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Abstract—The Ambrosetti-Rabinowitz (AR) condition is cru-
cial in variational methods. In this paper we consider a class
of p-Laplacian equations without the AR condition. Using
Mountain pass lemma and Ekeland variational principle, we
obtain the existence and multiplicity of the solutions. These
results complement some known results.

Index Terms—P-Laplacian equations, AR condition, Moun-
tain pass theorem, Ekeland variational principle, existence and
multiplicity.

I. INTRODUCTION

IN this paper, we study the existence and multiplicity
of nontrivial weak solutions for the following nonlinear

elliptic equation −Φp(x(z)) = m(z)|x(z)|r−2x(z) + f(z, x(z)),
a.e. on Z,

x|∂Z = 0, m ∈ L∞(Z)+,m 6= 0, 1 < r < p <∞,
(1.1)

where Φpx = div(‖Dx‖p−2
RN

Dx) is called p-Laplacian d-
ifferential operator, Z ⊂ RN is a bounded domain with
a C2(∂Z), and the function f is a Carathédory func-
tion which is assumed to be (p − 1)-superlinear (convex
term) near infinity and doesn’t satisfy the Ambrosetti-
Rabinowitz condition (AR condition for short). Since the
term m(z)|x(z)|r−2x(z) is (p − 1)-superlinear (concave
term) near zero for r < p, so the right-hand-side of (1.1)
reflects the combined properties of “convex” and “concave”
and which ensures the existence of multiple solutions for
equations [1] similar to (1.1) .

As we have known that the AR condition is very important
in variational methods, which not only ensures that the Euler-
Lagrange function [17] associated with (1.1) has a moun-
tain pass geometry, but also guarantees the boundedness of
Palais-Smale sequences corresponding to the Euler-Lagrange
function. But some nonlinearities do not always satisfy the
AR condition, see [3], [5], [9], [10], [12], [16], [13], [14],
[18], [19], [21], [22], [23], [24] for details.

We will use the Mountain pass theorem [8] and Ekeland
variational principle [6], with Cerami condition [4] to over-
come the above difficulties.

We suppose that f(z, x) satisfies the following conditions
without the AR condition.

(HF ) the function f(z, x) satisfies f(z, 0) = 0 a.e. on Z,
f(z, x) ≥ 0 for a.e. z ∈ Z̄,∀ x ≥ 0 and
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(i) for all x ∈ R, z → f(z, x) is measurable;
(ii) for almost all z ∈ Z, x→ f(z, x) is continuous;
(iii) for almost all z ∈ Z and all x ∈ R, we have

|f(z, x)| ≤ a(z) + c|x|τ−1, where τ ∈ (p, p∗) and p∗ :=
Np
N−p , if N > p or p∗ := +∞, if N ≤ p;

(iv) the function f(z, x) is (p − 1)-superlinear, i.e.
lim

x→+∞
f(z,x)
xp−1 = +∞ uniformly for almost all z ∈ Z;

(v) there exists β ∈ L1(Z)+ such that G(z, x) ≤
G(z, y) + β(z), z ∈ Z for all 0 ≤ x ≤ y, where G(z, x) :=
f(z, x)x− pF (z, x) and F (z, x) =

∫ x
0
f(z, t)dt;

(vi) there is θ ∈ L∞(Z)+, θ(z) ≤ λ1 a.e. on Z, θ 6≡ λ1,
and lim

x→0+

f(z,x)
x(p−1) ≤ θ(z) uniformly for a.e. z ∈ Z.

(HF )′ In addition to the assumptions (i), (ii), (iii), there
are also some assumptions on f(z, x):
f(z, x) is a function such that f(z, 0) = 0 a.e. on Z,

f(z, x) ≤ 0 for a.e. z ∈ Z,∀ x ≤ 0;
(iv) the function f(z, x) is (p − 1)-superlinear, i.e.

lim
x→−∞

f(z,x)
x(p−1) = +∞ uniformly for almost all z ∈ Z;

(v) there exists β ∈ L1(Z)+ such that G(z, x) ≤
G(z, y) + β(z), z ∈ Z for all y ≤ x ≤ 0, where G(z, x) :=
f(z, x)x− pF (z, x) and F (z, x) =

∫ x
0
f(z, t)dt;

(vi) there is θ ∈ L∞(Z)+, θ(z) ≤ λ1 a.e. on Z, θ 6≡ λ1,
and lim

x→0−

f(z,x)
x(p−1) ≤ θ(z) uniformly for a.e. z ∈ Z.

Hypothesis (HF )(iv) implies the (p − 1)-superlinear
growth of f(t, x) on x near ∞ , which is weaker than the
well-known AR-condition and simplifies the verification of
the PS-condition for the Euler functional of related problem.
It should be pointed out that the hypothesis (HF )(v) or
(HF )′(v) is different with the corresponding one in [11].
Hypothesis (HF )(v) is a monotonicity condition [15], which
is employed to study the multiplicity of positive solutions for
nonlinear problems.

The rest of the paper is organized as follows. In Section
II, we give some preliminaries. The main results for the exis-
tence and multiplicity of solutions to Eq.(1.1) are presented
in Section III. Finally, we conclude this paper in Section IV.

II. PRELIMINARIES

We firstly give some notations.
r± = max{±r, 0},∀r ∈ R, m(·) denotes the Lebesgue

measure on RN , an order Banach space C1
0 (Z̄) = {x ∈

C1(Z̄) : x |∂Z=0}. C+ = {x ∈ C1(Z̄) : x(z) ≥ 0 for all z ∈
Z̄} is a positive cone of C1

0 (Z̄) with a nonempty interior
given by

intC+ = {x ∈ C+ : x(z) > 0 for all z ∈ Z

and
∂Z

∂n
(z) < 0 for all z ∈ ∂Z

}
,

where n(z) denotes the unit outward normal z ∈ ∂Z.
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We assume the Dirichlet p-Laplacian problem{
−Φp(x(z)) = λ|x(z)|r−2x(z), a.e. on Z
x|∂Z = 0,

(2.1)

has a nontrivial solution and the symbol λ1 denotes its princi-
pal eigenvalue. Obviously, from [8], the principal eigenvalue
λ1 > 0 is isolate and simple. From [2], we have

λ1 = inf

{‖Dx‖pp
‖x‖pp

: x ∈W 1,p
0 (Z), x 6≡ 0

}
(2.2)

and from [7], using (2.2), we obtain the following lemmas.
Lemma 2.1: If θ ∈ L∞(Z)+ satisfies θ(z) ≤ λ1 a.e. on

Z and θ 6= λ1, then there exists ξ0 > 0 such that ‖Dx‖pp −∫
Z
θ|x|pdz ≥ ξ0‖Dx‖pp for all x ∈W 1,p

0 (Z).
In the following, the duality brackets 〈·, ·〉 is listed for

(W−1,q(Z),W 1,p
0 (Z)), where W−1,q(Z) ≡W 1,p

0 (Z)∗ with
1
p + 1

q = 1. The nonlinear map A : W 1,p
0 (Z) → W−1,q(Z)

is defined as

〈A(x), y〉 =

∫
Z

‖Dx‖p−2
RN

(Dx,Dy)RNdz, (2.3)

for all x, y ∈W 1,p
0 (Z). Then we obtain the following lemma.

Lemma 2.2: If A : W 1,p
0 (Z) → W−1,q(Z) is the map

defined by (2.3), then A is bounded, continuous, strictly
monotone (hence maximal monotone too) and if xn ⇀
w and lim supn→∞〈A(xn), xn − x〉 ≤ 0, then xn → w
in W 1,p

0 (Z) (i.e., A is of type (S)+).

III. MAIN RESULTS

In this section, we discuss a class of p-Laplacian equa-
tions without the AR condition and give the existence and
multiplicity of their solutions.

We define

f+(z, x) =

{
0, if x ≤ 0;
f(z, x), if x > 0.

(2.4)

and F+ =
∫ x

0
f+(z, t)dt. We also define the function I+ :

W 1,p
0 (Z)→ R as

I+(x) =
1

p
‖Dx‖pp−

1

r

∫
Z

m(x+(z))rdz−
∫
Z

F+(z, x(z))dz

for all x ∈ W 1,p
0 (Z). Thus I+ ∈ C1(W 1,p

0 (Z)). Then we
get the following lemmas.

Lemma 3.1: If hypotheses (i) − (v) of (HF ) hold and
m ∈ L∞(Z)+ \ {0}, then I+ satisfies the Cerami condition.

Proof: Let {xn} ⊆W 1,p
0 (Z) be a Cerami sequence [4],

i.e.

I+(xn)→ c ∈ R and (1 + ‖xn‖)I ′+(xn)→ 0 as n→∞.
(2.5)

Our task now is to prove that {xn} ⊆W 1,p
0 (Z) is bounded.

Firstly, we need to show that {x−n } ⊆W
1,p
0 (Z) is bounded.

From (2.5), we have

|〈I ′+(xn), u〉| ≤ εn, ∀ u ∈W 1,p
0 (Z) with εn → 0. (2.6)

Let u = −x−n ∈ W 1,p
0 (Z), then ‖Dx−n ‖pp ≤ εn. By

Poincaré’s inequality, {x−n } ⊆ W 1,p
0 (Z) is bounded. Sec-

ondly, we prove that {x+
n } ⊆ W 1,p

0 (Z) is bounded. By
contradiction, we suppose that ‖x+

n ‖ → ∞ as n → ∞. Let
yn =

x+
n

‖x+
n ‖
, n = 1, 2, · · · . Then ‖yn‖ = 1 and yn ≥ 0, n =

1, 2, · · · . We can choose a suitable subsequence {ynk} ⊆

{yn} (for the convenience, we still denote it as {yn}) such
that for a.e. z ∈ Z, n = 1, 2, · · · , yn ⇀ y ∈W 1,p

0 (Z), yn →
y ∈ Lτ (Z)+, yn → y a.e. on Z, |yn(z)| ≤ h(z), with
h ∈ Lτ (Z)+. Then y ≥ 0. In (2.6), let u = x+

n ∈ W
1,p
0 (Z),

then |〈I ′+(xn), x+
n 〉| ≤ εn. Thus∣∣∣‖Dx+

n ‖pp −
∫
Z

m(x+
n )rdz −

∫
Z

f+(z, xn)x+
n dz

∣∣∣ ≤ εn,∣∣∣‖Dy+
n ‖pp −

1

‖x+
n ‖p−r

∫
Z

m(z)(y+
n )rdz

− 1

‖x+
n ‖p−1

∫
Z

f+(z, x+
n )yndz

∣∣∣ ≤ εn

‖x+
n ‖p

. (2.7)

The next thing is to show y = 0. Let Z+ = {z ∈ Z : y(z) >
0}, then x+

n (z)→ +∞ a.e. z ∈ Z+. By (HF )(iv), for a.e.
z ∈ Z+, as n→∞, it follows that

f+(z, x+
n (z))

(x+
n (z))p−1

→ +∞, (2.8)

Let χn(z) = χx+
n>0(z) = χyn>0(z), then

χn(z)ypn(z)→ χZ+
(z)ypn(z), a.e. on Z. (2.9)

If Z+ has a positive Lebesgue measure m(Z+) > 0, by
(2.8),(2.9), as n→∞, we have

χn(z)
f(z, x+

n (z))

(x+
n (z))p−1

ypn(z)→ +∞, a.e. on Z. (2.10)

By Fatou’s Lemma and (2.10), we get∫
Z

f(z, x+
n (z))

‖(x+
n (z))‖p−1

yn(z)dz

=

∫
Z

χn(z)
f(z, x+

n (z))

(x+
n (z))p−1

ypn(z)dz → +∞, as n→∞.

(2.11)

While in (2.7), as n → ∞, by (2.11) and r < p, we get a
contraction that +∞ ≤ εn

‖x+
n ‖p
→ 0. Thus m(Z+) = 0. Then

y = 0 for y ≥ 0.
Let t ∈ [0, 1], {tn} ⊆ [0, 1], n = 1, 2, · · · , such that

I+(tnx
+
n ) = max

t∈[0,1]
I+(tx+

n ). (2.12)

Let
vn = (2p‖x+

k ‖
p)

1
p yn, k, n = 1, 2, · · · .

According to the Lebesgue dominated convengence theorem
and y = 0, it follows that

lim
n→∞

∫
Z

F+(z, vn)dz = 0, lim
n→∞

∫
Z

m(z)|vn(z)|rdz = 0.

(2.13)
Since ‖x+

n ‖ → ∞ as n→∞, we choose n0 ≥ k such that

(2p‖x+
k ‖p)

1
p

‖x+
n ‖

≤ 1, n ≥ n0. (2.14)

From (2.12) and (2.14), we obtain

I+(tnx
+
n ) ≥ I+(vn)

=
1

p
‖Dvn‖pp −

1

r

∫
Z

m(vn)rdz −
∫
Z

F+(z, vn)dz

= 2‖x+
k ‖p −

1

r

∫
Z

m(vn)rdz −
∫
Z

F+(z, vn)dz. (2.15)
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From (2.13), (2.15), for sufficiently n ≥ n0 ≥ k, we get

I+(tnx
+
n ) ≥ ‖x+

k ‖p, (2.16)

and I+(tnx
+
n )→ +∞ as n→∞.

It is easy to get that I+(0) = 0. From the choice of {xn} ⊆
W 1,p

0 (Z) and the boundness of {x−n } ⊆ W 1,p
0 (Z), we get

that I+(x+
n ) is bounded. Thus tn ∈ (0, 1). From (2.12), we

have

0 = tn

(
d

dt
I+(tx+

n ) |t=tn
)

= 〈I ′+(tnx
+
n ), tnx

+
n 〉

= tpn‖Dx+
n ‖pp − trn

∫
Z

m(x+
n )rdz

−
∫
Z

f+(z, tnx
+
n )tnx

+
n dz. (2.17)

Then for r < p, by (HF )(v), it follows that

1

p

∫
Z

σ(z, x+
n )dz +

1

p
‖β‖L1

≥ 1

p

∫
Z

σ(z, x+
n )dz +

1

p

∫
Z

|β|dz

≥ 1

p

∫
Z

σ(z, tnx
+
n )dz

=

∫
Z

(1

p
f+(z, tnx

+
n ))tnx

+
n − F (z, tnx

+
n )
)
dz

=
tpn
p
‖Dx+

n ‖pp −
trn
p

∫
Z

m(x+
n )rdz −

∫
Z

F+(z, tnx
+
n )dz

≥ I+(tnx
+
n ), (2.18)

from (2.16), for n ≥ n0 ≥ k, which implies that

1

p

∫
Z

σ(z, x+
n )dz+

1

p
‖β‖L1 ≥ I+(tnx

+
n ) ≥ ‖x+

k ‖
p. (2.19)

On the other hand, from (2.5) and {x−n } ⊆ W 1,p
0 (Z) is

bounded, we can choose Mi > 0, i = 1, 2 such that∣∣∣1
p
‖Dx+

n ‖pp −
1

r

∫
Z

m(x+
n )rdz −

∫
Z

F+(z, x+
n )dz

∣∣∣ ≤M1,

(2.20)∣∣〈I ′+(xn), x+
n 〉
∣∣ =

∣∣∣1
p
‖Dx+

n ‖pp −
1

p

∫
Z

m(x+
n )rdz

− 1

p

∫
Z

f+(z, x+
n )x+

n dz
∣∣∣

≤M2. (2.21)

From (2.20) and (2.21), we have

−M1 −M2 ≤
1

p

∫
Z

σ(z, x+
n )dz − p− r

p

∫
Z

m(x+
n )rdz

≤M1 +M2.

Combining (2.19), which implies that

‖x+
k ‖

p − p− r
p
‖x+

n ‖r ≤M1 +M2 +
1

p
‖β‖L1 , (2.22)

for n ≥ n0 ≥ k. Recall that k ≥ 1 was an arbitrary
integer and let k → ∞. Since r < p, from (2.22), we get a
contradiction. This proves that {x+

n } ⊆W
1,p
0 (Z) is bounded

and so {xn} ⊆W 1,p
0 (Z) is also bounded.

Then we may assume that xn ⇀ x ∈ W 1,p
0 (Z), xn →

x ∈ Lτ (Z)+. Since that∣∣∣〈I ′+(xn), xn − x〉
∣∣∣

=
∣∣∣〈A(xn), xn − x〉 −

∫
Z

m(x+
n )r(xn − x)dz

−
∫
Z

f+(z, x+
n )(xn − x)dz

∣∣∣
≤ εn, (2.23)

and
∫
Z
m(x+

n )r(xn − x)dz → 0, and
∫
Z
f+(z, x+

n )(xn −
x)dz → 0. Then 〈A(xn), xn − x〉 → 0, as n→ +∞, which
shows that xn → x ∈ W 1,p

0 (Z) by Lemma 2.2. In all, I+
satisfies the Cerami condition. This completes the proof.

Lemma 3.2: If hypotheses (HF ) hold and m ∈L∞(Z)+\
{0}, then there is ζ > 0 such that ‖m‖∞ ≤ ζ. There also
exist ρ = ρ(‖m‖∞) > 0, δ > 0 such that inf∂Bρ I+(x) ≥ δ,

where Bρ = {x ∈W 1,p
0 (Z) : ‖x‖ < ρ}.

Proof: By (HF )(vi), ∀ε > 0, there is δ(ε) > 0 such
that for a.e. z ∈ Z, x ≤ δ(ε),

0 ≤ f+(z, x) ≤ (θ(z) + ε)(x+)p−1. (2.24)

From (HF )(iii), ∀ε > 0, there is δ(ε) > 0, c3(ε) > 0 such
that for a.e. z ∈ Z, x ≤ δ(ε),

0 ≤ f+(z, x) ≤ c3(x+)τ−1. (2.25)

Combining hypotheses (HF )(vi) with (HF )(iii), for all
ε > 0, there exists δ(ε) > 0, c3(ε) > 0 such that for a.e.
z ∈ Z, x ∈ R,

0 ≤ f+(z, x) ≤ (θ(z) + ε)(x+)p−1 + c3(x+)τ−1, (2.26)

F+(z, x) ≤ 1

p
(θ(z) + ε)(x+)p +

c3
τ

(x+)τ . (2.27)

Thus, from (2.27) and x+(z) ≤ |x(z)| a.e. on Z, we have

I+(x)

=
1

p
‖Dx‖pp −

1

r

∫
Z

m(x+(z))rdz −
∫
Z

F+(z, x(z))dz

≥ 1

p
‖Dx‖pp −

1

r
‖m‖∞‖x‖rr −

1

p

∫
Z

θ(z)|x|pdz

− ε

p
‖x‖pp −

c3
τ
‖x‖ττ , (2.28)

for ∀x ∈ W 1,p
0 (Z). By W 1,p

0 (Z) is embedded continuously
and compactly into Lr(Z) and Lτ (Z) for r < p < τ < p∗,
using Poincaré’s inequality, (2.2) and Lemma 2.1, there are
c4(ε) > 0, c5 > 0, c6 = 1

p (ξ0 − ε
λ1

) > 0 such that

I+(x)

=
1

p
‖Dx‖pp −

1

p

∫
Z

θ(z)|x|pdz − c4‖Dx‖τp

− c5‖m‖∞‖Dx‖rp −
ε

pλ1
‖Dx‖pp

≥ 1

p

(
ξ0 −

ε

λ1

)
‖Dx‖pp − c4‖Dx‖τp

− c5‖m‖∞‖Dx‖rp −
ε

pλ1
‖Dx‖pp

= (c6 − c4(ε)‖Dx‖τ−pp − c5‖m‖∞‖Dx‖r−pp )‖Dx‖pp.
(2.29)
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Considering the auxiliary function

f(t) = c4(ε)tτ−p + c5‖m‖∞tr−p, t > 0. (2.30)

Since r < τ < p, then lim
t→0+

f(t) = lim
t→+∞

f(t) = +∞.
According to the continuity and differentiability of f , there
exists t0 > 0 such that 0 < f(t0) = min

t≥0
f(t) and 0 =

f ′(t0) = c4(τ−p)tτ−p−1
0 +c5‖m‖∞(r−p)tr−p−1

0 . Thus we
have t0 = (τ−r)

√( c5‖m‖∞(p−r)
c4(τ−p)

)
. From (2.30), there exists

ζ > 0 such that if ‖m‖∞ ≤ ζ, then f(t0) < c6. From (2.29),
there exist ‖x‖ = t0 = ρ = ρ(‖m‖∞) > 0, δ > 0 such that
inf∂Bρ I+(x) ≥ δ, where Bρ = {x ∈ W 1,p

0 (Z) : ‖x‖ < ρ}.

Lemma 3.3: If hypotheses (HF ) hold and m ∈L∞(Z)+\
{0} and y ∈ C+ \ {0} with ‖y‖p = 1. Then I+(λy)→ −∞
as λ→∞.

Proof: According to (HF )(iv), for ∀ε > 0,∃M(ε) > 0
such that for a.e. z ∈ Z and x ≥M(ε), we have

f+(z, x) ≥ xp−1

ε
. (2.31)

Let c(ε) = 1
εM(ε)p−1, then f+(z, x) ≥ xp−1

ε − c(ε) for a.e.
z ∈ Z and x ≥ 0. Thus we have

F+(z, x) ≥ xp

pε
−c(ε)x, for a.e. z ∈ Z and x ≥ 0. (2.32)

If let y ∈ C+\{0} with ‖y‖p = 1, λ > 0, then for a.e. z ∈ Z
and C̄(ε) = c(ε)‖y‖1, by (2.32), we have

F+(z, λy(z)) ≥ λpyp(z)

pε
− c(ε)λy(z), (2.33)

F+(z,λy(z))
λp ≥ yp(z)

pε −
c(ε)
λp−1 y(z), (2.34)

∫
Z

F+(z, λy(z))

λp
dz ≥

∫
Z

yp(z)

pε
dz −

∫
Z

c(ε)

λp−1
y(z)dz

=
1

pε
− c̄(ε)

λp−1
. (2.35)

Thus
lim inf
λ→∞

∫
Z

F+(z, λy(z))

λp
dz ≥ 1

pε
. (2.36)

Since ε > 0 is arbitrary, we get

lim
λ→+∞

∫
Z

F+(z, λy(z))

λp
dz = +∞. (2.37)

Then by (2.37), by r < p, we have lim
λ→+∞

I+(λy)
λp = −∞,

and I+(λy)→ −∞ as λ→ +∞. It follows that there exists
λ0, η > 0 such that λ0y ∈ W 1,p

0 (Z), ‖λ0y‖p > η > 0 and
I+(λ0y) < 0.

Theorem 3.1: Let (HF ) hold and m ∈ L∞(Z)+ \ {0}. If
there is ζ > 0 such that ‖m‖∞ ≤ ζ. Then (1.1) has at least
two positive solutions x1, x2 ∈ intC+.

Proof: By Lemma 2.3-2.5, we have proved that I+
satisfies a mountain pass geometry [8]. Thus there exists
x1 ∈W 1,p

0 (Z) such that

I+(0) = 0 < η ≤ I+(x1), and I ′+(x1) = 0. (3.1)

From (3.1), it follows that x1 6≡ 0. From (3.1), we also have

A(x1) = m(x+
1 )r−1 +N+(x1), (3.2)

where N+(u)(z) = f+(z, u(z)), u ∈ W 1,p
0 (Z). From

(3.2), for −x−1 ∈ W 1,p
0 (Z), we have ‖Dx−1 ‖pp = 0 since

f+(z, z) = 0 for a.e. z ∈ Z and x ≤ 0, which shows that
x1 ≥ 0 and x1 6≡ 0.

From (3.2), we get

− Φpx1(z) = m(z)xr−1
1 (z) + f(z, x1(z)),

a.e. on Z and z |∂Z= 0. (3.3)

By nonlinear regularity theory [8], we have x1 ∈ C+ \ {0}.
From (2.30), we obtain Φpx1(z) ≤ 0 a.e. on Z. By the
nonlinear strong maximum principle of [20], we show that
x1 ∈ intC+.

According to Lemma 2.4, there is ζ > 0 such that
‖m‖∞ ≤ ζ. There also exists ρ = ρ(‖m‖∞) > 0, δ > 0 such
that inf∂Bρ I+(x) ≥ δ > 0, where Bρ = {x ∈ W 1,p

0 (Z) :
‖x‖ < ρ}.

Next, we will show that −∞ < infB̄ρ I+ < 0. From
(2.29), we have −∞ < infB̄ρ I+. Let u ∈ C̄1 = {u ∈
C1(Z) : u has support in Z} with u ≥ 0, u 6≡ 0 and λ > 0,
then for F+ ≥ 0,

I+(λu)

=
λp

p
‖Du‖pp −

λr

r

∫
Z

θ(z)urdz −
∫
Z

F+(z, λu)dz

≤ λp

p
‖Du‖pp −

λr

r

∫
Z

θ(z)urdz, (3.4)

Since r < p, from (3.4) and λ small enough, we have
I+(λu) < 0 and −∞ < infB̄ρ I+ < 0. Let ε ∈
(0, inf∂B̄ρ I+ − infB̄ρ I+) and consider the function I+ :

B̄ρ → R. By using Ekeland variational principle [6], we
obtain that there exists x(ε) ∈ B̄ρ such that

I+(x(ε)) ≤ inf
B̄ρ
I+ + ε, (3.5)

I+(x(ε)) ≤ I+(y) + ε‖y − x(ε)‖, ∀ y ∈ B̄ρ. (3.6)

Due to (3.5) and we choose suitable ε > 0 such that

I+(x(ε)) ≤ inf
B̄ρ
I+ + ε < inf

∂B̄ρ
I+. (3.7)

From (3.7), it is easy to see x(ε) ∈ Bρ. Define the following
function

ϕε(y) = I+(y) + ε‖y − x(ε)‖. (3.8)

From (3.6), it follows that x(ε) ∈ Bρ is a minimizer of
ϕε on B̄ρ. Therefore for all λ > 0 and k ∈ W 1,p

0 (Z)

with ‖k‖ = 1, we have ϕε(x(ε)+λk)−ϕε(x(ε))
λ ≥ 0, then

I+(x(ε)+λk)−I+(x(ε))
λ + ε‖k‖ ≥ 0, and

〈I ′+(x(ε)), k〉 ≥ −ε‖k‖, and ‖〈I ′+(x(ε))〉‖ ≤ ε. (3.9)

Let εn = 1
n and choose xn ≡ xεn ∈ Bρ. Then by

(3.7), I+(xn) → infB̄ρ I+ and I ′+(xn) → 0. By Lemma
2.3, we can assume that xn → x̄ ∈ W 1,p

0 (Z). Thus
I+(x̄) = infB̄ρ I+ < 0 = I+(0), which implies that x̄ 6≡ 0.
Recall that I+(x̄) = infB̄ρ I+ < inf∂B̄ρ I+ ≤ I+(x1), then
x̄ 6= x1.

Since I ′+(xn) → 0, we have I ′+(x̄) → 0 and A(x̄) =

m(x̄+)r−1 + N+(x̄). Then, for −x̄− ∈ W 1,p
0 (Z), we have

‖Dx̄−‖pp = 0 since f+(z, x) = 0 for a.e. z ∈ Z and x ≤ 0,
which shows that x̄ ≥ 0 and x̄ 6≡ 0. Also, x̄ is a solution
of problem (1.1). Then, in a similar way as we did for x1,
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via the nonlinear regularity theory and the nonlinear strong
maximum principle, we show that x̄ ∈ intC+.

Similar to the proof of Theorem 3.1, we state the theorems
as follows but omit the proof.

Theorem 3.2: Let (HF )′ hold and m ∈ L∞(Z)+ \ {0}.
If there is ζ > 0 such that ‖m‖∞ ≤ ζ. Then (1.1) has at
least two negative solutions x3, x4 ∈ −intC+.

Theorem 3.3: Let (HF ) and (HF )′ hold and m ∈
L∞(Z)+ \ {0}. If there is ζ > 0 such that ‖m‖∞ ≤ ζ.
Then (1.1) has at least four solutions x1, x2 ∈ −intC+ and
x3, x4 ∈ −intC+.

IV. CONCLUSIONS

In this paper, we use Mountain pass lemma and Ekeland
variational principle to obtain the existence and multiplicity
of the solutions of p-Laplacian equations without the AR
condition, and our hypothesis condition is weaker than the
AR condition.
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