0, on Γ0 ∪ Γα},
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where

W 1
0 (Ω)

= {v| v√
x2 + y2 + 1 ln(x2 + y2 + 2)

,
∂v

∂x
,
∂v

∂y
∈ L2(Ω)}.

Functions u
(2k+1)
1 ∈ H(Ω1) and u

(2k)
2 ∈ W 1

0 (Ω2) can be
extended to functions in V . Let

V1 = {v ∈ H1(Ω1)|v = 0, on Γ01 ∪ Γα1 ∪ Γ1},

V2 = {v ∈ W 1
0 (Ω2)|v = 0, on Γ02 ∪ Γα2 ∪ Γ2}.

Then

u
(2k+1)
1 − u

(2k)
2 ∈ V1, u

(2k+2)
2 − u

(2k+1)
1 ∈ V2.

We can look upon V1 and V2 as the subspaces of V . Define
the bilinear form as follows

a(u, v) =

∫
Ω

∇u∇vdx.

From this, the inner product a(u, v) and the norm ∥v∥1 in V
can be defined. Then (7) and (8) are equivalent to variational
problems{

Find u
(2k+1)
1 ∈ V1 + u

(2k)
2 , such that

a(u
(2k+1)
1 − u, v1) = 0, ∀v1 ∈ V1,

(11)

and {
Find u

(2k+2)
2 ∈ V2 + u

(2k+1)
1 , such that

a(u
(2k+2)
2 − u, v2) = 0, ∀v2 ∈ V2.

(12)

Let PVi : V → Vi, i = 1, 2 denote the orthogonal projectors
under the inner product a(·, ·). We have{

u
(2k+1)
1 − u

(2k)
2 = PV1(u− u

(2k)
2 ),

u
(2k+2)
2 − u

(2k+1)
1 = PV2(u− u

(2k+1)
1 ), k = 0, 1, . . . ,

(13)
or equivalently{

u− u
(2k+1)
1 = PV ⊥

1
(u− u

(2k)
2 ),

u− u
(2k+2)
2 = PV ⊥

2
(u− u

(2k+1)
1 ), k = 0, 1, . . .

(14)

where V ⊥
i , i = 1, 2 are the orthogonal complementary spaces

of Vi in V . Let{
e
(2k+1)
1 = u− u

(2k+1)
1 , k = 0, 1, . . . ,

e
(2k)
2 = u− u

(2k)
2 , k = 1, 2, . . .

be errors. Then (14) is{
e
(2k+1)
1 = PV ⊥

1
e
(2k)
2 , k = 1, 2, . . . ,

e
(2k+2)
2 = PV ⊥

2
e
(2k+1)
1 , k = 0, 1, . . .

Therefore{
e
(2k+1)
1 = PV ⊥

1
PV ⊥

2
e
(2k−1)
1 , k = 1, 2, . . . ,

e
(2k+2)
2 = PV ⊥

2
PV ⊥

1
e
(2k)
2 , k = 0, 1, . . .

This implies that, if {e(2k+1)
1 } and {e(2k)2 } are convergent,

then their limits are in V ⊥
1 ∩V ⊥

2 . Similar to the proofs given
in [21]-[22] we can show the following results

Theorem 1. lim
k→∞

∥e(2k+1)
1 ∥1 = 0, lim

k→∞
∥e(2k)2 ∥1 = 0.

Theorem 2. There exists a constant δ, 0 6 δ < 1, such
that

∥e(2k+1)
1 ∥1 6 δk∥e(1)1 ∥1, ∥e(2k)2 ∥1 6 δk∥e(0)2 ∥1.

Theorems 1 and 2 show that the Schwarz alternating
method converges geometrically, and the contraction factor
is δ. We find it is quite difficult to analyze the rate of
convergence δ for general unbounded domain Ω. However,
it is possible to find δ when Γ is an elliptical arc, it will be
given in next section.

IV. ANALYSIS OF CONVERGENCE RATE

For simplicity, we let Γ, Γ1 and Γ2 be elliptical arcs with
the same foci, Γ = {(µ, φ)|µ = µ0, 0 < φ < α}, Γi =
{(µ, φ)|µ = µi, 0 < φ < α}, i = 1, 2, and µ1 > µ2 > µ0.
Let

e
(0)
2 (µ1, φ) =

+∞∑
n=1

bn sin
nπφ

α
(15)

is given on the artificial boundary Γ1 and

∂e
(1)
1

∂µ
= 0, on Γ. (16)

And let

e
(1)
1 (µ, φ) =

+∞∑
n=1

(Ane
nπµ
α +Bne

−nπµ
α ) sin

nπφ

α
, in Ω1.

From (15) and (16) we have

An =
bne

−nπµ0
α

e
nπ
α (µ1−µ0) + e

nπ
α (µ0−µ1)

,

Bn =
bne

nπµ0
α

e
nπ
α (µ1−µ0) + e

nπ
α (µ0−µ1)

.

Hence

e
(1)
1 (µ, φ) =

+∞∑
n=1

e
nπ
α (µ−µ0) + e

nπ
α (µ0−µ)

e
nπ
α (µ1−µ0) + e

nπ
α (µ0−µ1)

bn sin
nπφ

α
.

Therefore

e
(1)
1 (µ2, φ) =

+∞∑
n=1

e
nπ
α (µ2−µ0) + e

nπ
α (µ0−µ2)

e
nπ
α (µ1−µ0) + e

nπ
α (µ0−µ1)

bn sin
nπφ

α
.

Using (4), we can obtain the value of function on Γ1

e
(2)
2 (µ1, φ)

=
+∞∑
n=1

e
nπ
α (µ2−µ1)

e
nπ
α (µ2−µ0) + e

nπ
α (µ0−µ2)

e
nπ
α (µ1−µ0) + e

nπ
α (µ0−µ1)

bn sin
nπφ

α
.

So

∥e(2)2 ∥21
2 ,Γ1

=

+∞∑
n=1

(1 + n2)
1
2 |enπ

α (µ2−µ1)
e

nπ
α (µ2−µ0) + e

nπ
α (µ0−µ2)

e
nπ
α (µ1−µ0) + e

nπ
α (µ0−µ1)

bn|2

6
+∞∑
n=1

(1 + n2)
1
2 |enπ

α (µ2−µ1)bn|2

6 e
2π
α (µ2−µ1)

+∞∑
n=1

(1 + n2)
1
2 |bn|2

= e
2π
α (µ2−µ1)∥e(0)2 ∥21

2 ,Γ1
.
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Similarly, we can obtain

∥e(3)1 ∥21
2 ,Γ2

6 e
2π
α (µ2−µ1)∥e(1)1 ∥21

2 ,Γ2
.

Using mathematics induction, we have

∥e(2k)2 ∥21
2 ,Γ1

6 e
2kπ
α (µ2−µ1)∥e(0)2 ∥21

2 ,Γ1
, k = 1, 2, . . . ,

∥e(2k+1)
1 ∥21

2 ,Γ2
6 e

2kπ
α (µ2−µ1)∥e(1)1 ∥21

2 ,Γ2
, k = 1, 2, . . .

Therefore, we have
Theorem 3. Let Γ, Γ1 and Γ2 be elliptical arcs with

the same foci, Γ = {(µ, φ)|µ = µ0, 0 < φ < α},
Γi = {(µ, φ)|µ = µi, 0 < φ < α}, i = 1, 2, and
µ1 > µ2 > µ0. If we apply the Schwarz alternating method
given in Section 2 to problem (1), then

∥e(2k)2 ∥ 1
2 ,Γ1

6 δk∥e(0)2 ∥ 1
2 ,Γ1

, k = 1, 2, . . . ,

∥e(2k+1)
1 ∥ 1

2 ,Γ2
6 δk∥e(1)1 ∥ 1

2 ,Γ2
, k = 1, 2, . . . ,

where δ = e
π
α (µ2−µ1).

Finally, using the trace theorem we have

∥e(2k)2 ∥1,Ω2 6 Cδk, k = 1, 2, . . . ,

∥e(2k+1)
1 ∥1,Ω1 6 Cδk, k = 1, 2, . . .

The smaller the µ2 − µ1 is, the faster the convergence is.

V. DISCRETIZATION

The bounded domain Ω1 is divided into triangular finite
element subdivisions. The subdivisions of Γ0, Γα, Γ1 and
Γ2 are Γ0h, Γαh, Γ1h and Γ2h, respectively. The subdivision
of elliptical arc Γ2 is Γ2φ. Let Sh(Ω1h), Sh(Γ1h) and
Sh(Γ2φ) are finite element function spaces, respectively, in
Ω1h, on Γ1h and Γ2h. Then we can obtain discrete Schwarz
alternating algorithm as follows:

Step 0. Put any initial data u0
φ ∈ C(Γ1), k := 0.

Step 1. Find u
(2k+1)
1h ∈ Sh(Ω1h), such that

ah(u
(2k+1)
1h , vh) = fh(vh), vh ∈ Sh(Ω1h),

u
(2k+1)
1h = 0, on Γ01 ∪ Γα1,

u
(2k+1)
1 = Πhu

(2k)
2φ , on Γ1h.

(17)

Step 2. Find u
(2k+2)
2φ ∈ Sh(Γ2φ), such that

−∆u
(2k+2)
2φ = 0, in Ω2,

u
(2k+2)
2φ = 0, on Γ02 ∪ Γα2,

u
(2k+2)
2φ = Πφu

(2k+1)
1h , on Γ2φ,

u
(2k+2)
2φ is vanish at infinity.

(18)

Step 3.

εk = max{ max
node∈Γ1h

|u(2k+1)
1h − u

(2k−1)
1h |,

max
node∈Γ2φ

|u(2k+2)
2φ − u

(2k)
2φ |}.

Step 4. If εk is small, stop; else goto Step 1.
where ah(u, v) =

∫
Ω1h

∇u∇vdx, fh(v) =
∫
Ω1h

fvdx +∫
Γh

gvds, Πh : C(Γ1) → Sh(Γ1h) is the interpolation
operator, Πφ : C(Γ2) → Sh(Γ2φ) is the interpolation
operator, too. Here Step 1 is solved by finite element method
in Ω1h. Step 2 can be solved by artificial boundary condition.

Fig. 3. Mesh h of Subdomain Ω1 for Example 1

TABLE I
THE RELATION BETWEEN CONVERGENCE RATE AND MESH FOR

EXAMPLE 1 (µ1 = 3, µ2 = 2)

Mesh k 1 2 3 4 5

e(k) 0.1182 0.0878 0.0746 0.0688 0.0664
h/2 eh(k) 0.1133 0.0491 0.0213 0.0093 0.0040

qh(k) 2.3049 2.3045 2.3044 2.3044

e(k) 0.1018 0.0483 0.0294 0.0227 0.0198
h/4 eh(k) 0.1214 0.0535 0.0236 0.0104 0.0046

qh(k) 2.2685 2.2685 2.2685 2.2685

e(k) 0.0996 0.0450 0.0208 0.0101 0.0069
h/8 eh(k) 0.1235 0.0547 0.0242 0.0107 0.0047

qh(k) 2.2593 2.2593 2.2593 2.2592

VI. NUMERICAL EXAMPLES

In this section, we give two numerical examples to show
the effectiveness of the Schwarz alternating method. In these
examples, the exact solutions are known. The purpose of
showing these examples is to check the convergence in terms
of iteration k and mesh size h. The finite element method
with liner elements is used in the computation. u1h is the
finite element solution in Ω1, e and eh denote the maximal
error of all node functions in Ω1, respectively, i.e.,

e(k) = sup
Pi∈Ω1

|u(Pi)− u2k+1
1h (Pi)|,

eh(k) = sup
Pi∈Ω1

|u2k−1
1h (Pi)− u2k+1

1h (Pi)|.

qh(k) is the approximation of the convergence rate, i.e.,

qh(k) =
eh(k − 1)

eh(k)
.

Example 1. We consider problem (1), where Ω =
{(µ, φ)|µ > 1, 0 < φ < 2π}, Γ = {(1, φ)|0 < φ < 2π},
Γ0 = {(µ, 0)|µ > 1}, Γα = {(µ, 2π)|µ > 1} and f0 = 2.
Let u(µ, φ) = sin φ

2

cosh µ
2 +sinh µ

2
be the exact solution of original

problem and g = ∂u
∂n |Γ. Let Γµi = {(µi, φ)|0 < φ < 2π},

i = 1, 2 be the artificial boundaries. Fig. 3 shows the mesh
h of subdomain Ω1, Table 1 shows the relation between
convergence rate and mesh (µ1 = 3, µ2 = 2), Table 2
shows the relation between convergence rate and overlapping
degree (mesh h/4, µ1 = 3), Fig. 4 shows L∞(Ω1) errors
with iteration k.

Example 2. We consider problem (1), where Ω =
{(µ, φ)|µ > 1, 0 < φ < 3π

2 }, Γ = {(1, φ)|0 < φ < 3π
2 },

Γ0 = {(µ, 0)|µ > 1}, Γα = {(µ, 3π
2 )|µ > 1} and f0 = 2.

Let u(µ, φ) =
sin 2φ

3

cosh 2µ
3 +sinh 2µ

3

be the exact solution of

original problem and g = ∂u
∂n |Γ. Let Γµi = {(µi, φ)|0 < φ <

2π}, i = 1, 2 be the artificial boundaries. Fig. 5 shows the
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TABLE II
THE RELATION BETWEEN CONVERGENCE RATE AND OVERLAPPING

DEGREE FOR EXAMPLE 1 (MESH h/4, µ1 = 3)

µ2 k 1 2 3 4 5

e(k) 0.0740 0.0310 0.0217 0.0187 0.0178
1.5 eh(k) 0.1492 0.0467 0.0146 0.0046 0.0014

qh(k) 3.1953 3.1942 3.1949 3.1949

e(k) 0.1018 0.0483 0.0294 0.0227 0.0198
2 eh(k) 0.1214 0.0535 0.0236 0.0104 0.0046

qh(k) 2.2685 2.2685 2.2685 2.2685

e(k) 0.1476 0.0984 0.0663 0.0454 0.0339
2.5 eh(k) 0.0755 0.0492 0.0321 0.0209 0.0136

qh(k) 1.5344 1.5343 1.5342 1.5342
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Fig. 4. L∞(Ω1) Errors with Iteration k for Example 1

Fig. 5. Mesh h of Subdomain Ω1 for Example 2

TABLE III
THE RELATION BETWEEN CONVERGENCE RATE AND MESH FOR

EXAMPLE 2 (µ1 = 3, µ2 = 2)

Mesh k 1 2 3 4 5

e(k) 0.0794 0.0682 0.0648 0.0638 0.0635
h/2 eh(k) 0.0824 0.0250 0.0076 0.0023 0.0007

qh(k) 3.2922 3.2922 3.2922 3.2922

e(k) 0.0450 0.0233 0.0192 0.0180 0.0176
h/4 eh(k) 0.0903 0.0279 0.0086 0.0027 0.0008

qh(k) 3.2321 3.2321 3.2321 3.2321

e(k) 0.0429 0.0141 0.0064 0.0051 0.0047
h/8 eh(k) 0.0925 0.0287 0.0089 0.0028 0.0009

qh(k) 3.2162 3.2162 3.2162 3.2162

mesh h of subdomain Ω1, Table 3 shows the relation between
convergence rate and mesh (µ1 = 3, µ2 = 2), Table 4 shows
the relation between convergence rate and overlapping degree
(mesh h/4, µ1 = 3), Fig. 6 shows L∞(Ω1) errors with
iteration k.

The numerical results show that this method is feasible
and convergent quickly. Its convergence rate is related to
the degree of overlapping of subdomains. The higher the

TABLE IV
THE RELATION BETWEEN CONVERGENCE RATE AND OVERLAPPING

DEGREE FOR EXAMPLE 2 (MESH h/4, µ1 = 3)

µ2 k 1 2 3 4 5

e(k) 0.0293 0.0196 0.0178 0.0175 0.0174
1.5 eh(k) 0.1061 0.0201 0.0038 0.0007 0.0001

qh(k) 5.2825 5.2825 5.2825 5.2825

e(k) 0.0450 0.0233 0.0192 0.0180 0.0176
2 eh(k) 0.0903 0.0279 0.0086 0.0027 0.0008

qh(k) 3.2321 3.2321 3.2321 3.2321

e(k) 0.0757 0.0432 0.0274 0.0228 0.0204
2.5 eh(k) 0.0597 0.0324 0.0176 0.0096 0.0052

qh(k) 1.8398 1.8398 1.8398 1.8398
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Fig. 6. L∞(Ω1) Errors with Iteration k for Example 2

overlapping degree of the two subdomains is, the faster the
convergence is. Moreover, the convergence rate is nearly not
affected by finite element mesh.
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