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Abstract—In this paper, an energy-preserving finite volume
element scheme is proposed for the Korteweg-de Vries equation.
The scheme is a combination of the discrete variational deriva-
tive method in time and the finite volume element method in
space. The scheme can precisely conserve the global mass and
energy at the discrete level, as well as has higher accuracy. For
comparison, we also propose a momentum-preserving scheme
and a finite volume element scheme. The numerical results
demonstrate the remarkable accuracy and efficiency of our
method compared with other schemes.

Index Terms—Mass, Momentum, Energy, Finite volume ele-
ment method, KdV equation.

I. I NTRODUCTION

T HE ubiquitous Korteweg de-Dries (KdV) equation was
first introduced by Boussinesq in 1877 and rediscovered

by Korteweg and his Ph.D student de Vries [1] in 1895. The
KdV equation models a variety of nonlinear phenomenona,
such as shallow water waves, acoustic waves in a harmonic
crystal and ion-acoustic waves in plasmas. The simplest form
[2] of KdV equation is given by

ut + εuux + µuxxx = 0,

where the functionu = u(x, t) represents the water’s free
surface in non-dimensional variable. The derivativeut char-
acterizes the time evolution of the wave propagating in one
direction, the nonlinear termuux describes the steepening of
the wave, and the linear termuxxx accounts for the spreading
or dispersion of the wave. In this paper we consider the
following form of KdV equation:

ut + αux + βuux + γuxxx = 0, a ≤ x ≤ b, (1)

whereα, β, γ are constants given by

α = c =
√

gd, β =
3c

2d
, γ =

cd2

6
, (2)

with c =
√
gd, the shallow water speed. Hereg is the

gravitational acceleration andd is the average depth of
water. The KdV equation is completely integrable [3] and
give rise to multiple soliton solutions. The existence of
conservation laws have been considered as an indiction of
the integrability of the KdV. There is an infinite set of

Manuscript received December 02, 2016; revised March 24, 2017. This
work was supported in part by the PhD Start-up Fund of Wuyi Univer-
sity (Grant No YJ201702), the Education Foundation of Fujian Province
for Young Teachers (Grant No JA14319) and Undergraduate Technology
Innovation Project of Fujian Province (Grant No SJ2011019).

Jin-Liang Yan is with the department of Mathematics and Computer,
Wuyi University, Wuyi Shan, Fujian, 354300, China, e-mail: yanjin-
liang3333@163.com.

Liang-hong Zheng is with the department of Information and Computer
Technology, No 1 middle school of Nanping, Nanping, Fujian, 353000,
China. e-mail: 413845939@qq.com.

independent conservation laws for the KdV equation (1). The
first three conservation laws of this set are:

M =

∫ b

a

u dx, K =
1

2

∫ b

a

u2 dx,

J =

∫ b

a

(

α

2
u2 +

β

6
u3 − γ

2

(

ux
)2
)

dx,

which correspond to mass, momentum and energy conserva-
tion law, respectively.

In this paper, the proposed energy-preserving scheme
and momentum-preserving scheme are constructed using the
discrete variational derivative method (DVDM) [4], which is
a method of designing special numerical schemes that retain
the conservation/dissipation properties of the original partial
differential equations (PDEs). As to DVDM, researchers have
done a lot of work, for example, Furihata and Mori [5]
proposed a stable finite difference scheme for the Cahn-
Hilliard equation. Koide and Furihata [6] designed four
conservative schemes for the regularized long wave equation.
Further, Matsuo and Furihata [7] extended the general studies
to complex-valued PDEs, like the nonlinear Schrödinger
equation. Recently, the method has been extended in various
ways, for instance, Yaguchi, Matsuo and Sugihara [8] ex-
tended the method to nonuniform grids. Matsuo and Kuramae
[9] proposed an alternating DVDM, and so on.

Finite volume element method (FVEM), as a type of
important numerical tool for solving the differential equa-
tions, has a long history. This method is also known as a
box method in some early references [10], or known as a
generalized difference method [11] in China. The method
has been widely used in several engineering fields, such
as fluid mechanics, heat and mass transfer and petroleum
engineering. Perhaps the most important property of FVEM
is that it can preserve the conservation laws (mass, mo-
mentum and heat flux) on each computational cell. This
important property, combined with adequate accuracy and
ease of implementation, has attracted more people to do
research in this field [12]–[15].

In this paper, we will propose an energy-preserving
scheme for the KdV equation. The energy conservation law
is an important property of the KdV equation. Thus, in
the numerical simulation of the KdV equation, we hope
retain this property. Moreover, to our knowledge, the energy-
preserving scheme often has better stability, as well as
smaller errors. Li and Vu-Quoc [16] once said that “in some
areas, the ability to preserve some invariant properties of
the original differential equation is a criterion to judge the
success of a numerical simulation”. Zhang [17] pointed out
that the nonconservative schemes may easily show nonlinear
blow-up. Thus, in view of this point, we hope design an
energy-preserving scheme for the KdV equation (1). About
the KdV equation, researchers have done a lot of work, for
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instance, Taha and Ablowitz [18] proposed a new scheme
using the inverse scattering transform notion. Zhang and
Wang [19] proposed an improved homogeneous balance
method for Multi-Soliton Solutions of Gardner Equation.
Ascher and McLachlan [20] developed and compared some
symplectic and multi-symplectic finite difference schemes for
the KdV equation. Bhatta and Bhatti [21] presented a new
algorithm for approximating the numerical solution of the
KdV equation in a modified B-polynomial basis. Darvishi,
Kheybari and Khani [22] proposed a pseudospectral method
for the KdV equation. Dağ and Dereli [23] developed a
meshless method based on the radial basis functions. In
this paper, we develop an energy-preserving scheme, and
study their conservative properties, accuracy and long time
behavior, and so on.

The organization of the paper is as follows. In Section2,
we present some notations and preliminaries about FVEM.
In Section 3, we derive the proposed schemes, and analyze
their conservative properties. In Section4, we analyze the
linear stability of the energy-preserving scheme. In Section
5, we present the numerical examples to illustrate the effec-
tiveness of the new scheme. At last, we give some concise
conclusions.

II. N OTATION AND PRELIMINARIES

In this section, we define some notations and the frame-
work of the FVEM.

First, we use a uniform gridTh to discretize the solution
domain,a = x0 < x1 < x2 < · · · < xn−1 < xn = b with
grid spacingh = xi − xi−1 = (b − a)/n. Then we place a
dual grid T ∗

h , a = x0 < x1/2 < x3/2 < · · · < xn−1/2 <
xn = b with xi−1/2 = (xi−1 + xi)/2, i = 1, 2, . . . , n, and
I∗0 = [x0, x1/2], I∗i = [xi−1/2, xi+1/2] (i = 1, 2, . . . , n− 1)
andI∗N = [xN−1/2, xN ] denote the dual elements.

The trial function spaceUh is taken as the linear element
space with respect toTh. The basis function with respect to
xi is given by

φi(x) =

{

1− h−1|x− xi|, xi−1 ≤ x ≤ xi+1,

0, elsewhere.

Thus, the functions{φi(x) : i = 1, 2, . . . , n} form a basis of
Uh and anyuh ∈ Uh has the following expression

uh =

N
∑

i=1

uiφi(x),

whereui = uh(xi, t). Further, on the elementIi, we have

uh = ui−1(1− ξ) + uiξ,

u
′

h = (ui − ui−1) /h, x ∈ Ii, i = 1, 2, . . . , n,

whereξ = (x− xi−1)/h.
Accordingly, the test function spaceVh is chosen as the

piecewise constant function (step function) space. The basis
functions ofVh are

ψj(x) =

{

1, xj−1/2 ≤ x ≤ xj+1/2,

0, elsewhere,

wherej = 1, 2, . . . , n.

Any vh ∈ Vh has the form

vh =

N
∑

i=1

viψi(x),

wherevi = vh(xi, t).
In the sequel, if not specially illustrate, we will useU (m)

k

to denote the numerical solution atx = xk and t = m∆t,
where∆t denotes the time step size. On the other hand, in
this paper, we will adopt the following periodic boundary
conditions,

∂ju

∂xj

∣

∣

∣

x=a
=
∂ju

∂xj

∣

∣

∣

x=b
(j = 0, 1, 2). (3)

III. N UMERICAL SCHEMES

In this section, we derive the proposed schemes and
analyze their conservative properties.

A. Concrete form of the proposed scheme

For convenience, we define “free energy” or “local energy”
of the KdV equation (1) as

G(u, ux) =
α

2
u2 +

β

6
u3 − γ

2
(ux)

2
,

and its spatial integration

J(u) =

∫ b

a

G (u, ux) dx

as the “global energy”. Then Eq. (1) can be rewritten as

∂u

∂t
= − ∂

∂x

(

δG

δu

)

, (4)

whereδG/δu is the variational derivative ofG (u, ux) de-
fined by

δG

δu
=
∂G

∂u
− ∂

∂x

(

∂G

∂ux

)

.

In the following, we start to derive the proposed energy-
preserving scheme. To this end, we first give a scheme of
the “local energy”

Gd,k(U
(m)) =

α

2
(U

(m)
k )2 +

β

6
(U

(m)
k )3

− γ

2

(δ+k U
(m)
k )2 + (δ−k U

(m)
k )2

2
,

(5)

and the associated global energy is defined by

Jd(U
(m)) =

N
∑

k=0

′′Gd,k(U
(m))∆x, (6)

where
N
∑

k=0

′′gk ,
1

2
g0 + g1 + · · ·+ gN−1 +

1

2
gN .

By resorting to Eq. (5), a discrete scheme of the varia-
tional derivative corresponding to energy-preserving scheme
is given by

δGd

δ(U (m+1), U (m))k
=
α

2
(U

(m+1)
k + U

(m)
k )

+
β

6

(

(U
(m+1)
k )2 + U

(m+1)
k U

(m)
k + (U

(m)
k )2

)

+
γ

2
δ
〈2〉
k (U

(m+1)
k + U

(m)
k ),

(7)
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whereδ〈2〉k denotes the central difference quotient of∂2/∂x2.
The above scheme is obtained by the following difference:

N
∑

k=0

′′
(

Gd,k(U
(m+1))−Gd,k(U

(m))
)

∆x

=

N
∑

k=0

′′ δGd

δ(U (m+1), U (m))k

(

U
(m+1)
k − U

(m)
k

)

∆x

+ boundary term.

The above method is also known as the discrete variational
derivative method, more details about it please refer to [4].
After that we can obtain the fully discrete energy-preserving
finite volume element scheme by substituting Eq. (7) into the
following weak form

(δ+mU
(m), ψi) = −

(

∂

∂x

(

δGd

δ(U (m+1), U (m))

)

, ψi

)

, (8)

whereδ+mU
(m) = (U (m+1)−U (m))/∆t, ∆t is the time step,

U (m) ∈ Uh andψi ∈ Vh (i = 1, 2, . . . , N ).
On the other hand, in order to reflect the superiority of

the energy-preserving method, a momentum-preserving finite
volume element scheme is also derived.

Let (U (m+1/2)
+ )k , (U

(m+1)
k+1 + U

(m)
k+1)/2, (U (m+1/2)

− )k ,

(U
(m+1)
k−1 + U

(m)
k−1)/2, and substitute them into Eq. (7) and

respectively in place ofU (m+1) andU (m), then a discrete
scheme of the variational derivative corresponding to the
momentum-preserving scheme is obtained as follows

δGd

δ(U
(m+1/2)
+ , U

(m+1/2)
− )k

=
α

2

(

(U
(m+1/2)
+ )k + (U

(m+1/2)
− )k

)

+
β

6

(

(U
(m+1/2)
+ )2k + (U

(m+1/2)
+ )k(U

(m+1/2)
− )k

+ (U
(m+1/2)
− )2k

)

+
γ

2
δ
〈2〉
k

(

(U
(m+1/2)
+ )k + (U

(m+1/2)
− )k

)

.

Substituting it into the following weak form

(δ+mU
(m), ψj) = −

(

∂

∂x

(

δGd

δ(U
(m+1/2)
+ , U

(m+1/2)
− )

)

, ψj

)

,

(9)
whereU (m) ∈ Uh andψj ∈ Vh (j = 1, 2, . . . , N ), we obtain
the fully discrete momentum-preserving scheme.

At last, for comparison, we also derived the following
implicit midpoint finite volume element scheme

(δ+mU
(m), ψk) = β

(

U (m+1/2)U (m+1/2)
x , ψk

)

− α
(

U (m+1/2)
x , ψk

)

+ γ
(

U (m+1/2)
xxx , ψk

)

,
(10)

whereU (m+1/2) = (U (m+1) + U (m))/2, U (m) ∈ Uh, and
ψk ∈ Vh (k = 1, 2, . . . , N ).

In addition, in order to illustrate the conservative properties
of the schemes (9) and (10), we also consider the following
discrete quantities, i.e., the global mass and the global
momentum

Md(U
(m)) =

N
∑

k=0

′′U
(m)
k ∆x,

Kd(U
(m)) =

1

2

N
∑

k=0

′′(U
(m)
k )2∆x.

(11)

B. Conservation properties of the proposed schemes

In the following, we start to study the conservative prop-
erties of the KdV equation (1).

Proposition III.1. Let u be the analytical solution of (4),
and assume the following boundary condition

−
[

δG

δu

]b

x=a

= 0

is satisfied, then the continuous massM is constant, that is

d

dt

∫ b

a

u dx = 0.

Proof:

d

dt

∫ b

a

u dx =

∫ b

a

ut dx

= −
∫ b

a

∂

∂x

(

δG

δu

)

dx = −
[

δG

δu

]b

x=a

= 0.

Proposition III.2. Let u be the analytical solution of (4),
and assume the following boundary conditions

−
[

u
δG

δu

]b

x=a

= 0,
[

G(u, ux)
]b

x=a
= 0

are satisfied, then the continuous momentumK is constant,
that is

1

2

d

dt

∫ b

a

u2 dx = 0.

Proof:

1

2

d

dt

∫ b

a

u2 dx =

∫ b

a

uut dx

= −
∫ b

a

u
∂

∂x

(

δG

δu

)

dx

= −
[

u
δG

δu

]b

x=a

+

∫ b

a

∂u

∂x

δG

δu
dx

=

∫ b

a

∂

∂x
G(u, ux) dx =

[

G(u, ux)
]b

x=a
= 0.

Proposition III.3. Let u be the analytical solution of (4),
and assume the following boundary conditions

[

∂G

∂ux

∂u

∂t

]b

x=a

= 0,

[

− 1

2

(δG

δu

)2
]b

x=a

= 0

are satisfied, then the continuous energyJ is constant, that
is

d

dt

∫ b

a

G(u, ux) dx = 0.
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Proof:

d

dt

∫ b

a

G(u, ux) dx =

∫ b

a

∂G

∂t
dx

=

∫ b

a

(

∂G

∂u

∂u

∂t
+
∂G

∂ux

∂ux
∂t

)

dx

=

∫ b

a

∂G

∂u

∂u

∂t
dx−

∫ b

a

∂u

∂t

∂

∂x

( ∂G

∂ux

)

dx

=

∫ b

a

δG

δu

∂u

∂t
dx = −

∫ b

a

δG

δu

∂

∂x

(δG

δu

)

dx

= −1

2

∫ b

a

∂

∂x

(δG

δu

)2
dx =

[

− 1

2

(δG

δu

)2
]b

x=a

= 0.

Similarly we have the following conservative properties.

Theorem III.1. (Discrete mass conservation law) LetU =
U (m) be the solution of (8), and assume the following
boundary condition

[

δGd

δ(U (m+1), U (m))

]b

x=a

= 0

is satisfied, then the discrete massMd is constant, namely

∫ b

a

U (m) dx = const.

Proof:

1

∆t

∫ b

a

(

U (m+1) − U (m)
)

dx

=

∫ b

a

(

U (m+1) − U (m)

∆t

)

dx

= −
∫ b

a

∂

∂x

(

δGd

δ(U (m+1), U (m))

)

dx

=

[

− δGd

δ(U (m+1), U (m))

]b

x=a

= 0.

Theorem III.2. (Discrete energy conservation law) Let
U = U (m) be the solution of (8), and assume the following
boundary condition

[

− 1

2

(

δGd

δ(U (m+1), U (m))

)2]b

x=a

= 0

is satisfied, then the discrete energyJd is constant, namely

∫ b

a

Gd(U
(m)) dx = const.

Proof:

1

∆t

∫ b

a

(

Gd(U
(m+1))−Gd(U

(m))
)

dx

=

∫ b

a

δGd

δ(U (m+1), U (m))

(

U (m+1) − U (m)

∆t

)

dx

= −
∫ b

a

δGd

δ(U (m+1), U (m))

∂

∂x

(

δGd

δ(U (m+1), U (m))

)

dx

= −1

2

∫ b

a

∂

∂x

(

δGd

δ(U (m+1), U (m))

)2

dx

=

[

− 1

2

(

δGd

δ(U (m+1), U (m))

)2]b

x=a

= 0.

Theorem III.3. (Discrete mass conservation law) LetU =
U (m) be the solution of (9), and assume the following
boundary condition

[

δGd

δ(U
(m)
+ , U

(m)
− )

]b

x=a

= 0

is satisfied, then the discrete massMd is constant, namely

∫ b

a

U (m) dx = const.

Proof:

1

∆t

∫ b

a

(

U (m+1) − U (m)
)

dx

=

∫ b

a

(

U (m+1) − U (m)

∆t

)

dx

= −
∫ b

a

∂

∂x

(

δGd

δ(U
(m)
+ , U

(m)
− )

)

dx

=

[

− δGd

δ(U
(m)
+ , U

(m)
− )

]b

x=a

= 0.

Theorem III.4. (Discrete momentum conservation law) Let
U = U (m) be the solution of (9), and assume the following
boundary conditions

[

U (m+1) + U (m)

2

δGd

δ(U
(m)
+ , U

(m)
− )

]b

x=a

= 0

[

Gd(U
(m), U (m+1))

]b

x=a
= 0

are satisfied, then the discrete momentumKd is constant,
namely

1

2

∫ b

a

(U (m))2 dx = const.
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Proof:

1

2∆t

∫ b

a

[

(U (m+1))2 − (U (m))2
]

dx

=

∫ b

a

(

U (m+1) + U (m)

2

)(

U (m+1) − U (m)

∆t

)

dx

=

∫ b

a

(

U (m+1) + U (m)

2

)

δ+mU
(m)dx

= −
∫ b

a

(

U (m+1) + U (m)

2

)

∂

∂x

(

δGd

δ(U
(m)
+ , U

(m)
− )

)

dx

=

∫ b

a

∂

∂x

(

U (m+1) + U (m)

2

)

δGd

δ(U
(m)
+ , U

(m)
− )

dx

=

∫ b

a

∂

∂x
Gd(U

(m), U (m+1)) dx

=
[

Gd(U
(m), U (m+1))

]b

x=a
= 0.

In the above equations, integration by parts formula and
periodic boundary conditions are used. At last, for the
standard finite volume element scheme (10), we also have
the following conservative property, namely

Theorem III.5. (Discrete mass conservation law.) LetU =
(Uk)k∈Z be the solution of (10), then the discrete massMd

is constant, namely
∫ b

a

U (m)dx = const.

The proof of Theorem III.5 is similar to the one of
Theorem III.1.

IV. STABILITY ANALYSIS

In this section, we study the stability of the energy-
preserving scheme (8) for solving Eq. (1). Here we only
consider equations without nonlinear terms, which allow us
to study the linear stability of the proposed schemes using
the Fourier method.

Firstly, from Eq. (8), we get the following fully discrete
energy-preserving scheme:

α1U
(m+1)
k−2 + α2U

(m+1)
k−1 + α3U

(m+1)
k − α2U

(m+1)
k+1

− α1U
(m+1)
k+2 = −α1U

(m)
k−2 − α2U

(m)
k−1 + α3U

(m)
k

+ α2U
(m)
k+1 + α1U

(m)
k+2

+ α4

[(

(U
(m+1)
k−1 )2 + U

(m+1)
k−1 U

(m)
k−1 + (U

(m)
k−1)

2
)

−
(

(U
(m+1)
k+1 )2 + U

(m+1)
k+1 U

(m)
k+1 + (U

(m)
k+1)

2
)]

,

(12)

wherej = 0, 1, . . . , N ,

α1 = −γ∆t, α2 = 6γ∆t− 3αh2∆t,

α3 = 12h3, α4 = βh2∆t.

For the linear Fourier analysis, we only consider the linear
version of Eq. (12), which is given by

α1U
(m+1)
k−2 + α2U

(m+1)
k−1 + α3U

(m+1)
k − α2U

(m+1)
k+1

− α1U
(m+1)
k+2 = −α1U

(m)
k−2 − α2U

(m)
k−1 + α3U

(m)
k

+ α2U
(m)
k+1 + α1U

(m)
k+2.

(13)

Then assume thatU (m)
j is periodic inx-direction, and at

grid nodexj , let

U
(m)
j = V (m)eiωjh, (14)

whereV (m) is amplitude at time levelm, andω is phase
angle inx-direction. Substituting (14) into (13), we have

(α3 − iα5)V
(m+1) = (α3 + iα5)V

(m),

where
α5 = 2α1 sin(2wh) + 2α2 sin(wh).

Therefore, the growth factorg for the proposed energy-
preserving scheme is

|g| =
∣

∣

∣

∣

V (m+1)

V (m)

∣

∣

∣

∣

=

∣

∣

∣

∣

α3 + iα5

α3 − iα5

∣

∣

∣

∣

= 1.

Therefore, it meets the unconditionally stable criterion (|g| ≤
1) and we conclude that the proposed energy-preserving
scheme is unconditionally stable.

V. NUMERICAL EXPERIMENTS

In this section, we will test the proposed schemes numeri-
cally. Through these numerical examples, we will analyze
the accuracy and conservative properties of the proposed
schemes, and further illustrate the advantages of the energy-
preserving scheme.

A. Single solitary wave

Here we consider the KdV equation (1), and setA = 1,
d = 6 andg = 9.8, then we can obtainα, c, β andγ by (2).
According to [21], Eq. (1) has the following solitary wave
solution:

u(x, t) = A sech2
[

1

2

√

3A

d3
(x− κt)

]

,

whereκ = c
(

1+ A
2d

)

. This solution corresponds to a solitary
wave of amplitudeA. Here c denotes the velocity of the
traveling wave. Here we adopt the following initial solution

u(x, 0) = A sech2
[

1

2

√

3A

d3
x

]

,

and the periodic boundary condition

u(a, t) = u(b, t).

On the other hand, in order to validate the efficiency of
the proposed methods, in the sequel, we will useL∞ =

max0≤i≤N−1 |U(xi, tn) − u
(n)
i | and order= log2

(

‖un −
U

(n)
2h ‖∞/‖u(n) − U

(n)
h ‖∞

)

to evaluate the accuracy and the
convergence orders of the methods. In addition, we will use
|Ini − I1i |/I1i to denote the relative errors of the invariants,
whereIi(i = 1, 2, 3) respectively corresponds to the global
energy (6) and mass, momentum (11) at the discrete level.

Firstly, we test the accuracy and the convergence orders
of the proposed schemes. Here we assume the problem is
solved on the interval[−100, 100]. In order to measure the
error in space, a relatively small time step∆t = 0.0001 is
chosen such that the error from the time direction can be
negligible, and the spatial steps are respectively chosen as
h = 2, h = 1, h = 1/2 and h = 1/4. The spatialL∞

errors and corresponding convergence rates of the proposed
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TABLE I: SpatialL∞ errors and convergence orders of the proposed methods withN = 1000, ∆t = 0.0001, −100 ≤ x ≤
100.

h MFVEM order EFVEM order FVEM order

2 1.6914e− 03 — 4.0981e− 04 — 4.0981e − 04 —

1 4.3487e− 04 1.96 1.0390e− 04 1.98 1.0390e − 04 1.98

1/2 1.0934e− 04 1.99 2.5993e− 05 2.00 2.5993e − 05 2.00

1/4 2.7368e− 05 2.00 6.5672e− 06 1.98 6.5672e − 06 1.98

TABLE II: TemporalL∞ errors and convergence orders of the proposed methods withT = 1, h = 1/16, −100 ≤ x ≤ 100.

∆t MFVEM order EFVEM order FVEM order

1/2 8.7962e − 03 — 9.1200e − 03 — 8.7841e − 03 —

1/4 2.3166e − 03 1.92 2.3943e − 03 1.93 2.3035e − 03 1.93

1/8 5.9953e − 04 1.95 6.0927e − 04 1.97 5.8609e − 04 1.97

1/16 1.6364e − 04 1.87 1.5595e − 04 1.97 1.5012e − 04 1.97

TABLE III: L∞ errors and convergence orders of the proposed methods withT = 3, h = ∆t, −100 ≤ x ≤ 100.

h MFVEM order EFVEM order FVEM order

1 9.7275e− 02 — 9.2927e− 02 — 9.0518e − 02 —

1/2 2.9056e− 02 1.74 2.7584e− 02 1.75 2.6806e − 02 1.76

1/4 7.657e− 03 1.92 7.2513e− 03 1.93 7.0406e − 03 1.93

1/8 1.9412e− 03 1.98 1.8372e− 03 1.98 1.7833e − 03 1.98
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(a) (b)

Fig. 1: The errors of the proposed schemes: (a) the maximum errors of the three proposed schemes atT = 3 and with
h = ∆t = 1/16, (b) the numerical errors corresponding to different steps of the energy-preserving scheme atT = 3.

methods are presented in Table I, which clearly shows that
the energy-preserving scheme and the finite volume element
scheme have higher accuracy than the momentum-preserving
scheme. Similarly, for the time direction, a relatively small
spatial steph = 1/16 is chosen such that the error from
the spatial direction can be negligible. The temporalL∞

error and corresponding convergence rates of the proposed
methods are presented in Table II, which clearly shows that
the convergence rates of three methods are approximately
equal to2. It is also noted that the error of the momentum-
preserving scheme cease to decrease at a certain point, which
is because the error from the time direction become very
small such that it can not be distinguished from the spatial
error. On the other hand, theL∞ errors and the convergence
rates of three methods withh = ∆t andT = 3 are presented
in Table III, which clearly shows that the convergence rates

of three methods are all approximately equal to2 in space
and time.

Secondly, in order to compare the accuracy of the proposed
methods, we plot the variation of theL∞ errors of the
proposed methods, whenh = ∆t = 1/16 and T = 3, in
Figure 1(a), which clearly shows that the growth of the errors
of three methods are linear, and the momentum-preserving
scheme has the largest error. On the other hand, Figure 1(b)
presents the numerical errors corresponding to different steps
of the energy-preserving scheme atT = 3.

At last, we test the propagation of the solitary wave
and the conservative properties of the proposed schemes.
In the sequel, we set spatial steph = 0.5 and temporal
step∆t = 0.1, and the problem is solved over the interval
[−50, 50]. Figure 2 presents the numerical results of the
energy-preserving scheme fort in [0, 40]. The surface plot
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Fig. 2: The numerical results of the energy-preserving scheme: (a) numerical solution, (b) the relative errors of invariants,
whenh = 0.5, ∆t = 0.1, a = 1, d = 6, T = 40 and−50 ≤ x ≤ 50.
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Fig. 3: The relative errors of the invariants of the proposed schemes: (a) momentum-preserving scheme, (b) finite volume
element scheme, whenh = 0.5, ∆t = 0.1, a = 1, d = 6, T = 40 and−50 ≤ x ≤ 50.
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Fig. 4: The numerical results of the energy-preserving scheme: (a) numerical solution, (b) the relative errors of invariants,
whenh = 0.5, ∆t = 0.1, a = 1, d = 6, T = 1000 and−50 ≤ x ≤ 50.

of numerical solution at timeT = 40 is presented in Figure
2(a), which shows the solitary wave moves to the right
at a constant speed, and the wave shape and amplitude

almost unchanged with time increase. Figure 2(b) shows
that the relative errors of the invariants at the discrete level.
It is clearly seen that the energy-preserving method can
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Fig. 5: The relative errors of the invariants of the proposed schemes: (a) momentum-preserving scheme, (b) finite volume
element scheme, whenh = 0.5, ∆t = 0.1, a = 1, d = 6, T = 1000 and−50 ≤ x ≤ 50.

precisely preserve the discrete mass and energy to within
machine precision. The relative errors of the invariants of the
momentum-preserving scheme and the finite volume element
scheme are presented in Figure 3, which shows that the
momentum-preserving scheme can precisely conserve the
discrete mass and momentum to within machine precision,
and the finite volume element scheme can precisely conserve
the discrete mass to within machine precision. In view of
Figure 2 and Figure 3, we conclude that three schemes all
can be used to simulate the propagation of the solitary wave,
but in the aspect of accuracy and conservation properties, the
energy-preserving method is a better method. On the other
hand, in order to test the long time behavior of the energy-
preserving scheme, we also present the numerical results of
the energy-preserving method fort in [0, 1000] in Figure
4, which illustrates the scheme has good stability and long
time computation ability. In addition, for comparison, we also
present the relative errors of the invariants of the momentum-
preserving scheme and the finite volume element scheme in
Figure 5.

B. Interaction of two solitary waves

In order to further illustrate the effectiveness of the pro-
posed scheme, here we discuss the interaction of two solitary
waves. Settingα = 0, β = 1, γ = 4.84 × 10−4, then we
obtain the following KdV equation,

ut + uux + 4.84× 10−4uxxx = 0, 0 ≤ x ≤ 4. (15)

Here we consider the KdV equation (15) with the following
periodic boundary condition

u(0, t) = u(4, t), t > 0.

On the other hand, according to [18], [24], Eq. (15) has the
following exact solution,

u(x, t) = 12γ(logF )xx, (16)

where

F = 1 + exp(η1) + exp(η2) +

(

l1 − l2
l1 + l2

)2

exp(η1 + η2),

ηi = lix− l3i γt+mi(i = 1, 2),

l1 =

√

0.3

γ
, l2 =

√

0.1

γ
, m1 = −0.48l1, m2 = −1.07l2.

For all the computations, we have used the stepsizes
h = 0.0125, ∆t = 0.05, and the computations are done up to
time T = 6. The numerical results of the energy-preserving
scheme are presented in Figure 6, which shows that the
energy-preserving scheme can exactly preserve the global
mass and energy at the discrete level. On the other hand,
Figures 7-9 display the interaction process of two solitary
waves. It is noted that the taller wave initially located on
the left of the lower wave. Then, att = 2.5, the taller wave
catched up the lower wave and occurred interaction, and at
t = 3 and t = 3.5, the taller wave and the lower wave
overlapped, as is noted in Figure 8. It is also noted that the
taller wave and the lower wave started to leave away when
t > 3.5, and the taller wave and the lower wave interchanged
their positions att = 6, as is shown in Figure 9. On the
other hand, the numerical results also shows that the energy-
preserving scheme has better performances than the ones of
[24], i.e., the method of [24] needs smaller stepsizes and is
not suitable for long time computation.

VI. CONCLUSIONS

In this paper, an energy-preserving scheme is proposed
for the Korteweg-de Vries equation. We investigate the
accuracy and the conservative properties of the proposed
method and compare its performances with the ones of a
momentum-preserving scheme and a finite volume element
scheme. The numerical results show that three schemes all
can simulate the KdV equation, but in the aspect of accuracy
and conservative properties, the energy-preserving scheme
has smaller accuracy and better conservative properties than
other two schemes. Thus the energy-preserving scheme is
a better choice for the KdV equation. Besides, the energy-
preserving scheme is unconditionally stable and has better
long time computation ability.
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Fig. 6: The numerical results of the two solitary waves obtained by the energy-preserving scheme: (a) the surface plot of
numerical solution, (b) the relative errors of invariants, whenα = 0, β = 1, µ = 4.84 × 10−4, h = 0.0125, T = 6, and
0 ≤ x ≤ 4.
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Fig. 7: The plots of the two solitary waves obtained by the energy-preserving scheme: (a)t = 0, (b) t = 2.5, whenα = 0,
β = 1, µ = 4.84× 10−4, h = 0.0125, T = 6, and0 ≤ x ≤ 4.
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Fig. 8: The plots of the two solitary waves obtained by the energy-preserving scheme: (c)t = 3, (d) t = 3.5, whenα = 0,
β = 1, µ = 4.84× 10−4, h = 0.0125, T = 6, and0 ≤ x ≤ 4.
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Fig. 9: The plots of the two solitary waves obtained by the energy-preserving scheme: (e)t = 3.75, (f) t = 6, whenα = 0,
β = 1, µ = 4.84× 10−4, h = 0.0125, T = 6, and0 ≤ x ≤ 4.
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