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Improved Results on Delay-range-dependent
Robust Stability Criteria of Uncertain Neutral
Systems with Mixed Interval Time-varying Delays

Peerapongpat Singkibud, Piyapong Niamsup, Kanit Mukdasai

Abstract—In this paper, we consider the delay-range-
dependent robust stability problem for uncertain neutral sys-
tems with mixed interval time-varying delays. The uncertainties
under consideration are nonlinear time-varying parameter
perturbations and norm-bounded uncertainties, respectively.
The restriction on the derivative of the discrete interval time-
varying delay is removed, which means that a fast interval time-
varying delay is allowed. By constructing a suitable augmented
Lyapunov-Krasovskii functional, mixed model transformation,
new improved integral inequalities, Leibniz-Newton formula
and utilization of zero equation, new delay-range-dependent
robust stability criteria are derived in terms of linear matrix
inequalities (LMIs) for the systems. Moreover, we present new
delay-range-dependent stability criteria for linear system with
non-differentiable interval time-varying delay and nonlinear
perturbations. Numerical examples are given to show the
effectiveness and less conservativeness of the proposed methods.

Index  Terms—uncertain  neutral
Krasovskii functional, linear matrix
transformation, interval time-varying delay.
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1. INTRODUCTION

HE problem of stability analysis for neutral systems has

been intensively studied since neutral systems can be
found in many industrial systems such as population ecology
[9], distributed networks containing lossless transmission
lines [1], heat exchangers, robots in contact with rigid envi-
ronments [27], etc. For interesting research methods, stability
criteria for application neutral stochastic systems and neural
networks have been discussed in [14], [24], [40]-[42]. The
occurrence of the time delays and uncertainties may cause
frequently the source of instability or poor performances in
various systems. Stability criteria for time-delay systems are
generally divided into two classes: delay-independent one
and delay-dependent one. Delay-independent stability criteria
tend to be more conservative, especially for small size delay,
such criteria do not give any information on the size of the
delay. On the other hand, delay-dependent stability criteria
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are concerned with the size of the delay and usually provide
a maximal delay size.

Most of the existing for delay-dependent stability crite-
ria are presented by using Lyapunov-Krasovskii approach
or Lyapunov-Razumikhin approach. Therefore, the subject
of the stability analysis of neutral systems with constants
or time-varying delays has attracted considerable attention
during the past few decades [2], [3], [6], [17], [22], [23],
[28], [29], [31], [33], [45], [49]. Much attention has been
paid on stability analysis of the neutral systems with time-
varying delays or interval time-varying delays and nonlinear
perturbations [4], [5], [18], [19], [20], [30], [34], [36], [38],
[47], [48], [52]. Moreover, stability analysis of uncertain
neutral systems with time-varying delays has received the
attention of a lot of theoreticians in this field over the last
few years [6], [11], [13], [21], [28], [31], [36], [39], [43]. In
[42], the author has studied the problem of exponential sta-
bility analysis for neutral stochastic systems with distributed
delays. However, a few results have been obtained for robust
stability of uncertain neutral systems with mixed interval
time-varying delays. The time-varying delays are assumed to
belong to an interval and no restriction on the derivative of
the discrete time-varying delay is needed. The uncertainties
under consideration are nonlinear time-varying parameter
perturbations and norm-bounded uncertainties, respectively.

In this paper, the problem of delay-range-dependent sta-
bility analysis for neutral systems with non-differentiable
discrete interval time-varying delays, neutral interval time-
varying delays and nonlinear perturbations is studied. Based
on the Lyapunov stability theory, some new delay-range-
dependent stability criteria are derived in terms of LMIs
for the systems. In order to get less conservative stability
criteria and reduce the complexity of its calculation, new
improved integral inequalities, Leibniz-Newton formula [13],
[34], utilization of zero equation [2], [19], descriptor model
transformation [30], [39] and integral inequalities approach
[10], [25] are used. Moreover, we consider the problem
of delay-range-dependent stability for linear system with
non-differentiable interval time-varying delay and nonlinear
perturbations. Finally, some illustrative examples are given
to show the effectiveness and advantages of the developed
method.

II. PROBLEM FORMULATION AND PRELIMINARIES

We introduce some notations and lemmas that will be used
throughout the paper. R* denotes the set of all real non-
negative numbers; R™ denotes the n-dimensional space with
the vector norm || -||; ||«|| denotes the Euclidean vector norm
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of z € R™; R™*" denotes the set n x r real matrices; AT
denotes the transpose of the matrix A; A is symmetric if
A = AT; I denotes the identity matrix; A(A) denotes the set
of all eigenvalues of A; Apax(A) = max{ReA: A € A(4)};
Amin(A) = min{Re A : A € A(A)}; matrix A is called semi-
positive definite (A > 0) if 27 Az > 0, for all x € R™; A is
positive definite (A > 0) if T Az > 0 for all # (0; matrix
B is called semi-negative definite (B < 0) if 2T Bz < 0, for
all z € R™; B is negative definite (B < 0) if 27 Bz < 0 for
alz#0; A>Bmeans A—B>0(B-A<0); A>B
means A — B > 0 (B — A < 0); C([~h,0], R") denotes
the space of all continuous vector functions mapping [—h, 0]
into R™ when h = max{hy, 72}, ha, 7o € R * represents
the elements below the main diagonal of a symmetric matrix.

Consider the neutral system with mixed time-varying
delays and nonlinear perturbations of the form

i(t) — Ca(t —r(t))
= Ax(t) + Bx(t — h(t)) + fi(t, z(t))

+folt,z(t — h(t)) + fa(t,2(t —r(t)), t>0; (1)
z(to +0) = ¢(0), _
z(to+6) =p@), 6€c[-h,0];

where z(t) € R™ is the state variable, A, B, C € R"*™ are
real constant matrices. r(¢) and h(t) are neutral and discrete
interval time-varying delays, respectively,

0<r <7r(t)<ry, 0 7(t) <y, @
0 < hy <h(t) < hs, 3

where 71,72,h; and ho are positive real constants. ¢(t)
and ¢(t) € C([~h,0], R") are initial condition functions
with the nom 6] = sup,ci_poll6(s)] and ]
Sup,e(—p,0] [1#(s)[l. The uncertainties f1(.), f2(.) and f3(.)
represent the nonlinear parameter perturbations with respect
to the current state x(t), the delayed state z(t — h(t)) and
the neutral delayed state @(t — r(t)), respectively, and are
bounded in magnitude

FL(Ea®) it 2(t) < n’a ()a(D), )
f3 (ta(t = h(1))) fat, 2(t — (1))
< pPat (t = h(t))a(t — h(t), (5)
f3 (it —r() f3(t, &t — (1))
<Pt ()3t (1)), ©)

where 7, p and ~ are given positive real constants. In ad-
dition, if the nonlinear perturbations are reduced to be the
norm-bounded uncertainties

filt,z(t)) = AA@R)z(t), (7N
fa(t,z(t = h(t))) = AB@)x(t=h(t), @
fs(t,2(t = r(t))) AC)#(t — (1), ©

then system (1) rewrites to the following system

() — [C+ AC)]E(t —r(t))
=[A+ AA(t)]z(t) + [B + AB(t)]z(t — h(t)),

t>0; (10)
z(to +6) = ¢(0), B
i(to +0) = 0(0), 0€[—h,0]

The uncertain matrices AA(t), AB(t) and AC(t) are norm
bounded and can be described as

[AA(t) AB(t) AC(t)] = EA(t)[G1 G2 Gs], (1D

where E, G1, G2 and G5 are constant matrices with appro-
priate dimensions. The uncertain matrix A(t) satisfies

Aty =FO)[I - JF()] ™" (12)
is said to be admissible where J is known matrix satisfying
I—JJ' >o0. (13)

The uncertain matrix F'(t) satisfies
Ft)TF(t) < I (14)

Lemma 2.1 (Jensen’s inequality): For any constant matrix
Q € R, Q = QT > 0, positive real constant h, vector
function &(t) : [—ha,0] — R™ such that the integrations
concerned are well defined, then

[
ey,

Rearranging the term f (s + t)ds with x(t) — z(t — h),
we obtain the following 1nequahty.

(s+t)Qz(s +t)ds

’ 9'c(s+t)ds).

0
—h/ (s + 1)Qi (s + t)ds
—h

= L(f(—t)h)r{_f) —QQ} L:(f(—t)h)]

Lemma 2.2 (Schur complement lemma): Let X,Y,Z be
constant matrices of appropriate dimensions with ¥ > 0.
Then X + ZTY~1Z < 0 if and only if

X ZzT 0 -Y 7 0
. _y| <0 or . x| <O

Lemma 2.3 (Cauchy’s inequality): For any constant sym-
metric positive definite matrix P € R™*" and a,b € R",

+2aTb < aT Pa + bT P~ .

Lemma 2.4: [16] Suppose that A(t) is given by (12)-(14).
Let M, S and N be real constant matrices of appropriate
dimension with M = M™. Then, the inequality

M+ SA()N + NTA@#)TST <0

holds if and only if, for any positive real constant 9,

M S 6NT
x —0I 6JT| <o.
* * -0l

Lemma 2.5: [25] The following inequality holds for any

a € R", b e R, NJY ¢ R"*™, X € R"™", and Z €
Rm)(’nl,
a]" X Y-N][a
J— T -
< [0S
where }Z/ > 0.

Lemma 2.6: [10] For a positive matrix M, the following
inequality holds:

—(a—p) /: it (s)Mi(s)ds

< [l T B
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Lemma 2.7: [10] For a positive matrix M, the following
inequality holds:

e[ [
A [ [ [

Lemma 2.8: [10] For a positive matrix M, the following
inequality holds:

u)duds

duds duds

la—p / / / NdAduds
/ / / d)\duds
XM ( / / / N)dAduds )

III. IMPROVED INEQUALITIES

Theorem 3.1: For any constant symmetric positive definite
matrix @ € R™ ™, h(t) is discrete time-varying delays
with (3), vector function w : [—hz2,0] — R™ such that the
integrations concerned are well defined,

(hy— ) / T (5)Qus)ds
—hq —h

_/h(t) dSQ/h(t)

_/7 dsQ/ h(t

Proof. By Lemma 2.3, it is easy to see that

<

—h1

(ha fhl)/% wl'(5)Qu(s)ds
—hy

= (ha—h) / 0 Qs

—h(t)
+(ho — hl)/_h W' (5)Qu(s)ds

h1

> (i) ) [ Qs
—h(t)

(b — h(t)) / W7 (5)Qu(s)ds

1 —h1 hq -
o 2‘/—}L(t)/h )+w (S)QW(g)deg

h(t)
/ / Qu(s) + o (€)Qu(€)dsde
ha
h1
a 1/2T ~1/2 s

> / / 27 (5)QV2T QY2 (€)dsde

—h(t) —h(t)
/ / (5)QY2" Q2w (€)dsde
h2 hg
—h1 —h1
/ (s dsQ/
—h(t) h(t)
h(t)
+/ dSQ/

This completes the proof.

Theorem 3.2: For any constant matrices Q1,Q2, Q3 €

mXn
R,

Q1 > 0, Qs > 0,

Q2

Qs > 0, h(t) is

L 1
discrete time-varying delays with (3) and vector function

& : [~he,0] — R™ such that the following integration is

well defined,

t—h T
la(s)] (@1 Q2 [x(s)
(ha —hl)/t B [x(s)] {*1 Qj L(s)} ds
SC(t — hl) r
(t —h(t))
< g}t — h3)
ftf h(lt) z(s)ds
;_:;t) (s)ds
[—Qs Qs 0 -7 0
*  —Q3—Qs Q3 QF -QF
X | o* * —Q3 0 Q7
* * —Ql 0
| x * * * -1
[ z(t—hy)
(t —h(t))
% (t — ho)
::,th) x(s)ds
::}Z( ) x(s)ds
Proof. By Theorem 3.1, we have
T Tas)] T [ Qo [als
—(hg — hl)/th2 Lc(s)} { *1 2} Lg s ds

IN

AR
t—h(t) s
s T
2t —h) 17 T=Qs
= f(le_ h(t)) ] *
Jionin

L t—hg
[ x(t—h(t
X l’(t — hg

t—h(t)
. t—hg x(s

—_ — — " —
~—

ds |

This completes the proof.

—Qs3

i x(s)]
} o [m(s)] *

(s)

(s)

t h(t) (s
S

}l2 l‘

Q3 _Qz
-Q3 QF
* —Q1

-Q3
Q3
—@1

@3
—Qs3

Theorem 3.3: Let x(t) € R™ be a vector-valued function
with first-order continuous-derivative entries. Then, the fol-

lowing integral inequality holds
X,M; € R i =1,2,...,5
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varying delays with (3), [M, M) and Z = {]\f?) %ﬂ, we get
t—hy
t—ha a(t—h) " —2 W) [H ]| S g
—/ ' T (s)Xi(s)ds < |:x(t— h(;))] X /th(t) &)1 ) [x(t - h(t))}
t=hs z(t — ha) t—hy (s) X My—-Hy M>;—H;
M, + MT —M{ + M, 0 < / [ z(t — ha) [* M3 M, ]
X My +MT — My — MT —MT + M, =hO {2t - h(t)] | * M;
* * —My — MT a(s)
[ 2(t — hy) a(t—hy) )" X [ wgt _hhzlt) ds
x x(z(f - hétg) + (hy — hy) x(:(f - hfgti) ( — h(t)) { ]T
| 2(t — hy x(t — he = z(t — h1)
- = s)ds +
M; M, 07 [ xt—h) / (t = h(t))
x | % Mz+ Ms M4] [x(t—h(t))] ; ([Ml + M —MT +M2}
| * * Ms| | z(t — he) — My — MF
_ {Hl +HT —?T + I?TQD {:c((t —hizl)))]
where * —Hy — H; z(t — h(t
a(t—hi) |7 [Ms M,
. M M| 20 SRR b T
I *3 M‘; =z X|:$(t—h1):|
x(t — h(t))
Proof. From the Leibniz-Newton formula, we obtain / t—hy T [ z(t — hy) }
< ' (s)Xz(s)ds +
_ (t = h(t))
t—h(t)
t—hy M, + M} —MT + M.
0=ux(t—hy) —x(t— h(t)) —/t_h(t)jc(s)ds7 (15) { 1 ‘: i M, _+M272"]
t—h(t) B [Hl—‘rHlT —HlT-i-H2:|) [x(t—hl)}
0=2xz(t—h(t)) —z(t — he) — /t . x(s)ds.  (16) * —Hy — HI'| ) |2(t — h(t))
o a(t—h) 1" [Ms My
+(h2 - hl) [x(t _ h(t))] [ *3 M5]
By (.15), the followi:ignequation is true for any constant (t — )
matrices H1, H, € R [x(t _ h(t))} . (18)
thy Substituting (18) into (17), we obtain
0 = 2[z"(t—h)—2"(t—h(t) - /th(t) &7 (t)ds] /th1 (o)X b(s)ds
X[le(t — hl) + ng(t - h(t))] z h(t) ) .,
= 227 (t — hy)Hyx(t — hy) < t—hy H+H —H{ +H
+207 (¢ — hl)Hzx(t — h(1)) - [f t= ( h<t2>} { * ) )H; —Hy ]
—2.’L‘T( ))Hlx(t—hl) % x(t—h t_
2 (¢ = hO)HE (¢~ (1) [””M ! Ml {MT fﬂ(j)}
72/ " T (s)dsHna(t) % ({ — M, —MT}
t;hffl) [Hl +H1 —HT +H2D [ z(t — h1) }
*2/ h(t) & (s)dsHaw(t — h(t)) —Hy — Hy|) |2(t = h(t))
Lohit x(t—hi) ] [Ms My
_ [ 2(t — hy) ]T [Hl +H  -H{ +H +(he — ) [x(t _ h(t))] [ . MJ
x(t—h(t)) * . _HQ_HQ y |:$(th1) :l
o(t = ) -2 o #T(s) [Hy H, 2t = k(D))
g L” f’l(t»] /t—hu) @)1 ) B [m(t—hl)} {Ml + M7 —M1T+M2}
v IE(t*hl) d (17) o JI( h(t)) * —M2 —M2T
z(t — h(t)) ot — hy) T
<] om0
Using Lemma 2.5 with a = @(s), b = Lx(gt—_h}z;)))]’ Y = X []\f ] [x (¢ - hi)))} . (19)

(Advance online publication: 24 May 2017)
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By (16), the following equation is true for any constant
matrices Hy, Hy € R"*"

t—h(t)
0 = 2[z"(t—h(t) —2"(t—hs) — /t_h &7 (t)ds]
Similarly, we have
- t—h(t) - .
/ &' (s)Xa(s)ds
t—ho
2t —h)]" [My + MT  —MT + M,
= [m(t—hg)} [ * —MQ—MZT}
x(t = h(t)) a(t—h(t)]"
x {x(t—hg) ] 1z = Il {x(t—hg)}
Ms  My] [x(t — h(t))
x { . Mﬂ {x(t—hg) ] : 20)

Considering (19) and (20) together, the result is established.
This completes the proof.

Remark 3.4: In Theorem 3.1, 3.2 and 3.3, we have mod-
ified the method from [8], [32] and [51], respectively.

IV. MAIN RESULTS

A. Delay-range-dependent stability criteria

We will present the robust stability criteria dependent
on interval time-varying delays of system (1) via LMIs
approach. We introduce the following notations for later use.

Z = [Zi»j]23><23 ’

e2y

where Sij =%, 4Jj=123,..,23,

Y11 = PA+ATPHW+WT + QA+ ATQ,
+P3 + Py + Ry + Ry + (h1)?Po + (h2)?Pro
+(hy — h1)?P1y — Pig + My + M{ + ho M3
+(h1)*Rig + (h2)?Riz + (ha — h1)?Rie

hi)t ho)?t
+Riz2 — Ry5 + ( i) Pis + ( i) Py
h 4
—(h)?Pis — (h2)*Pro — (1) Py
h 4
—%ng + hiCy + i CT + hyCy
+hoCf + €171,

Y12 = Po—Qi1+ATQo+ Ro+ Rs + (h1)?Ruy
+(h2)?Ri4 + (ha — h1)?Ryr,

Y13 = Po+Rip—nhC+ hlch,

Y14 = X15=216=0,

DI P\B-W + QB+ ATQs — MT + M,
+hoMy + Rys — hoCy + hoCF

Y18 = —Ri, Ti9=hiPs, Xi10=0,

Y111 = —Rl, Z112=0, Xi13=hoPy,
Y4 = 0, Zii5=-W+Q4— haCy+ hoCF,

Y23

)

Yo7
Yog
Y214
Y216
Y221
Y33

(h1)? (ha)?

> Py, 5 P,
—hCy + hyCT, Y120 =PC+ Q:C,
Yi20 =%123 =P+ Q1,

(ro —711)Q5 —2Q2 + Ps + Pr + R3 + Rs

Y17 = 1,18 =0,

+(h1)? P12 + ho P13 + (ha — h1)Pia
+(h1)?Ri2 + (h2)?Ris + (ha — h1)*Ris
h 4 h 4 h 6
+( i) Pig + ( z) Pig + (316) Py
(ha)®
P
36 22
o4 =25 =2X26=0,
—Q2B — Q3,

Yoo = X210 = X2,11 = L2,12 = 22,13 = 0,
0, Xg15=-Q4,

Yo7 = Mo18 = Xg,19 = 0,
Yo00 = Y203 = @2,
—P3+ P5s — Ry + Ry — Pia + Ny + N{
+(ha — h1)N3 — Ri2 — Rig — (ha — h1)* Py

Y920 = Q2C,

hy — hy)t hy — hy)?

+7( 2 1 1) Pi7 — (he = )7 1 1) Pz — hiCo
—hCT,
—Ry+ Rg, X35=2X36=0,
—NlT + Ny + (h2 — hl)N4 + Rys,
Rl, S30=0, Y310=—-Ri,
Y312 = 23,13 = 0,
(he — h1)Pao, X315 = X316 = 23,17 = 0,

ho — hy)?
%sz Y319 = —h1Co — hiCT
Y321 = X322 = X323 = 0,

hy — hy)t

—Ps+Ps— Ry + Ro + %PQO

(hg — hy)®

P

+736 23,

Y =47 =248=249=23410=0,
Y12 = X413 = Xg14 = Xy 15 = Xg16 = 0,
Y418 = 24,19 = 24,20 = 24,21 = 24,22 = 0,
0,

—Py — Ps— Ry — Ry — My — My + hoM;
—N3 — NJ + (hg — h1)N5 — Ri5 — Rus,
—Rs — Rs,

—My + M] +hoM{ — Ny + Ny

+(hz — ha)NJ + Ri5 + Rig,

Y59 = 25,10 = 25,11 = 0,

R{, + Riy,

Y514 = 5,15 = 5,16 = 25,17 = 25,18 = 0,
Y520 = Y521 = 25,22 = 25,23 = 0,

—P; — Pg — Rg — Ry, Xg7 =235 =0,
6,10 = 26,11 = 26,12 = 26,13 = 26,14 = 0,
Y616 = 26,17 = 26,18 = 26,19 = 26,20 = 0,
Y6,22 = 26,23 = 0,

(Advance online publication: 24 May 2017)
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Y77 = QsB+B'Qs+ M+ M — My — My
+ho(Mz + Ms) + Ny + N{ — Ny — N
+(h2 — hl)(N;; + N5) - R15 — R,ﬂ — ng
—RIg — hoCs — hyCT + €571,

Y78 = S79=0, Sr10=Rl;, Yr11=R{,,

Y712 = —RI, R, Sr13=%714=0,

Y715 = —Qa— haC5 — hoCF,

Yri6 = Xrar=2718 = 27,19 =0, X720 = Q3C,
Y701 = X722 = Y723 =3,

Yg8 = —FPy—Pig— R, Xg9=0,

Y810 = —Pig, 3g11 =0, Xgi12=—PFo,

28,13 = 28,14 = 2,15 = 28,16 = 28,17 = 28,18 = 0,
Yg,190 = Xg20 = Xg21 = Xg22 = 2g23 = 0,

Y99 = —Pig, Yg10= 29,11 = X912 =913 =0,
Yo14 = Xg,15 = 29,16 = 29,17 = 29,18 = 29,19 = 0,
Y0 = 2921 = X922 = Mg 23 =0,

Y1000 = —Pio—Pii— Ris, 210,11 =0,
Y1012 = —Po, 210,13 = 10,14 = X10,15 = 0,
210,16 = 210,17 = 210,18 = 210,19 = 210,20 = 0,
Y1021 = 21022 = 21023 =0, X111 = —Ry3,
Y12 = 211,13 = B11,14 = L1115 = 511,16 = 0,
Y1107 = X118 = B11,19 = X11,20 = Y1121 = 0,
Y1100 = 21,23 =0,

Y1212 = —Pio— P11 — Riz3 — Ry,

Y1213 = X12,14 = Y12,15 = X12,16 = 12,17 = 0,
Y1918 = Xi12,19 = X12,20 = X12,21 = 212,22 = 0,
Y1223 = 0, X313 = —Pig,

Y1304 = 213,15 = X13,16 = 213,17 = 213,18 = 0,
Y1300 = Y1320 = X13,21 = X13,22 = 213,23 = 0,
Yiaa = —Pro, Y1415 = Y1416 = Y1417 = 0,
Y1418 = 214,19 = 214,20 = 0,

Yia21 = Y1422 = L1423 =0,

Sis15 = —2Q4 — haCs — hoCF,

Y1516 = 215,17 = 215,18 = 215,19 = 215,20 = 0,
Y1521 = Xi522 = Y1523 =0,

Y1606 = —Pis— Par, Y1617 = Xi16,18 = 216,19 = 0,
Y1620 = 16,21 = L16,22 = X16,23 = 0,

Yirar = —Pig— P, X718 = Xi17,19 = Xi17,20 = 0,
Y1721 = Xir22 = Y1723 =0,

Y1818 = —Pi7— Pa3, Y1819 = Y1820 = X18,21 = 0,
Yig02 = Y1823 =0,

Y19 = —hiCs—hiCF, Sig20 = S1921 =0,
Y1922 = X923 =0,

o000 = —(r2—7r1)(1 —1a)Qs + 3771,

Yop,21 = 220,22 = 220,23 = 0,

Yot1o1 = —e€1l, o100 = o103 =0,

Yogoa = —e€al, Mooz =0, Mazo3 = —esl.

Theorem 4.1: The system (1) is asymptotically stable, if
there exist positive definite symmetric matrices @5, Ri3,

Ris5, Rig, Rig, Py, @ = 1,2,...,23, any appropriate dimen-
sional matrices G, Qr, M;, Nj, R, k = 1,2,...,4,5 =
1,2,..,5,1 = 1,2,...,18 and positive real constants €1, €
and ez satisfying the following LMIs

(Ry Rs
R (22)
‘B, R
B RG_ > 0, 23)
‘B R,
P Rg_ >0, 24)
[Rip Rn
s Ris > 0, (25)
[R15 Ris
T R 7O (26)
Ry Rir
s ng_ > 0, 27
Pz My M,
* Ms Myl >0, (28)
* x  Ms
Py Ny N
« Ny N,| >0 (29)
* * Ny
S <0. (30)

Proof. Firstly, we rewrite the system (1) in the following
descriptor system

i(t) =
0 =

z(1), 3D
—2(t) + Az(t) + Bx(t — h(t)) + f1(t,2(t))

+fa(t,x(t — h(t))) + f3(t,2(t — (1))
+Cz(t —r(t)). (32)

By utilizing the following zero equation, we obtain

¢
Gz(t) — Gz(t — h(t)) — G z(s)ds, (33)
t—h(t)

0 =

where G € R™*"™ will be chosen to guarantee the asymptotic
stability of the system (1). By (33), the systems (31) and
(32) can be represented in the form of the descriptor delayed
system

#(t) = 2(t)+ Ga(t) — Ga(t — h(t))
e z(s)ds, 34
t—h(t)
0 = —z(t)+ Azx(t) + Ba(t — h(t)) + f1(t, z(t))

+f2(t, z(t — h(t))) + fs(t, 2(t — (1))
+Cz(t —r(t)). (35)

Construct a Lyapunov-Krasovskii functional candidate for
the system (1) of the form

V@szw (36)
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where

Vi(t) =
Va(t) =

Va(t)

Va(t)

Ve (t)

Va(t)

Vi(t)

a7 (t)Pyx(t)
xT () Py (t)
x(t) "1 00 0
z(t) 0000
ﬂf(th(t))] {o 00 0
ﬁf—h(t)z(s)ds 0 0 0O
PR, 0 0 0 x(t)
0 0 0 0 2(t)
“lo 0o 0 0 x(th(t))]
Q1 Q2 Q3 Qu ftt_h(t)z(s)ds
/ J:T(S)Pgm(s)ds—i-/ 2T (s)Pyx(s)ds
t—hy t—ho

/tihl 2T () Psz(s)ds + /tt . 2T (5)Pra(s)ds
o
L 2‘3} I’ 3 1 : éiﬂ i

2T (s)Pgz(s)ds,

t ho
hl/ / Pg.’L‘ des
hy Jt
+h2/ /
ho Jt+s
—hy
hg—hl / / P11£U d9ds,
}Lg
hl/ / Plgz d@ds
h1 t+S

Plo.’E d9ds

wf ] EE?ﬂ |

x RIO gi; Zgzg dbds
e

x R*B gi‘; jggi d6ds

e [ [0

<[ o) (o) e

Vo(t)

Vio(t) =

Vi(t) =

Via(t) =

A)Prsz(N)dAduds

[\]

thl S

5 L/J
h2— 2/: hl/t h1/t ha

><P17x d)\duds

A)dAduds

A)Pigz(N)dMduds

2 fh1

o /A/
h2— 2/: hl/t hl/t hy

S

A)dAduds

><P20z )dAduds,
L
t—h1 Js
><P21,z )dOdAduds
AL
t—ho Js
><P22z )dOdAduds
hg—hl

/t h1 /t h1 /t h1 /t h1
t 3

(9)P232 )d@d)\duds
¢
(r2 —71) /tr(t) 2T (5)Qs2(s)ds.

The time derivative of V (¢) along the trajectory of system
(34)-(35) is given by

V()= Vi(t). 37)

The time derivatives of V;(¢) and Va(¢) are calculated as

Vi(t)

Va(t) =

22T (t) Pya:(t)

227 (t) Py | Az (t) + Bx(t — h(t))
+C(t = (1) + fit, (1))

+f2(t alt = h(t))) + falt, 2(t = v(8))]

ot (t)PLAx(t) 4 227 (t) Py Bx(t — h(t))
+2xT(t)PlCz(t r(t))
+22T () Py f1(t, 2(t))
+2zT () Py fo(t, 2(t — h(t)))
+2zT (t) Py f3(t, 2(t — 7(t))), (38)
a(t ’
2(

o O OO
WS
[ |

) PT 0
t) 0 0
ff(t h(t)) 0 0
ftfh(t)z(s)ds 0 0
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22T (1) Py [z(t) + Ga(t) — Ga(t — h(t))

z(s)ds]

t
-G
t—h(t)

+2:7(H)Qy [ — 2(t) + Ax(t) + Bz (t — h(t))

+Ca(t —r(t) + fr(t,z(t))
+fa(t,x(t = h(t)) + fa(t, 2(t = (1))

+2:7(1)Q, [ — 2(t) + Az(t) + Bz(t — h(t))

+Ca(t— (1) + fi(t, (L))
+fa(t,x(t = h(t)) + fa(t,2(t = r(1)))]
+207 (L= h(6))Qs | - 2(1) + Ax(t)
+Bz(t — h(t)) + Ci(t — (1))
+h(tx() + fat, 2(t — h(1)))
+falt it = r(1)]

t
=3
t—h(t)
t
—/ z(s)ds}
t—h(t)

Differentiating V5(¢) and Vi(¢), we have

Va(t)

Vi(t)

= 2" (t)Psa(t) —
xt (1) Py (t) —

T (t — hl)Pg,x(t— hi)
—a (t — ha) Psa(t — hy),

++

T (t)Psz(t) -
2T (t)Pra(t) —
(
(

I
Ny

+

+ZT PgZ(t — hl)

t—hy)
ZT t— hg)PgZ(t — hg)

Taking the time derivative of V;(t), we obtain

- [0 & RIES)

27 (s)dsQu |2(t) — w(t — h(1)

(t — hl)Pg,.’E(t — hl)
(t — hg)P4$C(t — hg)

(t — hl)Pez(t — hl)
(t — hQ)P?Z(t — hg)

(39)

(40)

(41)

(42

Using Lemma 2.1 and Theorem 3.1, we calculate Vg(t) as

Vs(t) = h?zT(t)ng(t)—hlf . 27 (s)Pyx(s)ds

+hixT (t) Prox(t) — hg/ 27 (s)Proz(s)ds
t—hs
(t)Prix(t)
t—hq
—(hg—hl)/tih 27 (5) Pria(s)ds

+(h2 — h1)2I’T

IN

2.’ET xT — t iCT s)as
B OP(t) - [ o

t
<Py / 2(s)ds + h22™ () Proa(?)
t—h1

t t—hy

—[/ xT(s)ds+/ x7 (s)ds
t—hy t—h(t)
t—h(t) ¢

+/ xT(s)ds} Pw[/ x(s)ds
t—hg t_hl
t—hy t—h(t)

—|—/ x(s)ds—i—/ x(s)ds]
t—h(t) t

—hs
+(h2 — h1)21}T

() Praz(t)
t—h1 t—hy
f/ z7(s)dsPpy / x(s)ds
t—h(t) t—h(t)
t—h(t) t—h(t)
—/ xT (s)dsPry / x(s)ds.
t—ho t—ho
From Lemma 2.1 and Theorem 3.3, an upper bound of Vz(t)
can be obtained as

Vi(t) < h22T(t)Praz(t) + hozT (t) Pisz(t)
+(h2t*hl) T(t)Praz(t)
- /th1 ( dspl /t h1 ds
[ 2(t) ] [® T o0
+ |z(t — h(t)) v I T
L a(t—hy) | [0 ¥ ©
x(t) [ x(t) ]T
X |x(t = h(t)) | + he |2(t = h(t))
_Z(t*hg)_ IIZ(t*hQ)
_Mg M4 0 Jf(t)
x | MF M+ My M4] [x(th(t))]
|0 M4T Ms| | z(t — ho)
[z(t—h) ] [® TV 0
+ |zt —h(1)) [\P I
L a(t—hy) | |0 U @
I (t —hy) ]|
x — h(t))
(t —ha) |
a(t—hi) 17"
+(ha — h1) [x(t - h(t))]
(E(t — h2)
N3 Ny 0

I‘(t — hl)
X NI N3+N5 N4 .T(t*h(t)) s
0 NZ N5 fE(t—h2)

(43)
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where ®=M; + MlT, U=—M; + MQT, F:—MlT + Mo,
O=M; + M{¥ — My — MZ, ©=—My — M¥, ®'=N; + N{,
U'=—N; + NI, I"=—N{ + Ny, I'=N; + N{' — Ny — NT,
O'=—Ny — NQT. From the Theorem 3.2, we have

T
. x(t) Rip Rt [z(t)
Vi(t) <
o < 50) R A (50
] i 2169
2lz(t)] |Riy Ris) [2(t)
T
t) R16 R17 l‘(t)
By — hn)? [
by =) [zu)} [R% RlJ L@)
_ .T
. ftt*hl x(s)ds R10 R11
la(t) —z(t—hy)] |RTi Rue
wt) 717
] z(t — h(t))
% I oy z(t — h)
(1) f:c(tfhl) S w(s)ds
: :z(t) x(s)ds
-—R15 Ri5 0 _Rl 0
R1T5 Rl15 Ry5 R1T4 _R1T4
X 0 R{S —R15 0 R{AL
—Ris Ry 0 — PR3 0
| 0 —Riy  Rus 0 —Ry3
x(t) st —h) 1"
z(t — h(t)) z(t — h(t))
x |zt = hz) 4| z(t—ho)
[r o a(s)ds t h1 :r(s)ds
hn®
i n, )x(s)ds x(s)ds
[—Ris Ris 0 —R%} 0
RlTs R/18 Ris R1T7 *R1T7
X 0 R{g —Rls 0 R%}
—Rir Ry 0 —Rig 0
L 0 —R17 R17 0 _RIG
ot — h)
z(t — h(t))
x | alt—ha) | (44)
t—hq
Ji- Tnn T x(s)ds
t—h(t
o hz() (s)ds
where R}; = —Ri5 — RT;, R\ = —Ris — Rl5. By Lemma

2.7, we obtain Vy(t) and Vig(t) as follows

4
Vg(t) S ﬁ P15a? / / d)\du
4 t h1
XP15/ /
t—hq
- / / T (N)dAdu
t—}Lg u
t t
XP16/ / x()\)d)\du
t—ho Ju

Vio(t)

Vi (t)

7(]12 — hl) (t — hl)P17.%‘(t — hl)

t— }L]
/ / A)dAdu
t
t— h1
X Py / / A)dAdu, (45)
t P
hf Plgz / / d/\du
4 t—h1 Ju
><P18/ / z(A)dAdu
t—hy Ju
h 1
+—z P192’ d/\du
4 t—ho Ju
Xplg/ / d)\du
t hz u

+M (t—hl)PQOZ(tfhl)

t— hl
/ / A)dAdu
t—h1
><P20/ / z(AN)dA\du
7h2 u

M)
- [hle(t) - /tihl xT(u)du}
x Pig [hlx(t) - /tth x(u)du}

h4
+sz<t>P19z(t>

—[hng(t) - /tih xT(u)du}

« Pro [hgaz(t) - /t th x(u)du]

+MZT@ — hl)PQQZ(t — h1)
t—hy
_ |:(h2 —hy))z' (t—hy) — /t_h2 x (u)du}
t—h1
XP20 |:(h2 — hl)l‘(t — hl) — /t_h2 x(u)du] .
(46)

By Lemma 2.8 and calculating V31 (t), we have

6 6
< SLT WP + 22T (0Paa()
N hl)

T(t — hl)Pzgz(t — hl)

0)doddu

-/ hl/u [
« Py, /HL /u /A 2(0)d0dAdu
_/tihg /ut /)\t ZT
XP”/:M /:/:z(o)

0)dfdAdu

dfdAdu
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0)doddu

/t hl/ /t h1
t—h1 pt—h1  pt—hy
XP23/ / / d&d)\du
t

I
= % T(t)Pora(t) + 36 27 (t) Pa2(t)
hy — h
%ZT@ — hl)ngz(t — hl)
2
hl zT(t / / dAdu
XP21 / / d)\du
t—hy Ju
2
h2 zT(t / / dAdu
XP22 71; / / d)\du
t h2

[(’”_h) Tt — hy)
A
xpgg[i’”) (t = hy)

t—h1 t—h1
/ / d)\du
t

Calculating Vy2(t) leads to
Vis(t) =

d/\du]

47

(r2 = r1)a" ()Qsi(t)

—(rz =) (1 =7 (t)a" (t —r(2))
xQsa(t —r(t))

(ro —r1)i" (£)Qs(1)
—(ra =r)(1 —rq)
XQ52(t — r(t)).
From the Leibniz-Newton formula, the following equations

are true for any real constant matrices C;, ¢ = 1,2, ..., 6 with
appropriate dimensions

IA

Tt =r(t)
(48)

t
2h, [mT(t)Cl + 2T (t —hy)Cy + / ZT(S)dSC;g}
t—hq

<[ty 2t ) - /f ih A(s)ds] =0, @9)

2hs [J:T(t)@ + 2T (= h(t))Cs + /t thm zT(s)dsC6]

X [x(t) —a(t—h(t) — /t » z(s)ds} =0. (50

From (4), (5) and (6), we obtain for any positive real
constants €1, €9, €3,

e1(a%a” (a2 () - ST (L) AL a(t)) 20, (D
&2 (227 (¢ = h(t))a(t = (1))

(= b)) ot 2t~ (1)) 20, (52)
s (12 (¢ = ()it~ (1))

—F = o) fslt, ot = (1)) 2 0. (53)

According to (37)-(53), it is straightforward to see that

£) < ¢y (), (54)
where ¢7 (t)= [ T(1), 2 t),xT(t—hl),zT(t—hl),
2T (t - hg) T(t — ha),2T(t = h(t)), [, 27 (s)ds
f;t u)du, ft :(1) 27 (s)ds, ft nty ® 2T (s)ds,
tf fil(t) T(s)ds, ft ha T(u)d tt :1 Tu )du
f;_h(t) s)ds ff I f T(N)d\du, ff hs f N)dAdu,

e . i 0,

t—ho

filt,a(0). folt a(t - (D%ﬁ@x@—dmﬂ~

If the conditions (22)-(30) hold, then (54) implies that there
exists & > 0 such that V(t) < —&|z(t)]|*. Therefore,
system (1) is asymptotically stable. The proof of theorem
is complete.

If C=f1(t, z(t))=f2(t, z(t—h(t)))=fs(t, &(t—r(t)))=0, then

system (1) reduce to the following system

z(t) = Az(t) + Bx(t — h(t)), t>0;
(tO + 9) = ¢(9)a 'i'(tO + 6‘) = (p(@), (55)
S [—hg, O}
Take the Lyapunov-Krasovskii functional as
11
t)=> Vi(t) (56)
i=1

where V7 (t) to V11(t) are defined in Theorem 4.1. Accord-
ing to Theorem 4.1, we can obtain delay-range-dependent
stability criteria of system (55). We introduce the following
notations for later use.

Z = [iw] 19%19°

S T vy
Ei,j - Zj,i - va

)

&F)

where 1,7 =1,2,3,...,19, except

PA+ATP + W +WT + QA+ ATQ,
+P3+ Py + Ry + Ry + (h1)?Py + (h2)? Pro
+(hg — h1)?*P1y — Pig + My + M7 + hyMs
+(h1)?R1o + (h2)?Riz + (ha — h1)*Ris
(hy)* (ha)*
P |4
g BTy
hi)* ho)?t
—(h)?Pis — (h2)?Prg — %le - %
+h1Cy 4 b CT + hyCy + Ry CT,
—2Q2 + Ps + Py + Ry + Rg + (h1)? Py
+hoPiz + (ha — h1) Py + (h1)*Ri2 + (h2)*Rys
2 (hy)* (ho)*
+(hg — h1) 1 1

(h1)" (h2)"
~—~ P -~ P
+ 36 * 2 + 36 22

Q3B+ BTQs + My + M — My — MT
+ha(Ms + Ms) + Ny + N{ — Ny — N’
+(ha — h1)(Ns + N5) — Ri5 — R{5 — Ris
—RIy — haCs — heOF.

+Rio — Ri5 + Pig

Pys

Rig +

Pig +

Pig

77 =

Corollary 4.2: The system (55) is asymptotically stable,
if there exist positive definite symmetric matrices Ry3, Ris,

(Advance online publication: 24 May 2017)
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Rig, Ris, P, 1 = 1,2,...,23, any appropriate dimen-
sional matrices G, Qr, M;, N;, R, k = 1,2,...,4,5 =
2,..,5,1=1,2,...,18, satisfying the following I.MIs:
Ry Rl
Ry >0, (58)
‘R, R
s Ry >0, (59)
‘R, R
Ro| >0, (60)
[Rip R
|« Ry >0, (61)
[Ri3 R
< Ry >0, (62)
[Rig  Rir|
|« Ry >0, (63)
Pz My M,
* Mz My| >0, (64)
* x*  Ms;
Py N1 N
* N3 Ng| >0, (65)
% k N5
ST <. (66)

If C=f5(t,z(t — r(t)))=0, then system (1) reduce to the
following system

(t) = Ax(t) ﬂEBx( h(t)) + f1(t, =(t))
h(t

+fo(t,z(t — h(t)), t>0;
a(to +0) = ¢(0), i(to +0) = p(0), (67)
0 € [—h,0].

Take the Lyapunov-Krasovskii functional in (56). Accord-
ing to Theorem 4.1, we can obtain delay-range-dependent
stability criteria of system (67). We introduce the following
notations for later use.

—

Z - [Ei»ﬂ']mle J (68)
where I i]TZ =%, 4,7=123,..21, except
S120 = Zimm=Pi+Q1, 320 =201 =Qy,
Y700 = X721 =@3, X202 = —€l,

Yoo21 = 0, X191 = —€al.

Corollary 4.3: The system (67) is asymptotically stable,
if there exist positive definite symmetric matrices R13, R1s,

Rys, Ris, P, @+ = 1,2,...,23, any appropriate dimen-
sional matrices G, Q, M;, N;, R, k = 1,2,...,4,7 =
2,..,5,1 = 1,2,...,18 and positive real constants ¢; and

€2 satisfying the following LMIs:

[Ri Rs
B R3_ >0, 69)
R Ry
B RG_ >0, 70)
‘R R
B Rg_ >0, 7
[R1o Rnx
o Ris > 0, (72)
[R5 Ri4]
| Ry > 0, (73)
[Ris  Raz
o R18_ > 0, (74)
Pz My M,
* Mz My| >0, (75)
* x*  Ms;
Py Ny N
* N3 N4 2 0, (76)
* * N5
ST <. a7

B. Delay-range-dependent robust stability criteria

According to Theorem 4.1, we can obtain delay-range-
dependent robust asymptotic stability criteria of system (10).
We introduce the following notations for later use.

Z 20><20’ (78)
where i i]f =% 4,7=12,3,..,20, except
Y1 = PA+ATP W+ W QA+ ATQ,

+Ps 4 Py 4+ Ry + Ry + (h1)?*Py + (ha)? Pro
+(hg — h1)?P1y — Pyo + My + MT
+hoMs + (h1)*Rig + (h2)?Riz + (ha —
h2)

h1)?
h 4
XR16+R12_R15+(411) P15+( Py

—()*Prs = (h2)*Pro — <hi>4P21 - <hi>

X Pag + h1Cy + hiCT + haCy + hoCF
Q3B+ BTQs + My + M{ — My — My
+ha(Ms + Ms) + Ny + N{ — Ny — N’
+(ha — h1)(N3 + N5) — Ri5 — R{; — Rus
—Rig — hoC5 — hoCY,

= —(ro—r1)(1 —74q)Qs,

[ET(PL+Q1) E"Q2 0 0 0 0 ETQs
0 00O0OO0OOOOUOUO0O0 0 0]
[G; 0 0 000 G2 O 0 0 O
0000 OO0 0 Gs

320,20

Theorem 4.4: The system (10) is robustly asymptotically
stable, if there exist positive definite symmetric matrices (s,
Ri3, Ri5, Rig, Rig, P, 1 = 1 2 .., 23, any appropriate
dimensional matrices G, Qy, M 5 R, k=1,...,4,j =

2,..,5,1l = 1,2,...,18 and positive constant ¢ satisfying
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the following LMIs:

]il gi >0, (79)
fi“ gz >0, (80)
]?: gz >0, (81)
Ry Ruy
*10 RE >0, (82)
R*IS gi‘f >0, (83)
R*“" gi; >0, (84)
P13 Ml M2
x« My M| >0, (85)
* x  M;
Py N1 Na
*  Ns3 Nyg| >0, (86)
* * Ny
ST S  6NT
x —o0I o6JT| <O. (87)
* * -0l

Proof. Replacing A, B and C in (30) with A = A +
EA(t)Gl, B = B+ EA(t)GQ and C = C + EA(t)G:J,,
respectively, we find that condition (30) is equivalent to the
following condition

>+ SA@N + NTA@TST <o, (88)
where f are define in (78). By using Lemma (2.4), we can
find that (88) is equivalent to the LMIs as follows

> S SNT
x —o6I 6JT| <O, (89)
* * -0

where § is positive real constant. From Theorem (4.1) and
conditions (79)-(87), system (10) is robustly asymptotically
stable. The proof of theorem is complete.

V. NUMERICAL EXAMPLES

Example 5.1 Consider the system (55) with the following
system matrices, which is considered in [10], [15], [37], [50]

0 1 0 O
=55l ee[A]
By using the LMI Toolbox in MATLAB (with accuracy
0.01) for application of Corollary 4.2 to system (55) with
(90), the maximum upper bounds ho for asymptotic stability
of Example 5.1 is listed in the comparison in Table I,
for different values of hi. We can see that our results in
Corollary 4.2 are much less conservative than those obtained

in [10], [15], [37], [50].

Example 5.2 Consider the system (67) with the following

system matrices, which is considered in [7], [35], [46] :

-1.2 0.1 -0.6 0.7
o il R e we Y

(90)

TABLE I
UPPER BOUNDS OF TIME DELAY ho FOR DIFFERENT CONDITIONS FOR
EXAMPLE 5.1.

Method h1 1 2 3 4
Sun et al. (2010) [37] ho  1.6198 24884  3.3403 4.3424
Zhu et al. (2010) [50](m=4) hg 1.7228 25608 3.4542  4.3787
Liu et al. (2012) [15] ho 17753 26134 3.5046 4.4271
Kwon et al. (2013) [10] ho  1.8446  2.6344 3.5124 4.4304
Corollary 4.2 ho 17990 27970 3.7920 4.7603

By using the LMI Toolbox in MATLAB (with accuracy
0.01) for Corollary 4.3 to system (67) with (91), we can
compare the maximum allowable bound ho for guaranteeing
asymptotic stability of the system in Table II. This example
shows that the stability criterion in this paper gives much less
conservative results than those obtained in [7], [35], [46].

TABLE II
UPPER BOUNDS OF TIME DELAY hgo FOR DIFFERENT CONDITIONS FOR
EXAMPLE 5.2.

Method h1 0.5 1

a=0,8=0.1

Zhang et al. (2011) [46] ha 1.442 1.543

Ramakrishnan et al. (2011) [35]  h2 1.558 1.760

Hui et al. (2015) [7] ha 1.824 1.9930

Corollary 4.3 hgy 22240 2.3210
a=0.1,5=0.1

Zhang et al. (2011) [46] ha 1.284 1.408

Ramakrishnan et al. (2011) [35]  hg 1.384 1.532

Hui et al. (2015) [7] ha 1.524 1.6380

Corollary 4.3 he 22240 23210

Example 5.3 Consider the system (1) with the following
system matrices, which is considered in [5], [20] and [26]:

-2 0 0 04

4 = {0 —2}’ B_[0.4 0]’
0.1 0

C { 0 0.1}, a=0.1, g=~=0.05.

By using the LMI Toolbox in MATLAB (with accuracy 0.01)
for Theorem 4.1 to system (1) with above parameters, one
can obtain the maximum upper bounds of the time delay ho
under different values of r4 and hq as shown in Table III.
Our results in Theorem 4.1 are much less conservative than
those presented in [5], [20] and [26].

TABLE IIT
UPPER BOUNDS OF TIME DELAY ho FOR DIFFERENT CONDITIONS FOR
EXAMPLE 5.3.

Method h1 0.5 1
r(t) =rq=0
Lakshmanan et al. (2011) [20] ho 4.7392 5.0992
Cheng et al. (2013) [5] ha 5.2164 5.9862
Mohajerpoor et al. (2016) [26]  h2 6.3114 7.0600
Theorem 4.1 ho 12.1065 12.0056
Method h1 1 10
rq = 0.6
Lakshmanan et al. (2011) [20]  h2 4.6391 13.2500
Cheng et al. (2013) [5] ha 5.0052 14.3261
Mohajerpoor et al. (2016) [26]  hg 6.5010 16.1001
Theorem 4.1 ho 11.1260  17.0790

Example 5.4 Consider the system (10) with the following
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system matrices, which is considered in [13], [44] and [48]:

-2 0 -1 0
S R

AB(t):[”OS 74}, AC(t):[g 8}

where 0 < |¢|] < 1, and v; = 1,2,...,4 are unknown
parameter satisfying |y1| < 1.6, |y2| < 0.05, |vs] < 0.1, and
|v4] < 0.3. By using the LMI Toolbox in MATLAB (with
accuracy 0.01) for Theorem 4.4 to system (10) with above
matrices, the maximum upper bounds hs for robust stability
of Example 5.4 is listed in the comparison in Table IV, for
hi1 = 0.5. Our results are better than those given in [13],
[44] and [48].

TABLE IV
UPPER BOUNDS OF TIME DELAY ho FOR DIFFERENT CONDITIONS FOR
EXAMPLE 5.4,

Method h1=0.5

Yu and Lien (2008) [48] ha 0.793
Kwon et al. (2008) [13] ha 0.894
Weera and Niamsup (2011) [44]  hs 0.951
Theorem 4.4 ho 1.1996

VI. CONCLUSION

The problem of robust stability for uncertain neutral sys-
tems with mixed interval time-varying delays was studied.
The restriction on the derivative of the discrete interval time-
varying delay is removed. The uncertainties under consider-
ation are nonlinear time-varying parameter perturbations and
norm-bounded uncertainties, respectively. By constructing a
suitable augmented Lyapunov-Krasovskii functional, mixed
model transformation, new improved integral inequalities,
Leibniz-Newton formula and utilization of zero equation,
new delay-range-dependent robust stability criteria are de-
rived in terms of LMIs for the neutral systems. Moreover,
we present new delay-range-dependent stability criteria for
linear system with non-differentiable interval time-varying
delay and nonlinear perturbations. Numerical examples have
shown significant improvements over some existing results.
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