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New Energy-Preserving Finite Volume Element
Scheme for the Korteweg-de Vries Equation

Jin-liang Yan and Liang-hong Zheng

Abstract—In this paper, an energy-preserving finite volume independent conservation laws for the KdV equation (1). The
element scheme is proposed for the Korteweg-de Vries equation. first three conservation laws of this set are:
The scheme is a combination of the discrete variational deriva- b b
tive method in time and the finite volume element method in M= / wde. K — l/ w2 do
space. The scheme can precisely conserve the global mass and " ’ u ’
energy at the discrete level, as well as has higher accuracy. For b
comparison, we also propose a momentum-preserving scheme J = / (gu2 + éu3 7 (uL)Q) dx
and a finite volume element scheme. The numerical results o \ 2 6 2 ’

demonstrate the remarkable accuracy and efficiency of our which correspond to mass, momentum and energy conserva-
method compared with other schemes. . .
N tion law, respectively.
Index Terms—Mass, Momentum, Energy, Finite volume ele-  |n this paper, the proposed energy-preserving scheme
ment method, KdV equation. and momentum-preserving scheme are constructed using the
discrete variational derivative method (DVDM) [4], which is
I. INTRODUCTION a method of designing special numerical schemes that retain

o ) ) the conservation/dissipation properties of the original partial
T HE ubiquitous Korteweg de-Dries (KdV) equation wagjjtferential equations (PDES). As to DVDM, researchers have

firstintroduced by Boussinesq in 1877 and rediscoverg@ne a lot of work, for example, Furihata and Mori [5]
by Korteweg and his Ph.D student de Vries [1] in 1895. Thgoposed a stable finite difference scheme for the Cahn-
KdV equation models a variety of nopllnear phenomenonﬁj"iard equation. Koide and Furihata [6] designed four
such as shallow water waves, acoustic waves in a harmogifservative schemes for the regularized long wave equation.
crystal and ion-acoustic waves in plasmas. The simplest foff[jther, Matsuo and Furihata [7] extended the general studies
[2] of KdV equation is given by to complex-valued PDEs, like the nonlinear Schrodinger
equation. Recently, the method has been extended in various
ways, for instance, Yaguchi, Matsuo and Sugihara [8] ex-
where the functioru = u(x,t) represents the water's freetended the method to nonuniform grids. Matsuo and Kuramae
surface in non-dimensional variable. The derivativechar- [9] proposed an alternating DVDM, and so on.
acterizes the time evolution of the wave propagating in oneFinite volume element method (FVEM), as a type of
direction, the nonlinear termu, describes the steepening ofmportant numerical tool for solving the differential equa-
the wave, and the linear term,.,, accounts for the spreadingtions, has a long history. This method is also known as a

or dispersion of the wave. In this paper we consider th®x method in some early references [10], or known as a
following form of KdV equation: generalized difference method [11] in China. The method

has been widely used in several engineering fields, such

Ut + Qg + Buty + Yz, =0, a<x<b, (1) as fluid mechanics, heat and mass transfer and petroleum
engineering. Perhaps the most important property of FVEM
is that it can preserve the conservation laws (mass, mo-
3¢ cd? mentum and heat flux) on each computational cell. This

a=c=/gd, B= 2w 1T 6 (@) important property, combined with adequate accuracy and

. ) ease of implementation, has attracted more people to do

with ¢ = /gd, the shallow water speed. Hewg is the |asearch in this field [12]-[15].

gravitational accelerati_on _and is the average depth of |n this paper, we will propose an energy-preserving
water. The KdV equation is completely integrable [3] andcheme for the KdV equation. The energy conservation law
give rise to multiple soliton solutions. The existence ot 5n important property of the KdV equation. Thus, in
conservation laws have been considered as an indiction;Qf numerical simulation of the KdV equation, we hope
the integrability of the KdV. There is an infinite set ofiatain this property. Moreover, to our knowledge, the energy-

. . , rE)reserving scheme often has better stability, as well as
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instance, Taha and Ablowitz [18] proposed a new schemeAny v;, € V}, has the form

using the inverse scattering transform notion. Zhang and N

Wang [19] proposed an improved homogeneous balance v = ZWZ&‘(JC%
method for Multi-Soliton Solutions of Gardner Equation. im1
Ascher a_nd McLachIan [20] d_eV(_aI(_)ped_ and compared SOWv%erevi — op (@i b).
symplectic and multi-symplectic finite difference schemes for In the sequel. if not specially illustrate. we will uéé
the KdV equation. Bhatta and Bhatti [21] presented a new quel, P y '

. N, . . to denote the numerical solution at= z; andt = mAt,
algorithm for approximating the numerical solution of the

o . : . ._.where At denotes the time step size. On the other hand, in
KdV equation in a modified B-polynomial basis. DarV|sh|thi aper. we will adont the following periodic boundar
Kheybari and Khani [22] proposed a pseudospectral methog> PaPeh P gp y

m)

for the KdV equation. Dag and Dereli [23] developed gondmons, 4 4
meshless method based on the radial basis functions. In Pu _ Pu (j=0,1,2) 3)
this paper, we develop an energy-preserving scheme, and 0x lz=a  OxI la=b s

study their conservative properties, accuracy and long time

behavior, and so on. ] ] .
The organization of the paper is as follows. In Section [N this section, we derive the proposed schemes and

we present some notations and preliminaries about FVERfalyze their conservative properties.

In Section 3, we derive the proposed schemes, and analyze

their conservative properties. In Sectianwe analyze the A. Concrete form of the proposed scheme

linear stability of the energy-preserving scheme. In SectionFgr convenience, we define “free energy” or “local energy”

5, we present the numerical examples to illustrate the effesf the KdV equation (1) as

tiveness of the new scheme. At last, we give some concise 8,

conclusions. G(u,uy) = %uQ + e % (uz)?,

and its spatial integration

IIl. NUMERICAL SCHEMES

II. NOTATION AND PRELIMINARIES

b
In this section, we define some notations and the frame- J(u) = / G (u,uz) dx
work of the FVEM. e ]
First, we use a uniform grid}, to discretize the solution &S the “global energy”. Then Eq. (1) can be rewritten as

domainga =2 < 11 < 12 < -+ < Tp_1 < T, = b with ou 8 [6G

grid spacingh = x; — z;—1 = (b — a)/n. Then we place a 9t~ oz \ou /)’ 4)
dual grid 7}, a = 9 < < x3/0 < 0 < Ty < . - I

. :gb with ; 1/2330: (;11/2+ T/S;jj/; 19 v ﬁ/Qand where dG/du is the variational derivative of? (u, u,) de-

Iy = [1()7391/2], IF = [%—1/2;%4—1/2] (Z =1,2,...,n— 1) fined by 5G oG ) oG
and Iy = [xn_1/2,zn] denote the dual elements. 30 = 9u Ba (8—) )
The trial function spacé/;, is taken as the linear element v u r a

space with respect t,. The basis function with respect toln the following, we start to derive the proposed energy-
z; is given by preserving scheme. To this end, we first give a scheme of

the “local energy”

1—h Yo —ay|, 1 <z<xiq
; = s ¢ - = ’ Py (6% m 6 m
bi(x) {07 elsewhere Gar(U™) = §(U;§ ))2 + E(Ulg ))3
+77(m) — 7 r(m) (5)
Thus, the functiong¢;(x) : i = 1,2,...,n} form a basis of _7 OF U + (0, U, )27
U, and anyu;, € Uy, has the following expression 2 2
and the associated global energy is defined by
N
up = Y uipi(x), N
i:zl Jd(U('rn)) — Z //Gd,k(Uv('rn))Ax7 (6)
k=
wherew; = up(z;,t). Further, on the elemedt, we have 0
where
up = ui—1(1 = &) + wi, N 1 1
" A
, gk—590+g1+---+gzv_1+§gzv-
uh:(ui—ui_l)/h, zel;, i=1,2,...,n, k=0

By resorting to Eq. (5), a discrete scheme of the varia-

whereé = (x — x;-1)/h. tional derivati dina t . h
Accordingly, the test function spadé, is chosen as the fional derivative corresponding to energy-preserving scheme

piecewise constant function (step function) space. The bagdIVen by

functions ofV}, are 0Gq Qo (mt) (m)
) P 5(U(m+1), U(m))k D) (Uk + Uk )
. _ ) l‘j_1/2 ST S Ij+1/27 ﬂ ml mal m ,
vile) = {0, elsewhere + g((Uzi h2umum iy O
Y (2 m+1 "
wherej =1,2,...,n. +§5§€>(U,£” Yoy,

(Advance online publication: 24 May 2017)
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Whereé,i2> denotes the central difference quotient3f/9z2. B. Conservation properties of the proposed schemes

Th h i [ he followi iff : . .
e above scheme is obtained by the following difference In the following, we start to study the conservative prop-

N erties of the KdV equation (1).
Z//(Gd,k(U(erl)) . Gd,k(U(m)))AIC

=0 Proposition 1ll.1. Let v be the analytical solution of (4),

N 5C and assume the following boundary condition
_ Iz d (m+1) _ rr(m)
L ) I
+ boundary term 0U Jyg

The above method is also known as the discrete variatiofasatisfied, then the continuous massis constant, that is
derivative method, more details about it please refer to [4]. b
After that we can obtain the fully discrete energy-preserving L] wdr = 0.
finite volume element scheme by substituting Eq. (7) into the dt
following weak form

0 oG Proof:
U (m) .,y — [ Y d )
Om ¥i) (83: (6(11("”4-1)7 { Z(be))) ’ d}l)’ ®)

d b b
wheres U™ = (U(m+1) (M) /At, At is the time step, E/ udz :/ us dz
U™ ey, andy; € Vi, (i =1,2,...,N). - * sa?

On the other hand, in order to reflect the superiority of = f/ — <—> dr = — {—] =0.
the energy-preserving method, a momentum-preserving finite a r=a
volume element scheme is also derived. -
Let (U™ ), & (U7)") + U/2, (2%, 2
(UlngJrl) i Uk )/2 and substitute them into Eq. (7) and roposition 111.2. Let u be the analytical solution of (4),
respectively in place of7(m+1) and /(™) then a discrete and assume the following boundary conditions

scheme of the variational derivative corresponding to the sa1b ,
momentum-preserving scheme is obtained as follows - [UE] =0, [G(u,ug)] vea =0
6Gd m+1/2 m+1/2 o
ST ey = 5((1-74(r Y+ (U2, are satisfied, then the continuous momentiris constant,
that is
/8 m m m
+ 5 (U D) 2, Ld "2 gy — 0,
2dt
(U(m+1/2))k) + %5,<f> ((Uim+1/2)) (U(m+1/2))k).
Substituting it into the following weak form Proof
0 0G
+m) gy — (9 d . 1 b b
(6, U™ 4bs) <8m (5(Uim+1/2)7 U(m+1/2))>a¢y>a 5% W de — / wiy da
whereU (™ ¢ U}, andy; € Vi, (j = 1,2,..., N), we obtain _ _/ w2 9 (5G) di
the fully discrete momentum-preserving scheme. 393
At last, for comparison, we also derived the following 5(; ou 6G
implicit midpoint finite volume element scheme = 1" . /a or ou dx
T+ rr(m _ m+1/2)77(m41/2 b
(ORU ™ ) = JUCTAUM I, ) ~ [ 6w de = [Gluw)]_, =0

rrx

(U£7rz+1/2),wk)+,Y(U(m+1/2) wk)7

where U(m+1/2) — (U(m+1) 1 y(m) /2, U™ ¢ U, and

Y € Vi (k=1,2,...,N). Proposition 111.3. Let w be the analytical solution of (4),
In addition, in order to illustrate the conservative propertiednd assume the following boundary conditions

of the schemes (9) and (10), we also consider the following b

discrete quantities, i.e., the global mass and the global {Q_G@} —0 { 1(5G) } -0

momentum oug ot |,_. du’ |,

are satisfied, then the continuous enetfjys constant, that
is

11 d [°

1 , (1) — | G(u,uy)dz =0.

Kd(U(m)) _ 5 Z ”(U]im))QAIC- dt o

(Advance online publication: 24 May 2017)
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Proof: Proof:
4 /b G(u,uy) dx —/ oG dx = /b (Gd(U(m‘H)) — Gd(U("”))) dx
dt T o ot At J,
G ou  9G du, b 6Gq Um+1) _ gy(m)
= + dx = 0 dz
/a (au ot " Buy at) o O(U D ) At
_ [f9Gou ,  [toud 0G, _ /” 5Ga Kl 3Gy o
- . quot ), E%(auz) * W S(Um+D) Um)) gz \ §(Um+1) U(m))
b §G Ou b5G 0 6G 1 /%0 6Gy 2
= = — — (— = —— e d
o™ A 2/(1 o (5(U<m+1>,U<m>)) v
9 ,6G 2 1,0G 2 71 5G4 7
“i/a e () = |~ 55 L:a‘o' - |- 2 sz L_a‘o'
| | | |

Similarly we have the following conservative properties.thegrem II1.3. (Discrete mass conservation law) LEt

Theorem Ill.1. (Discrete mass conservation law) LEt= U™ be the solution of (9), and assume the following
U™ be the solution of (8), and assume the followinfjoundary condition
boundary condition

5Gq ’
{ )7 0m) ] =0
8Gq ’ S(UL, U ) o=a
s, =
is satisfied, then the discrete maks; is constant, namely
is satisfied, then the discrete makk; is constant, namely

b
/ U™ dg = const.
b a
/ U™ dz = const.

Proof:

Proof: 1

- At J,

- m+1) m) b (m41) _ 77(m)

’ (U(7rz+1) o U(m)) dx

a =

(rrL+1) (m) At
- [ () a L[,
A (m) grm)y ) &

\ . (U™ U™y
o / 5Gy . ,
= i 633 6(U(m+1) U(rn)) _ |: B %] —0.
. 5G. . AN L))
- (ﬂ)‘((]('m-l—l)7 U('rn)) p—a -

B  Theorem lll.4. (Discrete momentum conservation law) Let
. . U = U™ e the solution of (9), and assume the followin
Theorem 11l.2. (Discrete energy conservation law) Le ©) 9

oundary conditions
U = U pe the solution of (8), and assume the following y
boundary condition

{U(mﬂ) +um 0G4 b 0
. 5 21b 2 AR AR I P
2 () | (AN
is satisfied, then the discrete energdyis constant, namely are satisfied, then the discrete momentii is constant,
namely
b 1 b
/ Gd(U(m)) dx = const. 3 / (U(m))2 dx = const.

(Advance online publication: 24 May 2017)
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Proof: Then assume thaﬁf;m) is periodic inz-direction, and at
1 grid nodez;, let
Q—Aﬁ [(U(m+1))2 B (U('rn))ﬂ dx U(m) _ V(m)eiwjh (14)
a 7 Y
b m+1 7 m+1) _ m . . . .
:/ (U( "+ Ul ”)) (U( U )) de where V(™) is amplitude at time level, andw is phase
a 2 At angle inz-direction. Substituting (14) into (13), we have
b m+1 7
= / (W)g%(j(m)d:p (as — ias) V™Y = (ag + ias)V ™,
7 brpm+l) L pym)N g 5Gy ; where . .
T2 e W z a5 = 2a sin(2wh) + 2aq sin(wh).
by (UmtD) L ym) e Therefore, the growth factoy for the proposed energy-
= — dx preserving scheme is
. Oz 2 5(U_§_m),U£m))
b9 lg| = VD Jas +ias -1
- / 5, GaU™, U ) do = v as —ias|
‘ (m) 7r(m+1)31b Therefore, it meets the unconditionally stable criterion g
= [Gd(U U )} _=0. .
r=a 1) and we conclude that the proposed energy-preserving

B scheme is unconditionally stable.
In the above equations, integration by parts formula and
periodic boundary conditions are used. At last, for the V. NUMERICAL EXPERIMENTS

standard finite volume element scheme (10), we also havgy, s section, we will test the proposed schemes numeri-

the following conservative property, namely cally. Through these numerical examples, we will analyze
the accuracy and conservative properties of the proposed
schemes, and further illustrate the advantages of the energy-

Theorem IIl.5. (Discrete mass conservation law.) Ligt= i
preserving scheme.

(Uk)kez be the solution of (10), then the discrete magg
is constant, namely
b A. Single solitary wave
/ U™ dz = const. Here we consider the KdV equation (1), and set= 1,
a d =6 andg = 9.8, then we can obtain, ¢, S and~ by (2).
The proof of Theorem 1.5 is similar to the one ofAccording to [21], Eq. (1) has the following solitary wave
Theorem III.1. solution:

1 /3A
IV. STABILITY ANALYSIS u(x,t) = A sech? [5 \ ﬁ(x - ’ft)}v

In this sec::on, WZ s]:[udy tlh_e St;b”'wl othhe ENeT9Yherex = ¢(1+£). This solution corresponds to a solitary
preserving scheme (B) for solving Eq. (1). Here we onb(/ave of amplitudeA. Here ¢ denotes the velocity of the

consider equa_t|ons W'th.O.Ut nonlinear terms, which allow .lf?aveling wave. Here we adopt the following initial solution
to study the linear stability of the proposed schemes using

the Fourier method. 0) — A sech? 1 /34
Firstly, from Eq. (8), we get the following fully discrete u(z,0) = A sec VBT

energy-preserving scheme: and the periodic boundary condition

OqUéT;l) + OéQUk(:m+1) + Oé3U]§m+1) — OégU(m+1)

~1 k+1 u(a,t) = u(b,t).
— UM™Y = U™ o U(m)—i—a Ul . . -
1% k+2 We—2 = 2% k-1 T 535k On the other hand, in order to validate the efficiency of
+a2U,g’fi +a1U,S’f; (12) the proposed methods, in( t)he sequel, we will Usg =
+ a;;[((U,E’_”f”)Q + U,E’_’T”U]g’_”i + (U]g'_”i)Q) maxo<i<n—1 |U(zi, tn) — u;"”| and order= log, (|ju™ —

(n) n (n)
(U2 gl (rmyy] Usp lloo/[ul™ — U™ ||s0) to evaluate the accuracy and the
k+1 k+1 k+1 k+1 ’ convergence orders of the methods. In addition, we will use
wherej =0,1,..., N, |I — I}|/I} to denote the relative errors of the invariants,

) whereI;(i = 1,2, 3) respectively corresponds to the global
o = *’Y(At’ az = 6yAt — 3ah”At, energy (6) and mass, momentum (11) at the discrete level.
as = 12h3, ay = Bh2AL. Firstly, we test the accuracy and the convergence orders

For the linear Fourier analysis, we only consider the Iineglf the propose_d schemes. Here we assume the problem is

version of Eq. (12), which is given by solved on the interval—100, 100]. In order to measure the

' ' error in space, a relatively small time stéyg = 0.0001 is
a U 4 U™ 4 U™ — apuimY chosen such that the error from the time direction can be

k+1 L. . .
3 (mt1) _ (m) (m) (m) negligible, and the spatial steps are respectively chosen as
Uppy = —lUpy — Uity + sl @3 2 =1, h = 1/2 and h = 1/4. The spatialL
+ agU,gT{ +ay U,ST; errors and corresponding convergence rates of the proposed

(Advance online publication: 24 May 2017)
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TABLE [: Spatial L., errors and convergence orders of the proposed methodsWith1000, At = 0.0001, —100 < x <

100.
h MFVEM order EFVEM order FVEM order
2 1.6914e — 03 — 4.0981e — 04 — 4.0981e — 04 —
1 4.3487¢ — 04 | 1.96 | 1.0390e — 04 | 1.98 | 1.0390e — 04 | 1.98
1/2 1.0934¢ — 04 | 1.99 | 2.5993e¢ — 05 | 2.00 | 2.5993e¢ — 05 | 2.00
1/4 2.7368¢ — 05 | 2.00 | 6.5672¢ — 06 | 1.98 | 6.5672¢ — 06 | 1.98

TABLE II: Temporal L., errors and convergence orders of the proposed methodsithl, h = 1/16, —100 < = < 100.

At MFVEM order EFVEM order FVEM order
1/2 8.7962e — 03 — 9.1200e — 03 — 8.7841e — 03 —
1/4 2.3166e — 03 | 1.92 | 2.3943e — 03 | 1.93 | 2.3035e —03 | 1.93
1/8 5.9953e — 04 | 1.95 | 6.0927e —04 | 1.97 | 5.8609e —04 | 1.97
1/16 || 1.6364e —04 | 1.87 | 1.5595¢ — 04 | 1.97 | 1.5012e — 04 | 1.97

TABLE Ill: L, errors and convergence orders of the proposed methodsiwith3, h = At¢, —100 < x < 100.

h MFVEM order EFVEM order FVEM order
1 9.7275e — 02 —_ 9.2927e — 02 —_ 9.0518e — 02 —_
1/2 2.9056e — 02 1.74 2.7584e — 02 1.75 2.6806e — 02 1.76
1/4 7.657e — 03 1.92 7.2513e — 03 1.93 7.0406e — 03 1.93
1/8 1.9412e — 03 1.98 1.8372e — 03 1.98 1.7833e — 03 1.98
)X 10°
——EFVEM r 0.025 :
——EVEM ——h=At=1/16
—+—MFVEM ——h=At=1/8
15¢ | 0.02H —+—h=At=1/4
8 ——h=At=1/2
2 ~
X % 0.015f
I I
C"‘. ™
X X L
=1 1 0.01
0.5f
0.0051
‘ ‘ ‘ ‘ ‘ R S P W=\
0 0.5 1 1.5 2 2.5 3 -100 -50 0 50 100
t X
(@) (b)

Fig. 1: The errors of the proposed schemes: (a) the maximum errors of the three proposed sclEme8 anhd with
h = At = 1/16, (b) the numerical errors corresponding to different steps of the energy-preserving schEme3at

methods are presented in Table I, which clearly shows thatthree methods are all approximately equaltin space
the energy-preserving scheme and the finite volume elemant time.

scheme have higher accuracy than the momentum-preservingecondly, in order to compare the accuracy of the proposed
scheme. Similarly, for the time direction, a relatively smalhethods, we plot the variation of thé.. errors of the
spatial steph = 1/16 is chosen such that the error fromproposed methods, whelh = At = 1/16 and T = 3, in

the spatial direction can be negligible. The tempatal  Figure 1(a), which clearly shows that the growth of the errors
error and corresponding convergence rates of the propoggdhree methods are linear, and the momentum-preserving
methods are presented in Table II, which clearly shows thgtheme has the largest error. On the other hand, Figure 1(b)

the convergence rates of three methods are approximatgiésents the numerical errors corresponding to different steps
equal to2. It is also noted that the error of the momentumgf the energy-preserving schemeZat= 3.

preserving scheme cease to decrease at a certain point, whicR

: . o t last, we test the propagation of the solitary wave
is because the error from the time direction become ver . )
a¥1d the conservative properties of the proposed schemes.

small such that it can not be distinguished from the spatif'?1 the sequel, we set spatial stép= 0.5 and temporal
error. On the other hand, the,, errors and the convergence quel, P e b

rates of three methods with— At andT' — 3 are presented step At = 0.1, and the problem is solved over the interval

in Table Ill, which clearly shows that the convergence rat(£§50’50]' F|gur_e 2 presents _the numerical results of the
energy-preserving scheme forin [0,40]. The surface plot

(Advance online publication: 24 May 2017)



TAENG International Journal of Applied Mathematics, 47:2, [JAM 47 2 13

1
i

i

—e—mass
[l —=—momentum
——energy

_|I1
|
=
o

n

(I,

|
=
N
T

1

=

N
i

|
[
(o))

o

10 20 30 40

(b)

Fig. 2: The numerical results of the energy-preserving scheme: (a) numerical solution, (b) the relative errors of invariants,
whenh =0.5, At =0.1,a=1,d=6,T = 40 and —50 < x < 50.

-4 10°
10
= 107"
‘_|=_ —©—mass H:_ —e—mass
o —-10r —=—momentum ET —s—momentum
= — =" -
5 energy 3 102 energy
_12 L
-14r o L4
o -16
-16 ; '
0 10 20 30 40 10 0 10 20 30 40
t t
(@) (b)

Fig. 3: The relative errors of the invariants of the proposed schemes: (a) momentum-preserving scheme, (b) finite volume
element scheme, when=0.5, At =0.1,a=1,d =6, T = 40 and —50 < x < 50.
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1
i

—e—mass
H —=—momentum
——energy

llh
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=
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n
I

lg(|i:

0 200 400 600 800 1000
t

(b)
Fig. 4: The numerical results of the energy-preserving scheme: (a) numerical solution, (b) the relative errors of invariants,
whenh = 0.5, At =0.1,a=1,d =6, T = 1000 and —50 < z < 50.

of numerical solution at tim@ = 40 is presented in Figure almost unchanged with time increase. Figure 2(b) shows
2(a), which shows the solitary wave moves to the rigthat the relative errors of the invariants at the discrete level.
at a constant speed, and the wave shape and amplititdés clearly seen that the energy-preserving method can

(Advance online publication: 24 May 2017)
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Fig. 5: The relative errors of the invariants of the proposed schemes: (a) momentum-preserving scheme, (b) finite volume
element scheme, when= 0.5, At =0.1,a =1, d =6, T = 1000 and —50 < z < 50.

precisely preserve the discrete mass and energy to withvhere
machine precision. The relative errors of the invariants of the
momentum-preserving scheme and the finite volume elemeht= 1 + exp(m1) + exp(n2) + <
scheme are presented in Figure 3, which shows that the
momentum-preserving scheme can precisely conserve the
discrete mass and momentum to within machine precisio, _ 0.3 I — 0.1 e — — 048l e — —1.07]
and the finite volume element scheme can precisely conserve \ ~ ' 7>\ 5~ PeoTeen e e
the discrete mass to within machine precision. In view of For all the computations, we have used the stepsizes
Figure 2 and Figure 3, we conclude that three schemes jlk 0.0125, At = 0.05, and the computations are done up to
can be used to simulate the propagation of the solitary wavine T = 6. The numerical results of the energy-preserving
but in the aspect of accuracy and conservation properties, §aeme are presented in Figure 6, which shows that the
energy-preserving method is a better method. On the otkgrergy-preserving scheme can exactly preserve the global
hand, in order to test the long time behavior of the energghrass and energy at the discrete level. On the other hand,
preserving scheme, we also present the numerical results=@fures 7-9 display the interaction process of two solitary
the energy-preserving method forin [0,1000] in Figure waves. It is noted that the taller wave initially located on
4, which illustrates the scheme has good stability and lomige left of the lower wave. Then, at= 2.5, the taller wave
time computation ability. In addition, for comparison, we alseatched up the lower wave and occurred interaction, and at
present the relative errors of the invariants of the momentum— 3 and¢ = 3.5, the taller wave and the lower wave
preserving scheme and the finite volume element schemeoiferlapped, as is noted in Figure 8. It is also noted that the
Figure 5. taller wave and the lower wave started to leave away when
t > 3.5, and the taller wave and the lower wave interchanged
their positions at = 6, as is shown in Figure 9. On the
other hand, the numerical results also shows that the energy-
preserving scheme has better performances than the ones of
In order to further illustrate the effectiveness of the prd24], i.e., the method of [24] needs smaller stepsizes and is
posed scheme, here we discuss the interaction of two solit&gt suitable for long time computation.
waves. Settingy = 0, 8 = 1, v = 4.84 x 1074, then we
obtain the following KdV equation,

lh—1a

L+

2
> exp(n + 12),

Lix — Byt +my(i = 1,2),

B. Interaction of two solitary waves

VI. CONCLUSIONS

In this paper, an energy-preserving scheme is proposed
for the Korteweg-de Vries equation. We investigate the
accuracy and the conservative properties of the proposed
) ) ) _ method and compare its performances with the ones of a
Here we consider the KdV equation (15) with the following,omentum-preserving scheme and a finite volume element
periodic boundary condition scheme. The numerical results show that three schemes all

can simulate the KdV equation, but in the aspect of accuracy

u(0,t) = u(4,t), t>0. and conservative properties, the energy-preserving scheme

has smaller accuracy and better conservative properties than

On the other hand, according to [18], [24], Eq. (15) has thather two schemes. Thus the energy-preserving scheme is

U + utiy +4.84 X 10 Uy =0, 0<z<4. (15)

following exact solution, a better choice for the KdV equation. Besides, the energy-
preserving scheme is unconditionally stable and has better
u(z,t) = 12y(log F) e (16) long time computation ability.

(Advance online publication: 24 May 2017)
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Fig. 6: The numerical results of the two solitary waves obtained by the energy-preserving scheme: (a) the surface plot of
numerical solution, (b) the relative errors of invariants, whes- 0, 5 = 1, u = 4.84 x 1074, h = 0.0125, T = 6, and
0<x <4,
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Fig. 7: The plots of the two solitary waves obtained by the energy-preserving scheme: (g)(b) ¢t = 2.5, whena = 0,
B=1,u=484x10"% h=0.0125T =6, and0 < z < 4.
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Fig. 8: The plots of the two solitary waves obtained by the energy-preserving scheme: &)(d) ¢t = 3.5, whena = 0,
B=1,u=484x10"% h=0.0125T =6, and0 < z < 4.
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Fig. 9: The plots of the two solitary waves obtained by the energy-preserving scheme: ®J5, (f) ¢
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B=1,p=484x10"% h=0.0125T =6, and0 < x < 4.
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