New Energy-Preserving Finite Volume Element Scheme for the Korteweg-de Vries Equation

Jin-liang Yan and Liang-hong Zheng

Abstract—In this paper, an energy-preserving finite volume element scheme is proposed for the Korteweg-de Vries equation. The scheme is a combination of the discrete variational derivative method in time and the finite volume element method in space. The scheme can precisely conserve the global mass and energy at the discrete level, as well as has higher accuracy. For comparison, we also propose a momentum-preserving scheme and a finite volume element scheme. The numerical results demonstrate the remarkable accuracy and efficiency of our method compared with other schemes.

Index Terms—Mass, Momentum, Energy, Finite volume element method, KdV equation.

I. INTRODUCTION

The ubiquitous Korteweg de-Dries (KdV) equation was first introduced by Boussinesq in 1877 and rediscovered by Korteweg and his Ph.D student de Vries [1] in 1895. The KdV equation models a variety of nonlinear phenomena, such as shallow water waves, acoustic waves in a harmonic crystal and ion-acoustic waves in plasmas. The simplest form of KdV equation is given by

\[u_t + \varepsilon uu_x + \mu u_{xxx} = 0, \]

where the function \(u = u(x,t) \) represents the water’s free surface in non-dimensional variable. The derivative \(u_t \) characterizes the time evolution of the wave propagating in one direction, the nonlinear term \(u_x \) describes the steepening of the wave, and the linear term \(u_{xxx} \) accounts for the spreading or dispersion of the wave. In this paper we consider the following form of KdV equation:

\[u_t + \alpha u_x + \beta uu_x + \gamma u_{xxx} = 0, \quad \alpha \leq x \leq b, \quad (1) \]

where \(\alpha, \beta, \gamma \) are constants given by

\[\alpha = c = \sqrt{gd}, \quad \beta = \frac{3c}{2d}, \quad \gamma = \frac{cd^2}{6}. \quad (2) \]

with \(c = \sqrt{gd} \), the shallow water speed. Here \(g \) is the gravitational acceleration and \(d \) is the average depth of water. The KdV equation is completely integrable [3] and gives rise to multiple soliton solutions. The existence of conservation laws have been considered as an indication of the integrability of the KdV. There is an infinite set of independent conservation laws for the KdV equation (1). The first three conservation laws of this set are:

\[M = \int_a^b u \, dx, \quad K = \frac{1}{2} \int_a^b u^2 \, dx, \]
\[J = \int_a^b \left(\frac{\alpha}{2} u^2 + \frac{\beta}{6} u^3 - \frac{\gamma}{2} (u_x)^2 \right) \, dx, \]

which correspond to mass, momentum and energy conservation law, respectively.

In this paper, the proposed energy-preserving scheme and momentum-preserving scheme are constructed using the discrete variational derivative method (DVDM) [4], which is a method of designing special numerical schemes that retain the conservation/dissipation properties of the original partial differential equations (PDEs). As to DVDM, researchers have done a lot of work, for example, Furihata and Morì [5] proposed a stable finite difference scheme for the Cahn-Hilliard equation. Koide and Furihata [6] designed four conservative schemes for the regularized long wave equation. Further, Matsuo and Furihata [7] extended the general studies to complex-valued PDEs, like the nonlinear Schrödinger equation. Recently, the method has been extended in various ways, for instance, Yaguchi, Matsuo and Sugihara [8] extended the method to nonuniform grids. Matsuo and Kuramae [9] proposed an alternating DVDM, and so on.

Finite volume element method (FVEM), as a type of important numerical tool for solving the differential equations, has a long history. This method is also known as a box method in some early references [10], or known as a generalized difference method [11] in China. The method has been widely used in several engineering fields, such as fluid mechanics, heat and mass transfer and petroleum engineering. Perhaps the most important property of FVEM is that it can preserve the conservation laws (mass, momentum and heat flux) on each computational cell. This important property, combined with adequate accuracy and ease of implementation, has attracted more people to do research in this field [12]–[15].

In this paper, we will propose an energy-preserving scheme for the KdV equation. The energy conservation law is an important property of the KdV equation. Thus, in the numerical simulation of the KdV equation, we hope to retain this property. Moreover, to our knowledge, the energy-preserving scheme often has better stability, as well as smaller errors. Li and Vu-Quoc [16] once said that “in some areas, the ability to preserve some invariant properties of the original differential equation is a criterion to judge the success of a numerical simulation”. Zhang [17] pointed out that the nonconservative schemes may easily show nonlinear blow-up. Thus, in view of this point, we hope design an energy-preserving scheme for the KdV equation (1).

About the KdV equation, researchers have done a lot of work, for

The organization of the paper is as follows. In Section 2, we present some notations and preliminaries about FVEM. In Section 3, we derive the proposed schemes, and analyze their conservative properties. In Section 4, we analyze the linear stability of the energy-preserving scheme. In Section 5, we present the numerical examples to illustrate the effectiveness of the new scheme. At last, we give some concise conclusions.

II. NOTATION AND PRELIMINARIES

In this section, we define some notations and the framework of the FVEM.

First, we use a uniform grid T_h to discretize the solution domain, $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ with grid spacing $h = x_i - x_{i-1} = (b - a)/n$. Then we place a dual grid T^*_h, $a = x_0 < x_1 / 2 < x_2 / 2 < \cdots < x_{n-1} / 2 < x_n = b$ with $x_{i-1} / 2 = (x_{i-1} + x_i) / 2$, $i = 2, \ldots, n$, and $I_0^* = [x_0, x_1 / 2]$.

The trial function space U_h is taken as the linear element space with respect to T_h. The basis function with respect to x_i is given by

$$\phi_i(x) = \begin{cases} 1 - h^{-1}|x - x_i|, & x_i - h \leq x \leq x_i + h, \\ 0, & \text{elsewhere}. \end{cases}$$

Thus, the functions $\{\phi_i(x) : i = 1, 2, \ldots, n\}$ form a basis of U_h and any $u_h \in U_h$ has the following expression

$$u_h = \sum_{i=1}^{N} u_i \phi_i(x),$$

where $u_i = u_h(x_i, t)$. Further, on the element I_i, we have

$$u_h = u_i - (1 - \xi) + u_i \xi,$$

$$u'_h = (u_i - u_{i-1}) / h, \quad x \in I_i, \quad i = 2, \ldots, n,$$

where $\xi = (x - x_{i-1}) / h$.

Accordingly, the test function space V_h is chosen as the piecewise constant function (step function) space. The basis functions of V_h are

$$\psi_j(x) = \begin{cases} 1, & x_{j-1 / 2} \leq x \leq x_{j+1 / 2}, \\ 0, & \text{elsewhere}, \end{cases}$$

where $j = 1, 2, \ldots, n$.

Any $v_h \in V_h$ has the form

$$v_h = \sum_{i=1}^{N} v_i \psi_i(x),$$

where $v_i = v_h(x_i, t)$.

In the sequel, if not specially illustrate, we will use $U^{(m)}_h$ to denote the numerical solution at $x = x_k$ and $t = m \Delta t$, where Δt denotes the time step size. On the other hand, in this paper, we will adopt the following periodic boundary conditions,

$$\frac{\partial u_{i}}{\partial x} |_{x=a} = \frac{\partial u_{i}}{\partial x} |_{x=b} \quad (j = 0, 1, 2). \quad (3)$$

III. NUMERICAL SCHEMES

In this section, we derive the proposed schemes and analyze their conservative properties.

A. Concrete form of the proposed scheme

For convenience, we define “free energy” or “local energy” of the KdV equation (1) as

$$G(u, u_x) = \frac{\alpha}{2} u^2 + \frac{\beta}{6} u^3 - \frac{\gamma}{2} (u_x)^2,$$

and its spatial integration

$$J(u) = \int_{a}^{b} G(u, u_x) \, dx$$

as the “global energy”. Then Eq. (1) can be rewritten as

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\delta G}{\delta u},$$

where $\delta G / \delta u$ is the variational derivative of $G(u, u_x)$ defined by

$$\frac{\delta G}{\delta u} = \frac{\partial G}{\partial u} \frac{\partial u}{\partial x} \left(\frac{\partial G}{\partial u_x} \right).$$

In the following, we start to derive the proposed energy-preserving scheme. To this end, we first give a scheme of the “local energy”

$$G_{d,k}(U^{(m)}(x)) = \frac{\alpha}{2} U^{(m)}_k^2 + \frac{\beta}{6} (U^{(m)}_k)^3 - \frac{\gamma}{2} (U^{(m)}_k)^2,$$

and the associated global energy is defined by

$$J_d(U^{(m)}) = \sum_{k=0}^{N} N \cdot G_{d,k}(U^{(m)}(x)) \Delta x,$$

where

$$G_{d,k}(U^{(m)}) = \frac{\alpha}{2} (U^{(m)}_k + U^{(m)}_{k+1}) + \frac{\beta}{6} (U^{(m)}_k)^2 + \frac{\gamma}{2} (U^{(m)}_k)^2.$$

By resorting to Eq. (5), a discrete scheme of the variational derivative corresponding to energy-preserving scheme is given by

$$\frac{\delta G_d}{\delta (U^{(m)}+U^{(m)})} = \frac{\alpha}{2} (U^{(m)}_k + U^{(m)}_{k+1}) + \frac{\beta}{6} (U^{(m)}_k)^2 + \frac{\gamma}{2} (U^{(m)}_k)^2.$$
where \(\delta_k^{(2)} \) denotes the central difference quotient of \(\partial^2/\partial x^2 \).

The above scheme is obtained by the following difference:

\[
\sum_{k=0}^{N} n(U^{(m+1)}) - G_{d,k}(U^{(m)}) \Delta x = \sum_{k=0}^{N} \frac{\delta G_d}{\delta(U^{(m+1)},U^{(m)})}(U_{k}^{(m+1)} - U_{k}^{(m)}) \Delta x
\]

where

\[
\delta_k^{(2)}(U^{(m)}) = \frac{(U^{(m+1)}) - U^{(m)})}{\Delta t} \delta x
\]

+ boundary term.

The above method is also known as the discrete variational derivative method, more details about it please refer to [4].

After that we can obtain the fully discrete energy-preserving finite volume element scheme by substituting Eq. (7) into the following weak form

\[
(\delta^+_m U^{(m)}, \psi_i) = - \left(\frac{\partial}{\partial x} \left(\frac{\delta G_d}{\delta(U^{(m+1)},U^{(m)})} \right), \psi_i \right),
\]

where \(\delta^+_m U^{(m)} = (U^{(m+1)}) - (U^{(m)})/\Delta t, \Delta t \) is the time step, \(U^{(m)} \in U_h \) and \(\psi_i \in V_h \) (i = 1, 2, ..., N).

On the other hand, in order to reflect the superiority of the energy-preserving method, a momentum-preserving finite volume element scheme is also derived.

Let \((U^{(m+1/2)})_k \triangleq (U_{k+1}^{(m+1/2)} + U_k^{(m+1/2)})/2, (U^{(m+1/2)})_k \triangleq (U_{k+1}^{(m+1/2)} + U_k^{(m+1/2)})/2, \) and substitute them into Eq. (7) and respectively in place of \(U^{(m+1)} \) and \(U^{(m)} \), then a discrete scheme of the variational derivative corresponding to the momentum-preserving scheme is obtained as follows

\[
\frac{\delta G_d}{\delta(U^{(m+1/2)},U^{(m+1/2)})} = \alpha \left(\frac{U^{(m+1/2)})_k + (U^{(m+1)})_k}{2} \right)
+ \beta \left(\frac{(U^{(m+1/2)})_k^2 + (U^{(m+1)})_k^2}{2} \right)_k + \gamma \frac{\delta_k^{(2)}(U^{(m+1/2)})_k + (U^{(m+1)})_k}{2}.
\]

Substituting it into the following weak form

\[
(\delta^+_m U^{(m)}, \psi_j) = - \left(\frac{\partial}{\partial x} \left(\frac{\delta G_d}{\delta(U^{(m+1/2)},U^{(m+1/2)})} \right), \psi_j \right),
\]

where \(U^{(m)} \in U_h \) and \(\psi_j \in V_h \) (j = 1, 2, ..., N), we obtain the fully discrete momentum-preserving scheme.

At last, for comparison, we also derived the following implicit midpoint finite volume element scheme

\[
(\delta^+_m U^{(m)}, \psi_k) = \beta \left(\frac{(U^{(m+1/2)})_k}{2} \right)_k + \gamma \left(\frac{(U^{(m+1)})_k}{2} \right)_k,
\]

where \(U^{(m+1)/2} = (U^{(m+1)} + U^{(m)})/2, U^{(m)} \in U_h \), and \(\psi_k \in V_h \) (k = 1, 2, ..., N).

In addition, in order to illustrate the conservative properties of the schemes (9) and (10), we also consider the following discrete quantities, i.e., the global mass and the global momentum

\[
M_d(U^{(m)}) = \sum_{k=0}^{N} n U_{k}^{(m)} \Delta x,
\]

\[
K_d(U^{(m)}) = \frac{1}{2} \sum_{k=0}^{N} n (U_{k}^{(m)})^2 \Delta x.
\]

B. Conservation properties of the proposed schemes

In the following, we start to study the conservative properties of the KdV equation (1).

Proposition III.1. Let \(u \) be the analytical solution of (4), and assume the following boundary condition

\[
- \frac{\delta G}{\delta u} \bigg|_{x=a} = 0
\]

is satisfied, then the continuous mass \(M \) is constant, that is

\[
\frac{d}{dt} \int_a^b u \, dx = 0.
\]

Proof:

\[
\frac{d}{dt} \int_a^b u \, dx = \int_a^b u_t \, dx = - \int_a^b \frac{\partial}{\partial x} \left(\frac{\delta G}{\delta u} \right) \, dx = - \left[\frac{\delta G}{\delta u} \right]_{x=a} = 0.
\]

Proposition III.2. Let \(u \) be the analytical solution of (4), and assume the following boundary conditions

\[
- u \frac{\partial}{\partial u} \bigg|_{x=a} = 0, \quad [G(u,u_{x})]_{x=a} = 0
\]

are satisfied, then the continuous momentum \(K \) is constant, that is

\[
\frac{1}{2} \frac{d}{dt} \int_a^b u^2 \, dx = 0.
\]

Proof:

\[
\frac{1}{2} \frac{d}{dt} \int_a^b u^2 \, dx = \int_a^b u u_t \, dx
= - \int_a^b u \frac{\partial}{\partial x} \left(\frac{\delta G}{\delta u} \right) \, dx
= - \left[\frac{u \delta G}{\delta u} \right]_{x=a} + \int_a^b \frac{\partial u}{\partial x} \frac{\delta G}{\delta u} \, dx
= \int_a^b \frac{\partial}{\partial x} G(u,u_{x}) \, dx = [G(u,u_{x})]_{x=a} = 0.
\]

Proposition III.3. Let \(u \) be the analytical solution of (4), and assume the following boundary conditions

\[
- \frac{\delta G}{\partial u_{x}} \bigg|_{x=a} = 0, \quad \left[- \frac{1}{2} \left(\frac{\delta G}{\delta u} \right)^2 \right]_{x=a} = 0
\]

are satisfied, then the continuous energy \(J \) is constant, that is

\[
\frac{d}{dt} \int_a^b G(u,u_{x}) \, dx = 0.
\]
Similarly we have the following conservative properties.

Theorem III.1. (Discrete mass conservation law) Let \(U = U^{(m)} \) be the solution of (8), and assume the following boundary condition

\[
\frac{\delta G_d}{\delta (U^{(m+1)}, U^{(m)})} \bigg|_{x=a} = 0
\]

is satisfied, then the discrete mass \(M_d \) is constant, namely

\[
\int_a^b U^{(m)} \, dx = \text{const.}
\]

Proof:

\[
\frac{d}{dt} \int_a^b G(u, u_x) \, dx = \int_a^b \frac{\partial G}{\partial t} \, dx
\]

\[
= \int_a^b \left(\frac{\partial G}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial G}{\partial u_x} \frac{\partial u_x}{\partial t} \right) \, dx
\]

\[
= \int_a^b \frac{\partial G}{\partial u} \frac{\partial u}{\partial t} \, dx - \int_a^b \frac{\partial u}{\partial t} \frac{\partial G}{\partial u_x} \, dx + \int_a^b \frac{\partial G}{\partial u_x} \frac{\partial u_x}{\partial t} \, dx
\]

\[
= \frac{1}{2} \int_a^b \frac{\partial}{\partial x} (\delta G) \, dx = \left[-\frac{1}{2} \frac{\partial G}{\partial u} \right]_{x=a}^b = 0.
\]

Theorem III.2. (Discrete energy conservation law) Let \(U = U^{(m)} \) be the solution of (8), and assume the following boundary condition

\[
\left[-\frac{1}{2} \left(\frac{\delta G_d}{\delta (U^{(m+1)}, U^{(m)})} \right)^2 \right]_{x=a}^b = 0
\]

is satisfied, then the discrete energy \(J_d \) is constant, namely

\[
\int_a^b G_d(U^{(m)}) \, dx = \text{const.}
\]

Proof:

\[
\frac{1}{\Delta t} \int_a^b \left(U^{(m+1)} - U^{(m)} \right) \, dx
\]

\[
= \int_a^b \frac{\partial}{\partial x} \left(\frac{\delta G_d}{\delta (U^{(m+1)}, U^{(m)})} \right) \, dx
\]

\[
= \left[-\frac{\delta G_d}{\delta (U^{(m+1)}, U^{(m)})} \right]_{x=a}^b = 0.
\]

Theorem III.3. (Discrete mass conservation law) Let \(U = U^{(m)} \) be the solution of (9), and assume the following boundary condition

\[
\left[\frac{\delta G_d}{\delta (U^{(m)}, U^{(m)})} \right]_{x=a}^b = 0
\]

is satisfied, then the discrete mass \(M_d \) is constant, namely

\[
\int_a^b U^{(m)} \, dx = \text{const.}
\]

Proof:

\[
\frac{1}{\Delta t} \int_a^b \left(U^{(m+1)} - U^{(m)} \right) \, dx
\]

\[
= \int_a^b \frac{\partial}{\partial x} \left(\frac{\delta G_d}{\delta (U^{(m+1)}, U^{(m)})} \right) \, dx
\]

\[
= \left[-\frac{\delta G_d}{\delta (U^{(m+1)}, U^{(m)})} \right]_{x=a}^b = 0.
\]

Theorem III.4. (Discrete momentum conservation law) Let \(U = U^{(m)} \) be the solution of (9), and assume the following boundary conditions

\[
\left[\frac{U^{(m+1)} + U^{(m)}}{2} \frac{\delta G_d}{\delta (U^{(m)}, U^{(m)})} \right]_{x=a}^b = 0
\]

\[
\left[G_d(U^{(m)}), U^{(m+1)} \right]_{x=a}^b = 0
\]

are satisfied, then the discrete momentum \(K_d \) is constant, namely

\[
\frac{1}{2} \int_a^b \left(U^{(m)} \right)^2 \, dx = \text{const.}
\]
Proof:

\[
\frac{1}{2 \Delta t} \int_a^b [(U^{(m+1)})^2 - (U^{(m)})^2] \, dx
\]
\[
= \int_a^b \left(\frac{U^{(m+1)} + U^{(m)}}{2} \right) \left(\frac{U^{(m+1)} - U^{(m)}}{\Delta t} \right) \, dx
\]
\[
= \int_a^b \left(\frac{U^{(m+1)} + U^{(m)}}{2} \right) \delta_m U^{(m)} \, dx
\]
\[
= -\int_a^b \left(\frac{U^{(m+1)} + U^{(m)}}{2} \right) \frac{\partial}{\partial x} \left(\frac{\delta G_d}{\delta (U^{(m)}_+, U^{(m)}_-)} \right) \, dx
\]
\[
= \int_a^b \frac{\partial}{\partial x} \frac{G_d(U^{(m)}, U^{(m+1)})}{dx}
\]
\[
= [G_d(U^{(m)}, U^{(m+1)})]^b_a = 0.
\]

In the above equations, integration by parts formula and periodic boundary conditions are used. At last, for the standard finite volume element scheme (10), we also have the following conservative property, namely

Theorem III.5. (Discrete mass conservation law.) Let \(U = (U_k)_{k \in Z} \) be the solution of (10), then the discrete mass \(M_d \) is constant, namely

\[
\int_a^b U^{(m)} \, dx = \text{const.}
\]

The proof of Theorem III.5 is similar to the one of Theorem III.1.

IV. STABILITY ANALYSIS

In this section, we study the stability of the energy-preserving scheme (8) for solving Eq. (1). Here we only consider equations without nonlinear terms, which allow us to study the linear stablility of the proposed schemes using the Fourier method.

Firstly, from Eq. (8), we get the following fully discrete energy-preserving scheme:

\[
\begin{align*}
\alpha_1 U^{(m+1)}_{k-2} + \alpha_2 U^{(m+1)}_{k-1} + \alpha_3 U^{(m+1)}_k - \alpha_2 U^{(m+1)}_{k+1} \\
- \alpha_1 U^{(m+1)}_{k+2} &= -\alpha_1 U^{(m)}_{k-2} - \alpha_2 U^{(m)}_{k-1} + \alpha_3 U^{(m)}_k \\
+ \alpha_2 U^{(m)}_{k+1} + \alpha_1 U^{(m)}_{k+2} \\
+ \alpha_4 \left[\left(U^{(m-1)}_{k-1} \right)^2 + U^{(m-1)}_{k-1} U^{(m)}_k + \left(U^{(m)}_{k+1} \right)^2 \right] \\
- \left(U^{(m+1)}_{k+1} \right)^2 + U^{(m+1)}_k U^{(m)}_{k+1} + \left(U^{(m)}_{k+2} \right)^2 \\
\end{align*}
\]

where \(j = 0, 1, \ldots, N \),
\[
\begin{align*}
\alpha_1 &= -\gamma \Delta t, \alpha_2 = 6 \gamma \Delta t - 3 \alpha \beta \Delta t^2
\end{align*}
\]

Then assume that \(U^{(m)}_j \) is periodic in \(x \)-direction, and at grid node \(x_j \), let

\[
U^{(m)}_j = V^{(m)} e^{i \omega j \beta},
\]

where \(V^{(m)} \) is amplitude at time level \(m \), and \(\omega \) is phase angle in \(x \)-direction. Substituting (14) into (13), we have

\[
(\alpha_3 - i \alpha_5) V^{(m+1)} = (\alpha_3 + i \alpha_5) V^{(m)},
\]

where

\[
\alpha_5 = 2 \alpha_1 \sin(2 \omega h) + 2 \alpha_3 \sin(\omega h).
\]

Therefore, the growth factor \(g \) for the proposed energy-preserving scheme is

\[
|g| = \left| \frac{V^{(m+1)}}{V^{(m)}} \right| = \left| \frac{\alpha_3 + i \alpha_5}{\alpha_3 - i \alpha_5} \right| = 1.
\]

Therefore, it meets the unconditionally stable criterion \(|g| \leq 1\) and we conclude that the proposed energy-preserving scheme is unconditionally stable.

V. NUMERICAL EXPERIMENTS

In this section, we will test the proposed schemes numerically. Through these numerical examples, we will analyze the accuracy and conservative properties of the proposed schemes, and further illustrate the advantages of the energy-preserving scheme.

A. Single solitary wave

Here we consider the KdV equation (1), and set \(A = 1, d = 6 \) and \(g = 9.8 \), then we can obtain \(\alpha, \beta \) and \(\gamma \) by (2). According to [21], Eq. (1) has the following solitary wave solution:

\[
u(x, t) = A \text{sech}^2 \left[\frac{1}{2} \sqrt{3A} (x - \kappa t) \right],
\]

where \(\kappa = c (1 + \alpha / A) \). This solution corresponds to a solitary wave of amplitude \(A \). Here \(c \) denotes the velocity of the traveling wave. Here we adopt the following initial solution

\[
u(x, 0) = A \text{sech}^2 \left[\frac{1}{2} \sqrt{3A} x \right],
\]

and the periodic boundary condition

\[
u(a, t) = \nu(b, t).
\]

On the other hand, in order to validate the efficiency of the proposed methods, in the sequel, we will use \(L_\infty = \max_{x \in [-1, 1]} \| u(x, t_n) - u_i^{(n)} \| \) and order \(= \log_2 (\| u^n - U_{2h}^{(n)} \| / \| u^n - U_h^{(n)} \|) \) to evaluate the accuracy and the convergence orders of the methods. In addition, we will use \(|I^n - I_i^n/| \) to denote the relative errors of the invariants, where \(I_i (i = 1, 2, 3) \) respectively corresponds to the global energy (6) and mass, momentum (11) at the discrete level.

Firstly, we test the accuracy and the convergence orders of the proposed schemes. Here we assume the problem is solved on the interval \([-100, 100]\). In order to measure the error in space, a relatively small time step \(\Delta t = 0.0001 \) is chosen such that the error from the time direction can be negligible, and the spatial steps are respectively chosen as \(h = 2, h = 1, h = 1/2 \) and \(h = 1/4 \). The spatial \(L_\infty \) errors and corresponding convergence rates of the proposed

(Assistance online publication: 24 May 2017)
TABLE I: Spatial L_∞ errors and convergence orders of the proposed methods with $N=1000$, $\Delta t=0.0001$, $-100 \leq x \leq 100$.

<table>
<thead>
<tr>
<th>h</th>
<th>MFVEM</th>
<th>order</th>
<th>EFVEM</th>
<th>order</th>
<th>FVEM</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.6914e-03</td>
<td>—</td>
<td>4.0981e-04</td>
<td>—</td>
<td>4.0981e-04</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>4.3487e-04</td>
<td>1.96</td>
<td>1.0390e-04</td>
<td>1.98</td>
<td>1.0390e-04</td>
<td>1.98</td>
</tr>
<tr>
<td>1/2</td>
<td>1.0934e-04</td>
<td>1.99</td>
<td>2.5993e-05</td>
<td>2.00</td>
<td>2.5993e-05</td>
<td>2.00</td>
</tr>
<tr>
<td>1/4</td>
<td>2.7368e-05</td>
<td>2.00</td>
<td>6.5672e-06</td>
<td>1.98</td>
<td>6.5672e-06</td>
<td>1.98</td>
</tr>
</tbody>
</table>

TABLE II: Temporal L_∞ errors and convergence orders of the proposed methods with $T=1$, $h=1/16$, $-100 \leq x \leq 100$.

<table>
<thead>
<tr>
<th>Δt</th>
<th>MFVEM</th>
<th>order</th>
<th>EFVEM</th>
<th>order</th>
<th>FVEM</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>8.7962e-03</td>
<td>—</td>
<td>9.1200e-03</td>
<td>—</td>
<td>8.7841e-03</td>
<td>—</td>
</tr>
<tr>
<td>1/4</td>
<td>2.3196e-03</td>
<td>1.92</td>
<td>2.3943e-03</td>
<td>1.93</td>
<td>2.3035e-03</td>
<td>1.93</td>
</tr>
<tr>
<td>1/8</td>
<td>5.9653e-04</td>
<td>1.95</td>
<td>6.0627e-04</td>
<td>1.97</td>
<td>5.8609e-04</td>
<td>1.97</td>
</tr>
<tr>
<td>1/16</td>
<td>1.6364e-04</td>
<td>1.87</td>
<td>1.5995e-04</td>
<td>1.97</td>
<td>1.5012e-04</td>
<td>1.97</td>
</tr>
</tbody>
</table>

TABLE III: L_∞ errors and convergence orders of the proposed methods with $T=3$, $h=\Delta t$, $-100 \leq x \leq 100$.

<table>
<thead>
<tr>
<th>h</th>
<th>MFVEM</th>
<th>order</th>
<th>EFVEM</th>
<th>order</th>
<th>FVEM</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.7275e-02</td>
<td>—</td>
<td>9.2927e-02</td>
<td>—</td>
<td>9.0518e-02</td>
<td>—</td>
</tr>
<tr>
<td>1/2</td>
<td>2.9059e-02</td>
<td>1.74</td>
<td>2.7784e-02</td>
<td>1.75</td>
<td>2.6806e-02</td>
<td>1.76</td>
</tr>
<tr>
<td>1/4</td>
<td>7.6576e-03</td>
<td>1.92</td>
<td>7.2913e-03</td>
<td>1.93</td>
<td>7.0406e-03</td>
<td>1.93</td>
</tr>
<tr>
<td>1/8</td>
<td>1.9412e-03</td>
<td>1.98</td>
<td>1.8372e-03</td>
<td>1.98</td>
<td>1.7833e-03</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Fig. 1: The errors of the proposed schemes: (a) the maximum errors of the three proposed schemes at $T=3$ and with $h=\Delta t=1/16$, (b) the numerical errors corresponding to different steps of the energy-preserving scheme at $T=3$.

methods are presented in Table I, which clearly shows that the energy-preserving scheme and the finite volume element scheme have higher accuracy than the momentum-preserving scheme. Similarly, for the time direction, a relatively small spatial step $h=1/16$ is chosen such that the error from the spatial direction can be negligible. The temporal L_∞ error and corresponding convergence rates of the proposed methods are presented in Table II, which clearly shows that the convergence rates of three methods are approximately equal to 2. It is also noted that the error of the momentum-preserving scheme cease to decrease at a certain point, which is because the error from the time direction become very small such that it can not be distinguished from the spatial error. On the other hand, the L_∞ errors and the convergence rates of three methods with $h=\Delta t$ and $T=3$ are presented in Table III, which clearly shows that the convergence rates of three methods are all approximately equal to 2 in space and time.

Secondly, in order to compare the accuracy of the proposed methods, we plot the variation of the L_∞ errors of the proposed methods, when $h=\Delta t=1/16$ and $T=3$, in Figure 1(a), which clearly shows that the growth of the errors of three methods are linear, and the momentum-preserving scheme has the largest error. On the other hand, Figure 1(b) presents the numerical errors corresponding to different steps of the energy-preserving scheme at $T=3$.

At last, we test the propagation of the solitary wave and the conservative properties of the proposed schemes. In the sequel, we set spatial step $h=0.5$ and temporal step $\Delta t=0.1$, and the problem is solved over the interval $[-50,50]$. Figure 2 presents the numerical results of the energy-preserving scheme for t in $[0,40]$. The surface plot
of numerical solution at time $T = 40$ is presented in Figure 2(a), which shows the solitary wave moves to the right at a constant speed, and the wave shape and amplitude almost unchanged with time increase. Figure 2(b) shows that the relative errors of the invariants at the discrete level. It is clearly seen that the energy-preserving method can
precisely preserve the discrete mass and energy to within machine precision. The relative errors of the invariants of the momentum-preserving scheme and the finite volume element scheme are presented in Figure 3, which shows that the momentum-preserving scheme can precisely conserve the discrete mass and momentum to within machine precision, and the finite volume element scheme can precisely conserve the discrete mass to within machine precision. In view of Figure 2 and Figure 3, we conclude that three schemes all can be used to simulate the propagation of the solitary wave, but in the aspect of accuracy and conservation properties, the energy-preserving method is a better method. On the other hand, in order to test the long time behavior of the energy-preserving scheme, we also present the numerical results of the momentum-preserving scheme and the finite volume element scheme in Figure 6, which shows that the energy-preserving scheme can exactly preserve the global mass and energy at the discrete level. On the other hand, Figures 7-9 display the interaction process of two solitary waves. It is noted that the taller wave initially located on the left of the lower wave. Then, at \(t = 2.5 \), the taller wave caught up the lower wave and occurred interaction, and at \(t = 3 \) and \(t = 3.5 \), the taller wave and the lower wave overlapped, as is noted in Figure 8. It is also noted that the taller wave and the lower wave started to leave away when \(t > 3.5 \), and the taller wave and the lower wave exchanged their positions at \(t = 6 \), as is shown in Figure 9. On the other hand, the numerical results also shows that the energy-preserving scheme has better performances than the ones of [24], i.e., the method of [24] needs smaller stepizes and is not suitable for long time computation.

B. Interaction of two solitary waves

In order to further illustrate the effectiveness of the proposed scheme, here we discuss the interaction of two solitary waves. Setting \(\alpha = 0, \beta = 1, \gamma = 4.84 \times 10^{-4} \), then we obtain the following KdV equation,

\[
\frac{u_t}{u} + u u_x + 4.84 \times 10^{-4} u_{xxx} = 0, \quad 0 \leq x \leq 4. \tag{15}
\]

Here we consider the KdV equation (15) with the following periodic boundary condition

\[u(0, t) = u(4, t), \quad t > 0. \]

On the other hand, according to [18], [24], Eq. (15) has the following exact solution,

\[u(x, t) = 12\gamma(\log F)_{xx}, \tag{16} \]

where

\[
F = 1 + \exp(\eta_1) + \exp(\eta_2) + \left(\frac{l_1 - l_2}{l_1 + l_2} \right)^2 \exp(\eta_1 + \eta_2),
\]

\[\eta_i = l_i x - l_i^2 \gamma t + m_i (i = 1, 2), \]

\[l_1 = \sqrt{\frac{0.3}{\gamma}}, \quad l_2 = \sqrt{\frac{0.1}{\gamma}}, \quad m_1 = -0.48l_1, \quad m_2 = -1.07l_2. \]

For all the computations, we have used the stepsizes \(h = 0.0125, \Delta t = 0.05, \) and the computations are done up to time \(T = 6 \). The numerical results of the energy-preserving scheme are presented in Figure 6, which shows that the energy-preserving scheme can exactly preserve the global mass and energy. In the aspect of accuracy and conservation properties, the energy-preserving scheme has smaller accuracy and better conservative properties than other two schemes. Thus the energy-preserving scheme is a better choice for the KdV equation. Besides, the energy-preserving scheme is unconditionally stable and has better long time computation ability.

VI. Conclusions

In this paper, an energy-preserving scheme is proposed for the Korteweg-de Vries equation. We investigate the accuracy and the conservative properties of the proposed method and compare its performances with the ones of a momentum-preserving scheme and a finite volume element scheme. The numerical results show that three schemes all can simulate the KdV equation, but in the aspect of accuracy and conservation properties, the energy-preserving scheme has smaller accuracy and better conservative properties than other two schemes. Thus the energy-preserving scheme is a better choice for the KdV equation. Besides, the energy-preserving scheme is unconditionally stable and has better long time computation ability.
Fig. 6: The numerical results of the two solitary waves obtained by the energy-preserving scheme: (a) the surface plot of numerical solution, (b) the relative errors of invariants, when $\alpha = 0$, $\beta = 1$, $\mu = 4.84 \times 10^{-4}$, $h = 0.0125$, $T = 6$, and $0 \leq x \leq 4$.

Fig. 7: The plots of the two solitary waves obtained by the energy-preserving scheme: (a) $t = 0$, (b) $t = 2.5$, when $\alpha = 0$, $\beta = 1$, $\mu = 4.84 \times 10^{-4}$, $h = 0.0125$, $T = 6$, and $0 \leq x \leq 4$.

Fig. 8: The plots of the two solitary waves obtained by the energy-preserving scheme: (c) $t = 3$, (d) $t = 3.5$, when $\alpha = 0$, $\beta = 1$, $\mu = 4.84 \times 10^{-4}$, $h = 0.0125$, $T = 6$, and $0 \leq x \leq 4$.
REFERENCES

Jin-liang Yan was born in Pingyao, Shanxi Province, China, in 1979. The author respectively received his Ph.D. and Master’s degrees in computational mathematics at Nanjing Normal University, Nanjing, Jiangsu Province, China, in July 2016 and July 2010.

He holds a teaching position at Wuyi University, Information and Computation Science in the department of Mathematics and Computer. The Wuyi University is located in Wu Yi Shan, Fujian Province of China. His current research interests include structure-preserving algorithms, numerical solution of partial differential equations and computing sciences.

Liang-hong Zheng was born in Nanping, Fujian Province, China, in 1983. The author received her bachelor’s degree in computer science and technology from Minnan Normal University, Zhangzhou, Fujian Province, China, in July 2009.

Also, she is a teacher at No. 1 Middle School in the department of Information and Technology. The No. 1 Middle School is located in Nanping, Fujian Province of China. Her current research interests include algorithm design, artificial intelligence, robot competition and video production.